“Integration of generic operating systems in partitioned architectures”

From Navigators

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
|ResearchLine=Timeliness and Adaptation in Dependable Systems (TADS)
|ResearchLine=Timeliness and Adaptation in Dependable Systems (TADS)
|year=2009
|year=2009
-
|abstract=A especificação Integrated Modular Avionics (IMA) define um ambiente compartimentado com funções de aviónica de diferentes criticalidades a coexistir numa plataforma computacional. A especificação relacionada ARINC 653 define uma interface padrão entre as aplicações e o sistema operativo subjacente. Ambas as especificações provêm do mundo da aviónica, mas estão a ganhar o interesse de parceiros da indústria espacial, que identificaram requisitos em comum entre as aplicações aeronáuticas e espaciais. No âmbito deste interesse, foi definida a arquitectura AIR, sob contrato da Agência Espacial Europeia (ESA). Esta arquitectura fornece segregação temporal e espacial, e prevê o uso de diferentes sistemas operativos em cada partição. A segregação temporal é obtida através do escalonamento fixo e cíclico dos recursos às partições. Este trabalho estende a heterogeneidade prevista entre os sistemas operativos das partições (POS). Tal foi motivado pelas dificuldades documentadas em portar aplicações para sistemas operativos de tempo-real, e pela noção de que a integração apropriada de um POS não-tempo-real não comprometera a pontualidade das funções críticas de tempo-real. Para este efeito, o Linux foi utilizado como caso de estudo. Uma variante embedida de Linux é construída e avaliada quanto à sua adequação como POS na arquitectura AIR. Para garantir uma integração segura, é proposta uma solução baseada na interface de paravirtualização do Linux, paravirt-ops. No decurso destas actividades, foram também feitas melhorias à definição da arquitectura AIR. O mais significante, motivado pelo pretendido aumento da heterogeneidade entre POSs, foi a introdução de um novo componente, AIR Partition OS Adaptation Layer (PAL). Este componente proporciona aos principais componentes da arquitectura AIR maior independência face ao POS, facilitando os esforços para a sua certificaç˜ao independente. Outros melhoramentos fornecem mecanismos avançados de pontualidade, como mode-based schedules e monitorização de incumprimento de metas temporais de processos.
+
|abstract=The Integrated Modular Avionics (IMA) specification defines a partitioned environment hosting multiple avionics functions of different criticalities on a shared computing platform. ARINC 653, one of the specifications related to the IMA concept, defines a standard interface between the software applications and the underlying operating system. Both these specifications come from the world of civil aviation, but they are getting interest from space industry partners, who have identified common requirements to those of aeronautic applications.
 +
 
 +
Within the scope of this interest, the AIR architecture was defined, under a contract from the European Space Agency (ESA). AIR provides temporal and spatial segregation, and foresees the use of different operating systems in each partition. Temporal segregation is achieved through the fixed cyclic scheduling of computing resources to partitions.
 +
 
 +
The present work extends the foreseen partition operating system (POS) heterogeneity to generic non-real-time operating systems. This was motivated by documented difficulties in porting applications to RTOSs, and by the notion that proper integration of a non-real-time POS will not compromise the timeliness of critical real-time functions. For this purpose, Linux is used as a case study. An embedded variant of Linux is built and evaluated regarding its adequacy as a POS in the AIR architecture. To guarantee safe integration, a solution based on the Linux paravirtualization interface, paravirt-ops, is proposed.
 +
 
 +
In the course of these activities, the AIR architecture definition was also subject to improvements. The most significant one, motivated by the intended increased POS heterogeneity, was the introduction of a new component, the AIR Partition OS Adaptation Layer (PAL). The AIR PAL provides greater POS-independence to the major components of the AIR architecture, easing their independent certification efforts. Other improvements provide enhanced timeliness mechanisms, such as mode-based schedules and process deadline violation monitoring.
|school=Faculdade de Ciências, Universidade de Lisboa
|school=Faculdade de Ciências, Universidade de Lisboa
|advisor=José Rufino,
|advisor=José Rufino,
}}
}}

Revision as of 16:15, 31 March 2017

João Pedro Craveiro (advised by José Rufino)

Master’s thesis, Faculdade de Ciências, Universidade de Lisboa, 2009

Abstract: The Integrated Modular Avionics (IMA) specification defines a partitioned environment hosting multiple avionics functions of different criticalities on a shared computing platform. ARINC 653, one of the specifications related to the IMA concept, defines a standard interface between the software applications and the underlying operating system. Both these specifications come from the world of civil aviation, but they are getting interest from space industry partners, who have identified common requirements to those of aeronautic applications. Within the scope of this interest, the AIR architecture was defined, under a contract from the European Space Agency (ESA). AIR provides temporal and spatial segregation, and foresees the use of different operating systems in each partition. Temporal segregation is achieved through the fixed cyclic scheduling of computing resources to partitions. The present work extends the foreseen partition operating system (POS) heterogeneity to generic non-real-time operating systems. This was motivated by documented difficulties in porting applications to RTOSs, and by the notion that proper integration of a non-real-time POS will not compromise the timeliness of critical real-time functions. For this purpose, Linux is used as a case study. An embedded variant of Linux is built and evaluated regarding its adequacy as a POS in the AIR architecture. To guarantee safe integration, a solution based on the Linux paravirtualization interface, paravirt-ops, is proposed. In the course of these activities, the AIR architecture definition was also subject to improvements. The most significant one, motivated by the intended increased POS heterogeneity, was the introduction of a new component, the AIR Partition OS Adaptation Layer (PAL). The AIR PAL provides greater POS-independence to the major components of the AIR architecture, easing their independent certification efforts. Other improvements provide enhanced timeliness mechanisms, such as mode-based schedules and process deadline violation monitoring.


Export citation

BibTeX

Project(s): Project:AIR-II

Research line(s): Timeliness and Adaptation in Dependable Systems (TADS)

Personal tools
Navigators toolbox