“Byzantine Fault-Tolerant MapReduce: Faults are Not Just Crashes”

From Navigators

Revision as of 15:42, 21 January 2013 by Pcosta (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Pedro Costa, Marcelo Pasin, Alysson Bessani, Miguel Correia

in Proceedings of the 3rd IEEE International Conference on Cloud Computing and Science - CloudCom’11, Athens, Greece, 2011.

Abstract: MapReduce is often used to run critical jobs such as scientific data analysis. However, evidence in the literature shows that arbitrary faults do occur and can probably corrupt the results of MapReduce jobs. MapReduce runtimes like Hadoop tolerate crash faults, but not arbitrary or Byzantine faults. We present a MapReduce algorithm and prototype that tolerate these faults. An experimental evaluation shows that the execution of a job with our algorithms uses twice the resources of the original Hadoop, instead of the 3 or 4 times more that would be achieved with the direct application of common Byzantine fault-tolerance paradigms. We believe this cost is acceptable for critical applications that require that level of fault tolerance.

Download paper

Download Byzantine Fault-Tolerant MapReduce: Faults are Not Just Crashes

Export citation


Project(s): Project:TCLOUDS

Research line(s): Fault and Intrusion Tolerance in Open Distributed Systems (FIT)

Personal tools
Navigators toolbox