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Resumo

O crescimento das redes e a necessidade de responder à procura exigida pelo maior
número de aplicações e a concomitante utilização de dados, levam a que a monitorização
desempenhe um papel fundamental não só para os sistemas de redes actuais mas também
na resposta a um crescimento futuro. O sistema de monitorização é uma componente
crucial numa rede, suportando muitas funções essenciais como engenharia de tráfego,
detecção de anomalias e diagnóstico de desempenho. Um dos requisitos principais para
estas soluções avançadas na gestão da rede é a necessidade de precisão na monitorização.
Contudo, as técnicas tradicionais de monitorização não estão preparadas para responder a
estas necessidades. Um exemplo disso é o SNMP, o protocolo de gestão e monitorização
da rede mais usado. O SNMP permite que pedidos sejam feitos aos switches para obter
contadores por porto e por interface, e obter estatı́sticas gerais dos nós da rede. O pro-
blema é que muitos dos switches estão limitados aos contadores que agregam o tráfego
para todo o switch e para as suas interfaces. Por consequência o SNMP não permite obter
estatı́sticas a uma granularidade maior, por flow, um requisito de muitas aplicações moder-
nas, além de ter problemas de escalabilidade. Protocolos mais recentes, como o Netflow,
resolvem o problema de escalabilidade mas as técnicas de amostragem utilizadas trazem
consigo outras limitações.

As redes definidas por software (Software Defined Networks) têm sido propostas
como solução para alguns destes problemas. Numa SDN, o plano de controlo é sepa-
rado do plano de encaminhamento, centralizando-se a lógica de controlo da rede num
controlador que corre num (cluster de) servidor(es). Para tal ser possı́vel, é necessário
adicionar-se uma camada de comunicação entre o controlador e os dispositivos, algo
feito tradicionalmente através do protocolo OpenFlow. Este protocolo de comunicação
permite ao controlador acesso remoto para gestão das tabelas de encaminhamentos dos
dispositivos de rede. Este desacoplamento possibilita a centralização lógica do controlo,
oferecendo ao controlador uma visão global da rede. Com este novo paradigma de re-
des surgiu um conjunto avançado de primitivas de monitorização mais sofisticadas, que
respondem aos requisitos impostos pelas redes de hoje. Os switches OpenFlow mantêm
estatı́sticas de tráfego que podem ser recolhidas pelo controlador SDN a pedido. O con-
trolador pode ainda injectar pacotes na rede, tornando assim possı́vel empregar técnicas
de monitorização activa e passiva.
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Apesar da sua importância como elemento fundamental da infra-estrutura SDN, ne-
nhuma das soluções até agora propostas inclui a segurança como requisito, o que as torna
vulneráveis a um conjunto extenso de ataques, inclusive pouco sofisticados. Acredi-
tamos que tais primitivas devem ser resilientes de raı́z, assegurando que as medições
permaneçam correctas mesmo sob ataque.

Esta tese centraliza-se na inclusão da segurança na construção de novas ferramentas
de monitorização da rede. Para demonstrar tal necessidade, e justificar a preocupação,
realizamos uma avaliação das limitações das técnicas de monitorização comuns demons-
trando experimentalmente que elas são vulneráveis a ataques. Para tal, utilizamos o Open-
NetMon, um monitor SDN open-source, como alvo principal dos ataques. Apesar de ter-
mos usado o OpenNetMon, alguns ataques são mais genéricos, sendo portanto extensı́veis
a outras plataformas SDN de monitorização.

O foco dos ataques foi sobre as duas métricas de uso mais comum para operação
e gestão da rede: atraso na rede e taxa de transmissão. Estes ataques foram realizados
numa plataforma fı́sica e numa virtual. Para os testes na plataforma virtual foi utilizado
o emulador Mininet. Para os testes fı́sicos criámos uma testbed composta por switches
em hardware da Pica8, com suporte Openflow, e múltiplas maquinas (para o controlador
SDN e para os múltiplos hosts).

Finalmente, discutimos o impacto que estes ataques podem ter em sistemas crı́ticos.
Mais precisamente, usámos uma Smart Grid como estudo de caso. As Smart Grids
distinguem-se dos sistemas eléctricos actuais pela sua capacidade muito mais sofisticada
na monitorização e controlo da rede. Dado a Smart Grid ser um sistema crı́tico, discuti-
mos algumas soluções de monitorização segura para este tipo de infraestrutura.

Palavras-chave: Rede, Monitorização, Ataques, Smart Grid, Segurança em SDN
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Abstract

Monitoring plays a fundamental role in current network deployments, supporting
diverse activities such as traffic engineering, anomaly detection, and performance diag-
nosis. The Software Defined Networks - a new paradigm in networking - has become
an enabler for precise monitoring. In SDN the control plane is separated from the for-
warding plane, leading to the logical centralization of the network control in a controller
that runs in a (cluster of) server(s). For this purpose, a layer of communication is added
between the controller and devices, something traditionally done through the OpenFlow
protocol. This communication protocol allows the controller to have remote access to the
forwarding tables of network switches. With the advent of SDN an array of advanced
monitoring primitives has emerged, exploring the centralized vantage point offered by
the controller. Such primitives should be resilient from the ground-up, ensuring a correct
view under attack. In this work we intend to demonstrate that security should be a first
class citizen when building SDN network monitoring frameworks. To justify this need,
we perform a threat assessment on common monitoring techniques and demonstrate ex-
perimentally that they are vulnerable to attacks, including relatively unsophisticated ones.
This indicates that further work is needed in this area and, with that aim, we include an
initial discussion on possible solutions for secure monitoring. We discuss the impact of
these attacks on physical systems, more precisely we use a Smart Grid as a study case.
Smart Grids differ from the traditional electric system by having an intelligent monitoring
capability and network control. As a Smart Grid is a critical system, we discuss several
solutions to make the monitoring system secure.

Keywords: Network, Monitoring, Attacks, Smart Grid, SDN security
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Chapter 1

Introduction

Nowadays, huge demands are placed on data networks due to the large abundance of

high bandwidth usage applications. The challenge is substantial, as current networks

are difficult to expand and hard to manage. To meet the level of service requirements,

network operators have traditionally opted for overprovisioning. Unsatisfied with such

inefficient solution, companies like Google [18] and Microsoft [17] are leveraging on the

SDN paradigm [21] to increase the efficiency of their networks, achieving significant cost

savings. One of the key requirements for these advanced management solutions is the

need for accurate network monitoring. Google’s B4 [18], for instance, requires traffic

demand to be continuously measured, in order for its traffic engineering application to

enforce the necessary bandwidth limits at the edge. For similar purposes, Microsoft’s

SWAN [17] system includes network agents that collect and report information about

traffic at a flow-level granularity.

Today’s electrical grid, alike data networks, seems unfit to deal with the increasing

demands. The complex challenges faced by this infrastructure are driving the evolution

of smart grid technologies. These smart grids have as core enabler an advanced commu-

nication network, in which traffic engineering and monitoring are essential.

These use cases are paradigmatic examples of the need for a measurement infrastruc-

ture that is agile to cope with the dynamics of networks and its traffic requirements. They

are also demonstrative of the finer monitoring granularity these new wide-area and data

center applications require [23]. Unfortunately, traditional monitoring techniques are not

fit for this challenge. SNMP, the most common protocol for network monitoring, is too

coarse-grained. NetFlow is more fine-grained, allowing measurement at the flow level,

and scales better by using sampling approaches. The drawback is that this solution is ex-
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Chapter 1. Introduction 2

pensive by requiring dedicated hardware and specialized algorithms. In addition, sampled

information may lead to inaccuracies – for instance, Netflow has been shown to be insuffi-

cient for anomaly detection [24]. More recent work [22] proposes to instrument switches

with hash-based primitives to increase measurement accuracy, but these methods require

hardware modifications that may not be available in regular switches soon.

The fine-grain visibility of network traffic offered by SDN is seen as an enabler

for the development of sophisticated network monitoring techniques, which fulfill the

requirements of today’s network environments. The interfaces offered by OpenFlow-

based switches are an important facilitator for this task. OpenFlow switches maintain

traffic statistics that can be collected by the SDN controller by simple querying. The

controller can also inject packets into the network, making it possible to employ both

active and passive monitoring techniques.

With the take-up of SDN by the industry [31], the networking community has indeed

started to explore the use of this technology for advanced network monitoring. Several

tools rooted in SDN principles have been proposed recently (see Chapter 2). These in-

clude frameworks to reduce monitoring latency (e.g., Planck [32]) and to improve SDN-

based monitoring (e.g., OpenSketch [41]), and also network monitors such as OpenNet-

Mon [37] and SLAM [39].

Despite their importance as a core element of the infrastructure, none of the net-

work monitoring solutions proposed thus far considers security in their design. They are

therefore vulnerable to an array of attacks, including relatively unsophisticated ones.

1.1 From the Power Grid to a Smart Grid

The power grid is a centralized unidirectional system of electric power transmission, elec-

tricity distribution, and demand-driven control. The current architecture of the power grid

poses problems by not allowing a significant portion of our energy needs to be generated

through renewable sources. Having been designed for predictable power sources such as

coal, natural gas, and nuclear power plants, it is not able to accommodate the high pene-

tration of intermittent sources, such as renewable, without losing stability. The maximum

amount of intermittent sources that can be utilized is estimated to be about 20% to 25% of

the total demand using established control methods [14]. This poses a fundamental chal-

lenge to the integration and penetration of renewable sources in the future. Furthermore,

the distribution system is designed for one-way power flow (from central power plants
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to distributed loads). The introduction of a large number of distributed sources, such as

photovoltaic cells on residential roofs, is not easily manageable and increases stability

liabilities in the operation of the grid.

In order to respond to these needs, developments are required on intelligent mon-

itoring and network control, to make the electrical grid cope with the challenge. The

resulting energy system is usually known as Smart Grid. A smart grid can repair itself,

ensures a consistent and premium-quality power supply that resists to power leakages and

can be operated more efficiently. This grid enables the decentralization of power genera-

tion, allowing the individual user to generate on-site power by employing any appropriate

method. The main enabler for a smart grid is the inclusion of advanced communication

networks in the electric network. In this context, a strong enabler is Software Defined

Networks with their advanced monitoring platforms.

1.2 From a conventional network to a Software Defined

Network

Smart grids bring modern communication technology to electrical networks, but tradi-

tional networks are not without its problems. In current networks the control and forward-

ing planes are bundled together in the network devices, as seen in the top of Figure 1.1.

This makes management difficult, with each device having to be manually configured

and managed using low-level tools. The wide variety of protocols leads to very complex

networks, a complexity that could complicate the management of the smart grid.

An interesting solution to this problem are software defined networks (SDN). SDN

separates both planes as shown in the bottom part of Figure 1.1, placing control plane

functionality in a logically centralized SDN controller. The SDN controller is a (clus-

ter of) server(s), running software that monitors and controls the network behaviour. This

allows network administrators to manage network devices (routers or switches) using soft-

ware that runs as an application on the SDN controller. SDN enables networks to become

programmable [31]. To enable this separation the main method used for communication

between these layers is Openflow [26] [1].
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Fig. 4. SDN architecture and its fundamental abstractions.

The distribution abstraction should shield SDN applications
from the vagaries of distributed state, making the distributed
control problem a logically centralized one. Its realization
requires a common distribution layer, which in SDN resides
in the NOS. This layer has two essential functions. First,
it is responsible for installing the control commands on the
forwarding devices. Second, it collects status information
about the forwarding layer (network devices and links), to offer
a global network view to network applications.

The last abstraction is specification, which should allow a
network application to express the desired network behavior
without being responsible for implementing that behavior
itself. This can be achieved through virtualization solutions,
as well as network programming languages. These approaches
map the abstract configurations that the applications express
based on a simplified, abstract model of the network, into a
physical configuration for the global network view exposed
by the SDN controller. Figure 4 depicts the SDN architecture,
concepts and building blocks.

As previously mentioned, the strong coupling between
control and data planes has made it difficult to add new
functionality to traditional networks, a fact illustrated in
Figure 5. The coupling of the control and data planes (and
its physical embedding in the network elements) makes the
development and deployment of new networking features
(e.g., routing algorithms) very hard since it would imply a
modification of the control plane of all network devices –
through the installation of new firmware and, in some cases,
hardware upgrades. Hence, the new networking features are
commonly introduced via expensive, specialized and hard-to-
configure equipment (aka middleboxes) such as load balancers,
intrusion detection systems (IDS), and firewalls, among others.
These middleboxes need to be placed strategically in the
network, making it even harder to later change the network
topology, configuration, and functionality.

In contrast, SDN decouples the control plane from the
network devices and becomes an external entity: the network
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Fig. 5. Traditional networking versus Software-Defined Networking (SDN).
With SDN, management becomes simpler and middleboxes services can be
delivered as SDN controller applications.

operating system or SDN controller. This approach has several
advantages:

• It becomes easier to program these applications since the
abstractions provided by the control platform and/or the
network programming languages can be shared.

• All applications can take advantage of the same network
information (the global network view), leading (arguably)
to more consistent and effective policy decisions while
re-using control plane software modules.

• These applications can take actions (i.e., reconfigure
forwarding devices) from any part of the network. There
is therefore no need to devise a precise strategy about the
location of the new functionality.

• The integration of different applications becomes more
straightforward [29]. For instance, load balancing and
routing applications can be combined sequentially, with
load balancing decisions having precedence over routing
policies.

A. Terminology

To identify the different elements of an SDN as unequiv-
ocally as possible, we now present the essential terminology
used throughout this work.
Forwarding Devices (FD): Hardware- or software-based data
plane devices that perform a set of elementary operations. The
forwarding devices have well-defined instruction sets (e.g.,
flow rules) used to take actions on the incoming packets
(e.g., forward to specific ports, drop, forward to the controller,
rewrite some header). These instructions are defined by south-
bound interfaces (e.g., OpenFlow [9], ForCES [30], Protocol-
Oblivious Forwarding (POF) [31]) and are installed in the

Figure 1.1: Traditional networking versus Software-Defined Networking (SDN). With
SDN, management becomes simpler and middle boxes services can be delivered as SDN
controller applications [21].

1.3 Motivation

Today’s networks can be overwhelming in their complexity. The challenge of knowing

the complexity and structure of a network and being able to accommodate the information

on how all the individual elements are performing at a certain time (with accurate and

correct measurements)is huge, but is also a key factor in maintaining the performance and

integrity of the network as a whole.

Monitoring plays a fundamental role in current network deployments, to face this

challenge. Software Defined Networks are an exception to this rule. The problem to

this rule is that monitoring solutions are not secure. This problem is particularly acute in

critical systems as Smart Grids. This thesis addresses this problem, taking the Smart Grid

as a use case.
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1.4 Contributions

The main contributions of our work are:

1. We demonstrate a series of vulnerabilities in SDN-based monitoring solutions.

2. We evaluate all the attacks using both an emulated and a physical platform.

3. Since this work was developed in the context of a critical infrastructure – the smart

grid –, we discuss several solutions to secure the network monitor of a smart grid.

We used OpenNetMon [37] as target for the attacks we demonstrate in this thesis. We

have chosen this platform for two main reasons. First, because it monitors several metrics

at per-flow granularity – throughput, packet loss, and delay – whereas other proposals

focus on a single metric. Second, because it is available open-source. Although we have

used OpenNetMon, several attacks are generic and will succeed against recent proposals.

For instance, recently proposed SLAM [39] is an example of a system that uses the same

techniques as OpenNetMon for measuring particular network metrics.

1.5 Planning

In the beginning of this work we have devised the following work plan, with six phases:

1. Study of the state of the art regarding smart grids and SDN.

2. Definition of the methodology and evaluation plan. This include setting up Open

vSwitch in a smart grid aggregator (or a feasible alternative) and controlling it using

an SDN controller (e.g., by testing a simple firewall application).

3. Devise algorithms to prevent Denial of Service attacks to the smart grid.

4. Implementation of the algorithms as an application in the SDN controller.

5. System evaluation.

6. Writing the thesis.
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ID Start Finish Duration
Q1 15 Q2 15Q4 14

MarJan JunDez MaiNov AbrFevOut

1 8w 4d05-12-201407-10-2014

8w 2d13-04-201513-02-2015

2 13w06-03-201508-12-2014

4 7w08-05-201523-03-2015

5 6w 3d08-06-201523-04-2015

6 20w 2d07-07-201516-02-2015

3

Figure 1.2: Initial work plan.

Our workplan has changed from the initial idea. The work we present in this thesis is

part of an European project - SEGRID: security for smart grids - and a redefinition of the

FCUL tasks in this project led to a significant change. Namely, FCUL was unable to buy

the smart grid aggregator because these are only sold to electrical companies. Without

this component, our original idea could not be implemented.

As such, we decided to focus our attention in the fundamental component that is part

of the resilient communications infrastructure that FCUL will develop during the course

of this project: a secure monitoring system.

As such, We performed a threat assessment on common monitoring techniques. We

devised software plugins to perform the attacks, implemented them and experimentally

demonstrated the attacks. Finally, after an evaluation of existing solutions, we devised

some more secure and accurate techniques to overcome the noticed vulnerabilities.

1.6 Document structure

This dissertation is structured in the following way:

• Chapter 2: Scientific background and related work.

• Chapter 3: This chapter discusses the relevance of precise measurements and de-
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scribes the attack model. This is followed by a description of the implementation

for performing the attacks. Finally, we demonstrate the attacks that cause the mon-

itoring platform to report invalid measurement data. We concentrate on the two

metrics most used in practice today: path delay and link throughput.

• Chapter 4: This chapter presents a discussion on how to secure an SDN-based

monitoring platform.

• Chapter 5: Presentation of the conclusions of the work.
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Chapter 2

Background and related work

This chapter presents background on the subject under study. We address SDN, Open-

Flow and network monitoring with an emphasis on SDN-based monitoring frameworks.

Finally, we describe some useful networking tools - Mininet, Ettercap and Scapy - that

were used in this work.

2.1 Software Defined Networking

Software-Defined Networking (SDN) is an emerging networking paradigm [21]. This

paradigm aims to change the limitations of the current network infrastructure. The fun-

damental property of an SDN is the separation of the control and the data plane. Network

control is logically centralized in a controller (SDN-controller) that has a global network

view and control on the behaviour of the network devices (Figure 2.1). Logical central-

ization does not imply that the control plane is centralized. It should be physically dis-

tributed, to achieve responsiveness, reliability, and scalability goals. SDN allows network

administrators to flexibly manage network devices (routers or switches) using software

running on servers.

The main advantage of SDN is allowing programming the network through soft-

ware applications development, using high level abstractions offered by the controller.

Network-state oriented applications (e.g., routing and load-balancing) use these abstrac-

tions to achieve the desired network behaviour without needing knowledge of the detailed

physical configuration. It is the controller responsibility to install the network application

logic in the switches, thus relieving the programmer from concerns regarding low level

details.

9



Chapter 2. Background and related work 10

Network	  Infrastructure	  

Open	  southbound	  API	  

Controller	  Pla9orm	  

Network	  Applica<on(s)	  

Open	  northbound	  API	  

Figure 2.1: Simplified view of an SDN architecture [21].

2.1.1 OpenFlow

OpenFlow is an open standard supporting the communication interface between the con-

trol and forwarding planes of an SDN architecture. The main idea of OpenFlow is to give

access to and facilitate manipulation of the forwarding plane of network devices and as

such is the main enabler of an SDN. It provides an open interface to control how data

packets are forwarded through the network, and a set of management abstractions used to

control topology changes and packet filtering. The OpenFlow protocol specifies a set of

instructions that can be used by an external application to program the forwarding plane

of network devices.

OpenFlow consists of three parts (Figure 2.2):

1. Flow Tables installed on switches. The switch is informed how to process network

flows by means of an action associated with each flow entry.

2. A Controller, which uses the OpenFlow protocol to communicate with switches to

impose policies on flows. The OpenFlow protocol provides an open and standard

way for the controller to communicate with switches and allows entries in the flow

table to be defined externally.
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Flow 

Table

OpenFlow
  Client

HW

SW

OpenFlow Protocol

Secure Channel
         (SSL)

SDN Controller

Figure 2.2: OpenFlow-enabled SDN devices.

3. A channel that connects the remote controller (remote control process) to switches

and allows communication between them. The SSL protocol may be used to se-

curely send commands and packets from the controller to switches using the Open-

Flow protocol. Alternatively, this channel can also be based on TCP.

Priority
Ingress

Port
MAC
Src

MAC
Dest Proto

Vlan
ID

IP
Src

IP
Dest

Source
Port

Dest
Port Actions

10000 * * * TCP * * 10.1.1.34/32 * * Forward to Port 1
1000 3 * * * * * 10.1.1.0/24 * * Forward to Port 2
100 * * * * 2500 * * * * Send to Controller
0 * * * * * * * * * OF Normal

Table 2.1: Simplified example of a flow table in OpenFlow switches.

Table 2.1 shows a simple example of an OpenFlow table present in OpenFlow switches.

This table has the function to associate specific traffic to a (some) specific action(s). It

is used by the controller to define the forwarding rules for each packet. A flow does not

have to use strictly the packet headers as its match fields, since it can match a flow per

Inport. Different priorities are defined to set the match order of a flow table.

When a packet arrives to a switch, and it does not match with any of the existing
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flows, it is sent to the controller (or it is dropped). This action depends on the mode of

operation of the SDN, which can be either reactive or proactive. In reactive mode the

non-matching packets are forwarded to the controller. In response, the controller installs

the respective flow rules, avoiding packets with the same header to be forwarded to the

controller. Next in proactive mode, if the switch receives a non-matching packet it will

drop that packet. In this mode the controller install the flows proactively, restricting the

network traffic to the desired configurations. This can be seen as a drawback since it does

not allow new traffic in the network but, on the other end, it may became secure as it may

avoid DoS attacks and prevents undesired traffic to travel through the network. For more

details on OpenFlow, please see [1].

2.1.2 SDN controllers

Controller

Applications

Switches

Figure 2.3: SDN basic architecture.

Since network control is moved to a logically centralized controller (Figure 2.3), this

device is the core component of Software Defined Networks. It is located strategically in

the SDN network, relaying information to the switches/routers “below” and the applica-

tions and business logic “above”. This controller platform typically contains a collection

of “pluggable” modules that can perform different network tasks. Some of the basic tasks

include control on flow tables, keeping an inventory of what devices are within the net-
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work and the capabilities of each, and gathering network statistics. To make possible

performing network-state abstractions and forwarding, a few SDN controllers have been

proposed, including: NOX [15] [2], POX [2], Beacon [12], and FloodLight [3].

2.1.2.1 NOX

NOX [15] [2] was the first OpenFlow controller, so a significant amount of network ap-

plications have been implemented on top of NOX. NOX allows developers to choose

whether to build network applications with a developer-friendly language (Python), or

high performance applications (using C++). NOX made three major contributions: a cen-

tralized programming interface, a centralized policy based on a network filtering module,

and explicit support for middleboxes. NOX supports a switch control abstraction where

OpenFlow is the prevailing protocol. The NOX model is event-based allowing a pro-

grammer to write an application by programming event handlers for the controller. On

the other hand, NOX requires programmers to know and understand the semantics of

low-level OpenFlow commands.

2.1.2.2 Beacon

Beacon [12] is a fast, cross-platform, modular, Java-based OpenFlow controller that sup-

ports both event-based and threaded operation. Its applications are implemented as bun-

dles, an abstraction of the OSGi framework [4]. These code bundles that can be started,

stopped, refreshed, installed at runtime, without interrupting other non-dependent bun-

dles. Unlike previous controllers that provided users and developers with either compilation-

time modularity or start-time modularity, Beacon thus allows for run-time modularity.

2.1.2.3 Floodlight

Floodlight [3] is an open, free, Apache-licensed Java-based OpenFlow controller. Forked

from Beacon, the Floodlight controller consists of a set of modules. Each module provides

a service to the other modules and to the control logic application through either a simple

Java API or a REST API. Unlike Beacon, OSGI support was removed for deployment and

performance reasons.
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2.2 Network Monitoring

Network environments are growing more complex, but the need to provide a certain level

of service stands. The exponential grow in data, the increasing number of devices, be-

tween other factors, are the cause for the existing pressure placed on systems, networks

and applications. A large slice of the work done nowadays by TI specialized teams is

regular monitoring of systems and applications, granting a correct state to the organiza-

tions and optimizing the resource usage. The monitoring systems thus represent a critical

centerpiece of productivity.

The Simple Network Management Protocol (SNMP) [10] is the most commonly used

protocol for network monitoring, but it is too coarse-grained. Among others, SNMP can

be used to request per-interface port-counters and overall node statistics from a switch.

Monitoring using SNMP is achieved by repeatedly polling the switch, which can cause

switch performance degradation due to CPU overhead.

NetFlow [13] is more fine-grained, allowing measurements at the flow level, and

scales better by using sampling approaches. It collects samples of network traffic and

estimates overall flow statistics based on these samples. NetFlow assumes the collected

packets to be representative of all traffic passing through the collector which may not be

true. It uses a 1-out-of-n random sampling, meaning it only stores every n-th packet.

Another drawback is that this solution is expensive by requiring dedicated hardware and

specialized algorithms. Recent work [22] proposes to instrument switches with hash-

based primitives to increase measurement accuracy, but these methods require hardware

modifications that may not be available in regular switches soon.

SDN increases the flexibility of monitoring by offering a programmatic interface for

fine-grained measurement. OpenFlow-based SDN switches expose a high level interface

to the controller for per-flow and aggregate statistics collection. Network applications

can use this interface to monitor network status and create a global view of the network.

OpenFlow provides both pull- and push-based measurement techniques. The most typi-

cal statistics collection mechanism is pull-based. Switches maintain per-port and per-flow

rule counters that track the number of packets and bytes handled by each port and each

flow rule, respectively. The controller can periodically query the switches about these

statistics. The polling frequency determines the accuracy and overhead of the whole pro-

cess. The push-based approach is based on packet-in and/or flow-remove Open-

Flow messages. When a packet does not match any rule in the switch, the switch sends a

packet-in message containing the packet header (and optionally part of the payload)
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to the controller. When the SDN is configured to work in reactive mode this allows moni-

toring of all new flows. An alternative push-based approach is for the controller to request

a switch to send a flow expiration message (flow-remove) whenever a flow expires.

Monitoring can also be done actively. On the control plane, the controller may peri-

odically perform measurements of the network status. One example is through the trans-

mission of probe packets to be forwarded by switches back to the controller. This implies

injection of new traffic onto a network.

2.3 SDN-based monitoring frameworks

An already significative number of recent works have leveraged on SDN techniques to

propose advanced network monitoring tools and mechanisms. A good amount of re-

search has focused on the tradeoff between measurement accuracy and overhead/cost. As

fine-grained monitoring is very challenging due to resource constraints (e.g., number of

TCAM entries), several solutions have explored alternative hybrid designs.

iSTAMP [25] dynamically partitions the TCAM entries to allow both fine-grained

and coarse-grained measurements. One partition aggregates measurements (helping the

system scale), and another is used to provide accurate per-flow measurements for the most

informative flows. iSTAMP then processes these aggregate and per-flow measurements

to effectively estimate network flows using a variety of optimization techniques. An al-

gorithm is proposed to intelligently select the most informative traffic flows.

Zhang [43] proposes an anomaly detector based on SDN principles (mainly the cen-

tralized view of the network) that instructs a flow statistics collection module to provide

fine-grained measurement data in case it is anticipating an attack, or to collect coarse-

grained data otherwise.

Payless [11] provides a RESTful API for flow statistics collection at different ag-

gregation levels. Payless presents techniques to compute throughput, both active and

passive. It uses packet-in and flow-remove to get statistics passively, but it is

adaptive since it uses an adaptive statistics collection algorithm that delivers highly accu-

rate information in real-time without incurring significant network overhead. For instance

flow-statistics-request messages are sent to the switches, but just if a flow is

inserted for a longer time than a defined parameter. PayLess provides an abstract view

of the network and a uniform way to request statistics about the resources. PayLess it-

self is developed as a collection of pluggable components. Interaction between these
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components are abstracted by well-defined interfaces. Hence, one can develop custom

components and plug into the PayLess framework.

DREAM [28] is a dynamic resource allocation measurement framework that bal-

ances a user specified level of accuracy and resource usage for measurement tasks. Re-

sources are dynamically deployed to achieve the desired level of accuracy. It ensures high

accuracy for tasks, while taking network-wide resource constraints as well as traffic and

task dynamics into account.

Conventional SDN techniques introduce delays that may be prohibitively high for

particular network management tasks. To tackle this challenge, OpenSample [34] is a

low-latency, sampling-based network measurement platform that leverages sFlow packet

sampling to provide near–real-time measurements of both network load and individual

flows. In order to deal with the sampling they use a collector. The rate of samples pro-

duced by sFlow is not constant, it is equal to the packet rate on the port divided by the

sampling rate. To overcome this limitation, the authors exploit the fact that each TCP

packet carries a sequence number indicating the specific byte range the packet carries.

Fortunately, when sFlow samples the header of TCP packets, this header also includes the

TCP sequence numbers. So if two distinct packets from a given TCP flow are sampled,

they can compute an accurate measure of the flow’s average rate during the sampling

window by subtracting the two sequence numbers and dividing by the time between the

samples. Exploiting TCP information drastically increases estimation accuracy for any

given sampling rate. This TCP-aware sFlow analysis is the key innovation OpenSample

incorporates compared to prior sFlow monitoring frameworks.

Planck [32] is a network measurement architecture that goes one step further, ex-

tracting network information an order of magnitude faster than alternative approaches

(including OpenSample). Planck leverages on the port mirroring capability that is present

in commodity switches. Multiple ports are mirrored to the mirroring port that is then con-

nected to a collector to aggregate information and send the required statistics to the SDN

controller.

Other proposals aim to advance the measurement abstractions present in SDN-based

systems. OpenSketch [41] proposes a flexible measurement API that, complementary to

OpenFlow, separates the measurement control plane from the data plane. The objective

is to provide flexibility for network measurement, and for that purpose it allows the op-

erator to reprogram its measurement tasks. It adds a reconfigurable measurement logic

to switches and exposes an interface to program it (in the same way OpenFlow allows

for programming forwarding behavior). The main problem is the fact that it is based on a
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clean-slate redesign of portions of the switch hardware. It does entails the need to upgrade

network nodes and to standardize this new protocol.

HONE [35] extends the scope of traffic management to the end-host networking

stack, allowing joint host-network traffic management. It presents a uniform stack for a

diverse collection of measurements in SDN-based systems.

2.4 SDN-based monitors

One of the first SDN-based monitors was OpenTM [36], an OpenFlow-based solution

that estimates a traffic matrix by keeping track of statistics for each flow. OpenTM queries

switches on regular intervals and stores the information needed to create the traffic matrix.

More recently, OpenNetMon [37] was proposed as an open-source tool to measure

throughput, packet loss, and delay. To measure delay, this platform installs rules in the

entry and exit switches of a path to generate notifications (e.g., packet-inmessages) to

be sent to the controller. It then sends probes that match these monitoring rules, and from

the received messages it infers path latency. In addition, OpenNetMon adapts the prob-

ing frequency to the current estimated link utilization. In order to measure throughput,

OpenNetMon uses an active approach and requests Per-flow statistics from the OpenFlow

switches.

We selected OpenNetMon [37] as target for the attacks. Not only because it monitors

three metrics at per-flow granularity – throughput, packet loss, and delay – whereas other

proposals focus on a single metric, but also, because it is available open-source. We

have used OpenNetMon, but several attacks are generic and will succeed against recent

proposals.

SLAM [39] is a recent example of the generality of the techniques used by these

platforms. It is another SDN-based framework dedicated to latency monitoring. The main

method used is very similar to the one proposed by OpenNetMon for delay monitoring.

SLAM improves over OpenNetMon by suggesting techniques to increase measurement

accuracy. It also considers passive approaches that do not require the injection of “probes”

but instead use unmatched application packets that are sent back to the controller for delay

measurement.

Contrary to the previous approaches, FlowSense [40] is a passive technique used to

estimate network performance. In FlowSense packet-in and flow-remove mes-
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sages are used to estimate per flow link utilization. The communication overhead is low,

but the estimation is not as accurate as with the active approaches.

The novelty of this work we present in this thesis arises from the fact that none of

the related research in this topic (including all work presented in this and the previous

sections) has yet addressed security.

2.4.1 A more detailed view on OpenNetMon

OpenNetMon 1 is an SDN application that runs on top of the Pox [2] controller and per-

forms adaptive monitoring of network path delay, flow throughput, and packet loss. It

relies on a Pox service for link discovery, which provides knowledge about the network

topology (e.g., switches and links between switches). OpenNetMon itself implements

a learning service that discovers hosts and the switch ports they are connected to, along

with a forwarding service that installs flow entries along the shortest paths between known

source and destination hosts.

0 1 2 3 4 5 6 7 15

. . . IP Protocol = 253

. . .

Source IP address = hash(path)

Destination IP address = 224.0.0.253





IP
Header
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Figure 1: Structure of a probe packet.

1

Figure 2.4: Structure of a probe packet.

When a data packet2 arrives at one of the switches and there is no match with the

installed flow rules, it is transmitted to the controller (as a Packet-In) where it is processed

1OpenNetMon is an open source SDN based monitoring solution. Available at:
https://github.com/TUDelftNAS/SDN-OpenNetMon

2For our purposes, we consider a data packet to be any Ethernet frame that is neither a LLDP or an ARP
packet, nor a probing packet.
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by OpenNetMon. OpenNetMon learns the packet source MAC (Media Access Control)

address and maps it to the switch ingress port. In order to decide where to forward an

unmatched packet (as a Packet-Out), OpenNetMon looks at its destination MAC address

(MACdst) and performs one of two actions: 1) if MACdst has not been learned yet or

is a multicast address, it floods the packet through all ports of every connected switch

except those ports that are part of inter-switch links to avoid loops; 2) if MACdst and

its respective port are known, OpenNetMon calculates the shortest inter-switch path that

connects the entry and exit switches and installs a flow rule on every switch of the path.

Then, it forwards the packet directly to the known port of the exit switch.

For the purpose of network monitoring, when installing a new data flow OpenNet-

Mon adds additional monitoring rules on the switches along the path. Path delay is mea-

sured periodically using an active probing strategy. A special probe packet 2.4 is trans-

mitted to the ingress switch, which is then forwarded along the flow path until it reaches

the egress switch where it is returned back to the controller by means of a packet-in

message (using the a priori installed monitoring rules). This is the same technique used by

other monitoring platforms, such as SLAM [39]. Flow throughput is obtained differently,

using a query approach. The controller periodically requests counter values from the last

switch of a given flow path. With each query, the controller receives the amount of bytes

received and the duration of each flow, enabling it to calculate the effective throughput.

The frequency of measurement (in terms of probe transmission and query rate) varies

accordingly to the combined throughput of all switches. The higher the throughput, the

more frequent the values are collected.

2.5 Networking tools

In this work we used a few networking tools, which allowed us to create an emulated

testbed, and perform the attacks on the monitoring system.

2.5.1 Mininet

Mininet [5] [16] is a realistic network emulator. Although Mininet virtualizations are

created in software, they behave as the real hardware and have enabled the migration to

hardware using unmodified code. In order to be able to emulate a full network it uses
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lightweight virtualization, which implies that the whole network can run in the same

system. As a virtual platform it has advantages and disadvantages:

• It is fast to start a network as it uses container-based virtualization. Running a

platform in a single system is convenient, but on the downside it can introduce

resource limitations.

• It allows the creation of custom topologies to meet specific needs and it is possible

to customize packet forwarding, since Mininet switches are programmable using

the OpenFlow protocol. As disadvantage, it is based on a single Linux kernel for

all virtual hosts, and as such it is impossible to run software for other OSes.

• As it is an emulator, Mininet runs real programs on the hosts, just as in a hardware

platform, and so it makes it easy to port from the virtual environment to a physical

deployment. But as Mininet is not a simulator, and it does not have a strong notion

of time, which means that timing measurements may be skewed by external factors,

so care needs to be taken.

2.5.2 Ettercap

Ettercap [6] is a free and open source security tool that allows man-in-the-middle attacks

in LAN environments. It supports active and passive dissection of protocols (including

encrypted / encapsulated) making it possible to listen to interfaces, intercept, change and

even inject new packages. Ettercap allows running filters and plugins on the packets that

pass through the interfaces. The language for programming filters and plugins in Ettercap

is C.

Initially we implemented all the attacks in Ettercap, but we noticed that it inserted

a high delay on the modified packets, which is a problem since the attacks should be

precise. As alternative, we opted for Scapy, which not only performs much faster that

Ettercap, but is actually simpler to use.

2.5.3 Scapy

Scapy [7] is a powerful interactive packet manipulation framework in Python that en-

ables packet decoding, creation and modification. It supports a wide range of network

protocols. Injected packets are created from scratch or can be modifications of received
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packets. Scapy can also handle and manipulate wireless communication packets, so there

is not the restriction to work on wire.

After setting the context, in the next chapter we present attacks on SDN-based net-

work monitors, in order to demonstrate the serious security vulnerabilities of these plat-

forms.
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Chapter 3

Network monitoring under attack

Network monitoring plays a fundamental role in many management tasks, as it collects

and provides data about the current state of the network. Several network management

applications act upon this information, namely: traffic engineering may reroute flows

after an overload is observed in a link, to ensure that a previously agreed QoS level is

maintained; a link is perceived as malfunctioning by a network diagnosis component

after showing a high loss rate, and therefore is disconnected; a traffic shaper may throttle

some flows if the associated counters indicate that they are consuming more than their

share of the available bandwidth. These examples give evidence that, by manipulating

the measurement data, an adversary can (indirectly) influence management decisions and

consequently the behaviour of the network.

Based on this, we envision many attack scenarios where an adversary may gain some

profit. Taking Eve as an example, and being eavesdropping the main goal, she could make

several routes look overloaded (or loss) to force traffic to be forwarded over particular

paths (or switches) she observes. She could also manipulate the contents of some packets

if the associated flow is redirected to a previously compromised router. A black hole could

remain undetected by silently dropping packets while ensuring the corresponding counters

are maliciously updated. Alternatively, by falsely reporting some routers as lightly loaded,

she could create an excess of packets to be directed towards a region of the network, with

the consequence of packet drops (e.g., due to overflowed port queues).

Of course, in practice it will be challenging for an adversary to obtain the control

needed to perform meaningful attacks, since measurement data is collected at different

points. Moreover, the correlation of monitoring data can trigger an anomaly detector

to indicate an attack is under way. However, even a localized attack can cause signif-

23
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icant damage, and a stealthy attacker may remain unnoticed. We, therefore, argue that

monitoring solutions need to be resilient from the ground-up to avoid being the target of

compromising attacks.

In a network system, if routing decisions depend on the output of monitoring func-

tions, and if they especially depend on the correctness of that output, then from a security

point of view, the monitoring subsystem must be resilient to attacks. We posit that an

adversary with few capabilities can successfully affect monitoring results and thus gain

some measure of control over the network routing algorithms. The main idea is to report

incorrect monitoring values to the controller, hence affecting possible reconfigurations of

routing parameters on the data plane.

SDNsender receiver
Controller

A1

sender receiver

…..
sw1

A1

A2
A3

…..
swnsw2 swi

Figure 3.1: Overview of network and attackers.

3.1 Threat model

We consider an adversary that wants to modify the measurement data retrieved on a net-

work path between an ingress switch (sw1) and egress switch (swn), as depicted in Fig-

ure 3.1. We assume both switches support an SDN protocol (e.g., OpenFlow) and are

therefore controlled remotely by an SDN controller. To form the end-to-end path these

switches are connected by an arbitrary number of other components (e.g., routers and

switches), that may or may not be SDN-capable. The monitoring application runs in the

SDN controller, obtaining periodically from the SDN switches the counter values associ-

ated with the flows.

A strong adversary can create a direct intrusion on a switch or the controller itself,

and thus gain full control of the component, which simplifies the attack on the monitoring
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subsystem. Another strong attack could directly interfere with control plane communi-

cations, but if we assume communication links between the controller and the switches

are secure, and more importantly if they guarantee at least data integrity, then a weak

adversary will not be able to use that avenue to attack.

We limit the adversary actions to the data plane, meaning that the links between the

controller and the switches are considered secure (e.g., using SSL). Additionally, we as-

sume the switches involved in the measurements (e.g., sw1 and swn) operate accordingly

to their specification, i.e., they are not compromised by the adversary. This means that

adversaries with further abilities may be able to expand the impact of our attacks.

Our adversary model includes attackers at multiple levels of sophistication, each one

increasingly more powerful than the previous:

• A1: the adversary can insert arbitrary traffic in the target network, namely along the

path we want to monitor;

• A2: the adversary can observe, insert, and modify the packets transmitted along the

path;

• A3: this adversary is used together with A2, and she has the additional capability

of dropping packets after swn.

In summary, we assume the attack surface to be solely the data plane of an SDN

network. The attack vectors are the links between each pair of connected switches and

the links between switches and connected hosts. Figure 3.1 illustrates these vectors.

3.2 Implementation

As stated, three types of adversary are considered in our attack model, with the ability of

injecting, eavesdropping, modifying or dropping packets. In order to perform the attacker

role, we implemented plugins for Scapy, a fast packet manipulation framework in Python.

We have implemented several plugins during the course of our studies, but we will

only focus on the ones that led to successful attacks. Each plugin was developed to a

particular adversary, each with its different capabilities. The attacks are focused on the

two most relevant metrics: path delay and link throughput. Here we present the generic

implementation of the attacks. In Section 3.3 we go further in detail when needed.
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3.2.1 A1 plugins

The A1 adversary represented in Figure 3.2 has the sole capability of injecting arbitrary

traffic into the network.

Attacking latency measuring
Probe injection attack

…..

SDN
Controller

sw1

swn

sender receiver

sw2 swi

…..

A1

Figure 3.2: Adversary A1 injecting fake traffic.

3.2.1.1 Delay attack

This plugin injects packets similar to the probe used by the controller to actively measure

delay between switches, but using a different (fake) timestamp in the payload (recall

Figure 2.4). The major issue of this plugin is the need to guess the packet format (recall

that this adversary does not have the capability to eavesdrop, but only inject packets).

This is made easier if the controller is open source. With the capacity of eavesdropping

the adversary A1 could easily create packets to inject, based on the network traffic he

would observe.

3.2.1.2 Throughput attack

This plugin injects traffic that match a specific flow in order to artificially increase the

throughput on that flow. Similar to the delay attack, the difficulty for the attacker is

knowing the format of the flow in the network. With the capability to eavesdrop, it would

be easy: it would merely be needed to inject duplicate packets.
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Figure 3.3: Scapy plugin architecture.

3.2.2 A2 and A3 plugins

The A2 adversary represented in Figure 3.4 has higher capabilities, which allow him to

inject, eavesdrop, modify or drop packets. This adversary needs two network interfaces

and a bridge between them. As seen in Figure 3.3, in Scapy the packets that arrive at the

interfaces of the attacker are sniffed, modified as needed by the plugin, and dropped by

the IPTABLES (they are injected by Scapy in the correct interface avoiding duplicates).

Attacking throughput measuring
Traffic modification attack

…..

SDN
Controller

sw1

swn

sender receiver

sw2 swi

…..
A2

A3

Figure 3.4: Adversary A2 and (optional) A3 modifying traffic.

3.2.2.1 Delay attack

This plugin is the most powerful, allowing the modification of delay of the probe pack-

ets. Special care is needed if this plugin is used to decrease the delay measured by the

controller: the fake timestamp needs to be calculated in such a way to guarantee that the
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overall delay computed by the monitor does not have a negative value (as this would make

the attack easy to spot). In our implementation, the inserted timestamp is based on the

already existing one, plus a minimum calculated delay based on the passing traffic.

3.2.2.2 Throughput attack

This plugin has the same packet injection capability as adversary A1. It also allows

to catch a packet and modify its fields, usually the source MAC address since it is not

checked in most end-to-end applications. This modifications applies to each packet that

goes through the attacker. A different MAC is used for each one, assuring each packet

does not match in any of the switch flows. This modification causes the controller to

install new flows per each modified packet.

As we can see in Figure 3.4, optionally a second attacker exists, removing the mod-

ifications made by adversary A2 so that the receiver is completely oblivious to them.

Adversary A3 employs a similar plugin as A2. This plugin has the option to modify or

replace the correct state of the packet.

3.3 Attacking the monitor

This section presents a series of attacks that expose vulnerabilities of SDN-based monitor-

ing platforms. We focus our attention in attacks that affect the measurement of path delay

and throughput. We have chosen the recently proposed SDN-based monitoring applica-

tion OpenNetMon [37], which is available open-source, to demonstrate the feasibility of

the attacks. Most approaches used by this application are generic and have in fact been

employed by other monitoring tools, such as SLAM [39].

3.3.1 Testing environment

We created two separate testing environments that share the simplified setup of Figure 3.1.

As represented in Figure 3.5 the main modification was that only two switches were uti-

lized, swentry and swexit. The three attackers were connected to swexit. In addition,

attacker A2 is connected to switch swentry and attacker A3 is connected to the receiver.

The first environment is based on the Mininet [16] emulator, allowing an evaluation

based on software switches (namely, Open vSwitch [29]). The second environment is
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Figure 3.5: Testbed used in the experiments.

a real testbed platform with physical OpenFlow switches and separate machines for the

controller, hosts and attackers. In both environments, we used Pox (version “eel”) because

OpenNetMon is an application that runs on this controller. The communications between

the controller and the switches were made using OpenFlow v1.0 (the version supported

by Pox).

For the Mininet environment, we run the network and nodes as separate processes

on a Dell R320 server. The experiments were performed with Mininet v2.2.1 and Open

vSwitch v2.3.1. In the testbed environment, we deployed two Pica8 P3297 switches with

4K TCAM entries1 and 1 Gbps links. The controller, hosts and attackers were separate

Dell machines. Attackers A2 and A3 were implemented in dual homed machines and they

used Ethernet bridging to forward the traffic between network boards. With bridging,

the adversary gains the capability to intercept, modify and drop packets while staying

“transparent” to the rest of the network, i.e., there is no advertising of MAC/IP addresses.

We used iptables together with Scapy v2.2.0 [7] to eavesdrop and inject arbitrary packets.

3.3.2 Attacking delay measurements

Measuring inter-switch link delays is not an easy task because it is often hard to define

arbitrary starting and ending points in the network. SDNs help overcome this problem:

due to the separation of the control and data planes, it is possible by design to reach

any switch in the network from a single central point (the controller). This allows for

1In Pica8 switches, two TCAM entries are required to process one flow by default.
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an accurate representation of inter-switch links when starting a new delay measurement.

Estimating the total path delay of a given flow in an OpenFlow network, for example,

comes down to the controller tracking a packet that traverses, in order, the set of switches

composing the flow path.Probing for latency measurements
Controller

Switch 1 Switch 2

PACKET_OUT 
probe

PACKET_IN 
probe

forward probe

Figure 3.6: Delay measurement.

Active monitoring is the predominant approach for measuring the path delay in SDN-

based monitoring solutions. The controller installs forwarding rules in the switches, and

then inserts a probe in the data plane directed back to itself, while keeping track of the

departure and arrival instants. The delay is calculated by subtracting the two instants. To

improve the accuracy of the measurement, the controller might also get an estimate of

transmission time between itself and the entry/exit switches and perform the appropriate

correction on the delay. OpenNetMon operates exactly in this manner, storing the depar-

ture timestamp inside the probe (as seen in Figure 2.4). In this manner, when the probe

returns, OpenNetMon gets a new timestamp and uses it to determine the flow path delay.

This solution is relatively simple and recovers easily from packet drops – a lost probe is a

single measurement sample that goes missing.

In this attack, the adversary objective is to force an incorrect calculation of the path

delay, either by increasing or decreasing the calculated time interval. For this purpose, our
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attacker either inserts a fake probe or modifies the original. We consider two scenarios,

presented in increasing order by attacker strength.

3.3.2.1 Injection

Adversary A1 generates and sends a malicious probe to one of the switches, causing an

erroneous delay to be calculated on its arrival at the controller. To forge the probe, she fills

the header fields exactly as OpenNetMon: (a) in the Ethernet header, the MAC addresses

are the MACs of the sender and receiver hosts; (b) in the IP header, the source is an hash

of the identifiers of all switches in the path. This hash is employed by the monitoring

rules (pre-installed by OpenNetMon) to decide how the probe should be forwarded.
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Figure 3.7: Increasing delay with probe injection (Mininet).
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Figure 3.8: Increasing delay with probe injection (Testbed).
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The packet payload contains a timestamp of the departure time. Therefore, by in-

creasing or decreasing this value the adversary can easily fake a smaller or larger delay,

respectively. In order to produce meaningful timestamps, an estimate of the delay be-

tween the attacker machine and the controller needs to be obtained. This estimate can be

computed by trial and error or by resorting to more sophisticated methods.

The attack can be made more effective if the adversary is able to observe the path

(as A2). In this case, when the attacker detects a probe she immediately sends the forged

probe. Since the monitor accepts all probes as faithful, the effect is that the correct mea-

surement will be considered only momentarily until the incorrect value is received.

Figures 3.7 and 3.8 illustrates the result of this attack (in the emulation setting and

in the testbed, respectively). In all figures the attack was being perpetrated in the period

between the dashed vertical lines. Attacker A1 inserts spoofed probe packets, making

OpenNetMon incorrectly report higher delay values.

3.3.2.2 Eavesdropping and Injection

Adversary A2 eavesdrops and modifies, in real-time, the timestamp of probe packets. She

starts the attack by capturing the probe and then forging a new probe that is a copy of the

collected one with an adjusted timestamp. The original probe is dropped.

An attacker such as A2, reinforced with dropping and modification capabilities can

attain a more effective attack. This is perceptible in Figures 3.9 and 3.10, which show an

attack where the delay is increased. Figures 3.11 and 3.12 illustrate a fake decrease.
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Figure 3.9: Increasing delay with probe modification (Mininet).
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Figure 3.10: Increasing delay with probe modification (Testbed).
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Figure 3.11: Decreasing delay with probe modification (Mininet).

3.3.3 Attacking throughput measurements

From the viewpoint of an application, a flow is the sequence of packets transmitted from

the sender process to the receiver process. Inside the network a flow can therefore be

identified based on the 5-tuple that consists of the source and destination IP addresses,

the source and destination ports, and the transport protocol. In OpenFlow networks, the

throughput can then be measured by extracting the counters associated with the rule that

matches the flow.

OpenNetMon measures the throughput using this technique. It associates a counter

to each flow rule that is inserted in a switch. Whenever there is match in a rule, its counter

is incremented with the number of bytes of the packet. Throughput is then obtained by
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Figure 3.12: Decreasing delay with probe modification (Testbed).

the controller application by periodically querying the switch to obtain a reading of the

counter. An adversary that wants to attack the throughput measurement of a specific flow

simply needs to mislead the monitoring application by forcing a wrong count number,

either by decreasing or increasing its value.

3.3.3.1 Decreasing throughput

The goal of the adversary is to hide from the monitor traffic passing through a switch,

making it report a throughput that is lower than its real value. Since the switch counts

the bytes that are actually received, the adversary cannot perform this attack by simply

manipulating packet headers.

To attack OpenNetMon, the adversary A2 takes advantage of an optimization per-

formed by the monitor when it receives a packet-in message triggered by the arrival

of an unmatched packet. In this case, OpenNetMon inserts, as usual, a flow rule in every

switch on the path of the packet (from ingress to egress). Then, as an optimization it

retransmits the incoming packet to the nearest switch to the destination as a packet-out

message. Consequently, this packet does not go through the usual path and the counters

of the switches are not incremented, i.e., they remain at zero.

The adversary can explore this optimization to decrease the measured throughput,

while still allowing all packets to be delivered to the final receiver. This is attained by

modifying the packets as they go through A2 in such a way to prevent a match with the

existing rules in the switch. Changing particular fields from the same flow (for instance,

the Ethernet source address) triggers the switch to send a packet-in message to the
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Figure 3.13: Basic throughput measurement.

controller but it does not change the normal forwarding of these packets. Every time such

change is performed on a packet, the associated bytes are hence made oblivious to the

monitor.

In this attack since the packet arrives to its destination modified, this may cause prob-

lems for particular applications. Notice, however, in our tests, the applications continued

to work as expected, without showing any change of behaviour during the attack. A

more sophisticated version of the attack includes adversary A3, located after the switch

and before the destination host. Both run Scapy with a bridge between interfaces, but

with different options. Modifications to the packets are made in the first attacker, and are

withdrawn by the second attacker, which makes the packet return to its initial state. This

attack works for any protocol because the modifications are only visible to the controller,

which derives to the insertion of various flows on the switches, without increasing the

throughput.

Figures 3.14 and 3.15 present the results of this attack. We ran iperf in the sender

to start a 400kbps UDP flow to the receiver. When the attack begins, the throughput drops

to zero, and it gradually returns to its normal value when the attack stops. Bringing the
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Figure 3.14: Decreased throughput (Mininet).
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Figure 3.15: Decreased throughput (Testbed).

throughput to zero can have undesired effects. For example, in the smart grid scenario we

are considering this would lead operators to erroneously believe that the monitored path

had problems and unnecessarily would cause a maintenance team to be sent to the field.

Note that this attack may introduce additional per-packet end-to-end delay as it re-

quires all packets to go through the controller. A more sophisticated version of it could

tradeoff per-packet latency for an increase in throughput estimation. Instead of bringing

throughput to zero we could let some packets follow its normal course without delay.
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Figure 3.16: Increasing throughput (Testbed).

3.3.3.2 Increasing throughput

The goal of the adversary is to artificially inject traffic in a specific switch, making it

report a throughput that is higher than the one from real traffic. The attack can be carried

out by A2 by observing traffic and replaying packets that match an already existing flow.

These packets will be dropped by the final receiver (they are considered duplicates). For

the attack to be as stealthy as possible, the adversary can take advantage of A3 to drop

these packets. The result of this attack can be observed in Figure 3.16.

This attack can also be performed in another way, by exploring the fact that some

controllers/switches do not set the in port match field on the flows installed. When this

field is set it is not possible to send packets “backwards” from where they originated. Only

A2 can perform this attack, since the packets it injects need to be dropped afterwards.

The way to explore this vulnerability is to inject packets matching specific existing flows.

These flows must have as action, forwarding the packet to the port from where adversary

A2 injected the packets (they are sent “backwards”). This allows for A2 to drop all his

injected packets afterwards. We tested this attack in Mininet with success (the result is

similar to Figure 3.16). Note that the effectiveness of this attack depends on the controller

flow installations, because some controllers set the in port field in their flows to disable

packets moving “backwards”.

In this section we have demonstrated how SDN-based network monitors are vul-

nerable to attacks, even relatively unsophisticated ones. In the next chapter we discuss

techniques to improve the security of network monitors, as increasing their resilience is



Chapter 3. Network monitoring under attack 38

fundamental for their effective use in a critical infrastructure as the smart grid.



Chapter 4

Discussion: securing the network
monitor

In the previous chapter we have shown potential ways to compromise the correct be-

haviour of SDN-based monitoring solutions. Some of the demonstrated attacks are rel-

atively general, while others are more specific to OpenNetMon, but even these give evi-

dence that a monitoring approach should take security aspects into consideration.

In a smart grid, secure and accurate monitoring is fundamental. This is because the

monitor is a main enabler for the inclusion of advanced communication networks in the

electric network. Since a smart grid is a critical system, the cost of wrong monitoring

behaviour could be unbearable.

With this in mind, in the following sections we discuss some preliminary ideas on

protecting SDN monitoring measurements, with the aim to make security a first class

citizen in the design of these platforms. By such, the SDN monitoring service can be a

strong enabler for a robust communication system for the smart grid.

4.1 Strategies to secure the network monitor

We consider three types of security guidelines that could contribute to improve the re-

silience of SDN-based security monitors.

Using traditional, well-proven security techniques. An example of where well-

known security techniques could be employed is the protection of probe packets to avoid

the attacks to delay measurements we demonstrated in Section 3.3.2. A possible solution

39
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consists in protecting these packets from tampering. Conventional solutions based on

authentication and integrity protection of packet contents (e.g., with a MAC) may prevent

many classes of such attacks without sacrificing performance in a significant way.

Using SDN holistic view. SDN offers a global view of the network that could be ex-

plored by monitoring solutions. By correlating measurement information collected from

different network locations it becomes possible to identify where and when attacks are

occurring. A simple validation to avoid attacks on throughput measurements would be

to check that the throughput at network ingress is the same at network egress for transit

traffic.

Enhancements to switch design. Switch design could also be enhanced not only to

improve the support for monitoring (as in OpenSketch [41]) but also to increase security.

For example, certain packets could be securely timestamped as they leave or enter a switch

by request of the controller. This would enable more precise delay measurement (e.g.,

PTP synchronization [8] could be explored) and ultimately raise the attacker effort.

4.2 Traditional security techniques

In this section we show how conventional techniques can be used to mitigate several types

of attacks, namely path delay, throughput, and DoS attacks.

4.2.1 Path delay probing techniques

Active monitoring is the predominant strategy for measuring delay between network

switches. The controller inserts monitoring traffic in the data plane directed back to itself,

and keeps track of the departure and arrival moments of this traffic in order to calculate

the path delay. This kind of monitoring is usually called probing.

Problem #1: The first attack is probe modification (Figure 4.1). In this attack an

adversary (of type A2) eavesdrops the traffic flow between both switches, and modifies

the passing probes. This modification affects the latency calculated by the controller. We

performed this attack and explained it in further detail in Section 3.3.2.

Proposed solution: Programming the controller to add integrity protection to each

transmitted probe packet in order to detect and discard incorrectly modified data. This

can be achieved by inserting a MAC in the payload of each probe packet. This solution
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requires cryptographic key derivation to be configured in the controller.
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Switch 1 Switch 2
Controller probe

Attacker

Modified probe

Figure 4.1: Attack by probe modification.
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Controller probe

Attacker probeeavesdrop

Figure 4.2: Attack by replicating probe.

Problem #2: A second attack is the replay of probe packets (Figure 4.2). In this

attack an adversary (of type A2) eavesdrops the traffic flow between both switches. The

adversary collects a probe and later retransmits it to the receiving switch (which then

forwards it to the controller). The consequence of this attack is the controller mistakingly

considering the received probe as a legitimate one and incorrectly calculating the latency.
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Proposed solution: A solution is to program the controller to add a unique identifier

to each transmitted probe in order to avoid repeated latency calculations. For this purpose

a nonce could be inserted in the payload of each probe packet. This nonce should be

modified in each probe.

4.2.2 DoS attacks

Problem: If the attacker sends many distinct packets to the switch, which redirects them

to the controller, then the switch-to-controller link can become congested. A possible

effect is that other legitimate traffic may be dropped (as seen in Figure 4.3).

Controller

Switch 1 Switch 2

Attacker

Regular traffic Regular traffic

Forged traffic

Loss

Loss

Figure 4.3: A2 adversary attacking the switch-to-controller link.

Proposed solution #1: One possible solution, but not ideal, is to install a meter in

the probe-packet flow rule of every switch. This meter limits the rate of traffic sent to the

controller. This solution reduces the traffic going to the controller, but the switch buffers

still get filled and drop legitimate probes.

Proposed solution #2: To avoid this kind of attack, the best option is to configure

all switch tables to drop all packets unmatched in the flow table, adopting a proactive

approach. This way a controller installs previously the allowed flows on the switches and

discards the rest.
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4.3 Using SDN holistic view

Some kinds of attacks can be detected by correlating information retrieved from differ-

ent network locations. As packets traverse different switches, information per traversed

packet can be collected in each switch, and later transmitted to the controller for compar-

ison. If the controller finds a discrepancy when comparing the data (e.g., switch counters

or packet contents), that is evidence of a possible attack. Typically, the more complete the

information received by the controller, the more effective is the protection and the more

powerful the attacks that can be detected.

4.3.1 Correlating switch counters

The logical centralization of control offered by a SDN controller allows the correlation

between counters from different switches to be used to detect attacks on throughput. So-

lutions similar to anomaly detection systems can be used, by comparing flow statistics of

different switches to detect values that do not conform to an expected range.

Controller
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request

Transmitted
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reply
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packets 
counter

FLOW_STATS 
request

FLOW_STATS 
reply

Forged traffic

Figure 4.4: A2 adversary, attacking counters.

In throughput measuring, one easy step to avoid major problems would be to perform

correct packet counting and not skip any packets (as OpenNetMon does). We explored

this vulnerability and demonstrated it in further detail on Section 3.3.3. However, re-

ceived throughput from a single switch is not a good indicator of link throughput if the
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transmitted throughput from the link’s entry switch does not match the former one (within

a certain expected range).

Problem #1: Measuring link throughput by using byte/packet counters is vulnerable

to attacks that affect the traffic between the two switches composing the link (Figure 4.4).

Proposed solution: Compare switch throughput from both switches at the endpoints

of the link. When taking periodic “snapshots” of switch throughput from switch 1 and

2, it is expected that both values are within a certain range of each other. If the received

throughput from switch 2 is higher than the transmitted throughput from switch 1, that is

evidence of a malicious packet injection in the link.

4.3.2 Correlating sampled packets

The best monitoring approach would probably be to adopt a hybrid passive/active network

monitoring. The idea is to use network traffic as probes. This can be achieved through

packet sampling, as seen in Figure 4.5. The main issue is the need to sample the same

packets on switch 1 and switch 2, and identify each packet. If the probe can be hidden in

the normal forwarded traffic, we are not only solving latency measurements, but also pro-

viding an attack detector for statistics measurements. This happens because even packet

modification would be detected.

Controller

Switch 1 Switch 2

Forwarded traffic

Incoming 
traffic

Packet sampling 
from forwarded 

traffic

Packet sampling 
from forwarded 

traffic

Outgoing 
traffic

Figure 4.5: SDN network simple sampling.

Problem #1: A non-sophisticated man-in-the-middle attack (Figure 4.6), performed
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by an A2 adversary, is what we call a probe XOR traffic delaying. In this attack the

adversary delays all traffic but the probe packets. As a consequence, the delay measured

for all data traversing that path will be lower than what it is in reality. Alternatively, if the

adversary delays the probe packets instead, then the controller will calculate a delay that

is higher than what it is in reality.

Proposed solution: This problem can be overcome by re-using normal network traf-

fic for monitoring measurements (alongside the probe measurements), using a sampling

approach.

Controller

Switch 1 Switch 2

Controller probe

Attacker

Regular traffic

Controller probe

Regular traffic

Figure 4.6: Man-in-the-middle attack.

In order to select which packets to use as samples, a sampling algorithm must be

implemented in the switches. The idea is to transmit only a subset of traffic packets to the

controller so that sampling does not incur too much load on the controller and its links to

the switches. A simple strategy is to periodically request the switches to forward traffic

to the controller during some specified time, i.e., once in a while a portion of the traffic

forwarded by the switches is mirrored to the controller. The sampling periodicity and

duration can be set to random values within certain ranges, in order to make it hard for

the attacker to predict the sampling frequency. Additionally, the attacker must not be able

to easily distinguish the sampled traffic from the non-sampled one, since otherwise she

could attack the links only at times when sampling is disabled.

Proposed implementation: A possible solution is to use Multiprotocol Label Switch-

ing (MPLS) tags to identify traffic to be sampled. MPLS tags can be appended to or re-

moved from any forwarded packets by the switches. Looking at Figure 4.5, the idea is for
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switch 1 to append tags to incoming traffic and switch 2 to remove them from outgoing

traffic. This way we allow packet identification to be non-interfering with other transport

or routing protocols, while keeping it exclusive to each link. MPLS tags must always

be used even with non-sampled traffic, in order to hide from the attacker which traffic is

being sampled. MPLS tags must change at random times so that the sampling frequency

is difficult to predict by the attacker.

Applying our idea, on switch 2, a flow rule that matches a specific MPLS tag is

installed at random times with a random defined timeout, in which packets with that tag

are mirrored to the controller. On switch 1, a similar flow rule that matches the same

MPLS tag is installed immediately after the other one, in which packets are labeled with

the specific tag and also mirrored to the controller.

The controller receives both traffic streams from switches 1 and 2 (which have the

same MPLS tag) and compares them by value in order to detect packet corruptions or

losses. Additionally, the controller also obtains timestamps whenever sampled packets

are received, which allows an estimation of link delay and throughput (after taking into

account switch-to-controller delays).

4.4 Enhancing switch design

The addition of packet authentication/integrity protection at switches would bring higher

security. This addition ensures that network traffic modification does not go unnoticed.

Forged packets are not accepted as valid, which also helps preventing DoS attacks in a

proactive monitoring approach.

A couple of recent proposals that aim to increase the flexibility and programmability

of SDN switches could be very useful for this purpose. The first such proposal was

OpenSketch [41], a framework that adds reconfigurable measurement logic to switches

and exposes an interface to program it. The data plane of OpenSketch switches use a

three-state pipeline (hashing, classification and counting), enabling the support of many

measurements tasks. In the control plane, OpenSketch provides a measurement library

that configures this pipeline and allocates resources for the different measurement tasks.

Such framework can be used not only to improve switch statistic measurements, but also

to detect attacks on the network. In [41] the authors exemplify with a DDoS attack —

by detecting if a host is contacting more than k unique destinations during a certain time

interval.
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The OpenSketch framework has recently been prototyped using the P4 language.

P4 [9] allows the functionality of programmable switches to be not only specified by the

controller but also changed in the switches. This allows programmers to decide how the

forwarding plane processes packets without caring about implementation details. The P4

compiler transforms the imperative program into a control flow graph that can be mapped

to different target switches. This capability grants the possibility of using a wide range of

actions for specific packets. For instance, TTL fields can be decremented and tested, new

tunnel headers can be added, and checksums can be computed. To increase the security

of monitoring platforms authentication and integrity could be integrated in the switches

using P4, by adding identifiers or by signing specific packets.
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Chapter 5

Conclusion

In this dissertation we experimentally demonstrated how SDN-based monitoring plat-

forms are vulnerable to attacks, including relatively trivial ones. Considering the increas-

ing importance of these infrastructures in modern network deployments (such as Smart

Grids), these vulnerabilities illustrate the need to consider security as a first class citizen

in the design of future monitoring platforms.

We have demonstrated attacks that caused the monitoring components to report in-

valid measurement data. The attacks were concentrated on the two most used metrics in

practice today: path delay and link throughput. The attacks were performed with different

adversary capabilities.

We have also discussed some security guidelines and solutions that can be incorpo-

rated in such designs to mitigate specific classes of attacks. One of these solutions is to

use traditional, well-proven security techniques. Another solution is to resort to the SDN

holistic view, which allows correlating switch counters and sample packets. Finally, we

can mitigate these specific attacks by enhancing switches design, adding packet authenti-

cation/integrity on the switches.

We hope this work will trigger the community to investigate on SDN-based network

monitoring security flaws and – more importantly – to come up with effective solutions,

as building a secure and accurate monitoring system is fundamental to critical systems as

the Smart Grid.

Future work includes the implementation of a secure monitor that considers the pre-

viously mentioned techniques. Using SDN holistic view and investigating how to im-

plement the security techniques on the network switches (e.g., using P4) are interesting

avenues of work.

49



Chapter 5. Conclusion 50



Bibliography

[1] https://www.opennetworking.org/sdn-resources/openflow.

[2] http://www.noxrepo.org/.

[3] http://www.projectfloodlight.org/floodlight/.

[4] https://www.osgi.org.

[5] http://www.mininet.org/.

[6] https://ettercap.github.io/ettercap/.

[7] http://www.secdev.org/projects/scapy/.

[8] IEEE standard for a precision clock synchronization protocol for networked mea-

surement and control systems. IEC 61588:2009(E), pages C1–274, Feb 2009.

[9] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-

ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David

Walker. P4: Programming protocol-independent packet processors. SIGCOMM

Comput. Commun. Rev., 44(3):87–95, July 2014.

[10] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple network management

protocol (snmp), 1990.

[11] S.R. Chowdhury, M.F. Bari, R. Ahmed, and R. Boutaba. Payless: A low cost net-

work monitoring framework for software defined networks. In IEEE NOMS, 2014.

[12] David Erickson. The beacon openflow controller. In Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13,

pages 13–18, New York, NY, USA, 2013. ACM.

[13] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building a better

netflow. SIGCOMM Comput. Commun. Rev., 34(4):245–256, August 2004.

51

https://www.opennetworking.org/sdn-resources/openflow
http://www.noxrepo.org/
http://www.projectfloodlight.org/floodlight/
https://www.osgi.org
http://www.mininet.org/
https://ettercap.github.io/ettercap/
http://www.secdev.org/projects/scapy/


Bibliography 52

[14] H. Farhangi. The path of the smart grid. Power and Energy Magazine, IEEE,

8(1):18–28, January 2010.

[15] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McK-

eown, and Scott Shenker. Nox: Towards an operating system for networks. SIG-

COMM Comput. Commun. Rev., 38(3):105–110, July 2008.

[16] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick

McKeown. Reproducible network experiments using container-based emulation. In

ACM CoNEXT, 2012.

[17] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan

Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven

WAN. In ACM SIGCOMM, 2013.

[18] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs

Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-deployed

software defined WAN. In ACM SIGCOMM, 2013.

[19] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim, and

David Mazières. Millions of little minions: Using packets for low latency network

programming and visibility. In ACM SIGCOMM, New York, NY, USA, 2014. ACM.

[20] L. Kekely, J. Kucera, V. Pus, J. Korenek, and A.V. Vasilakos. Software defined

monitoring of application protocols. Computers, IEEE Transactions on, PP(99):1–

1, 2015.

[21] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-

molky, and S. Uhlig. Software-Defined Networking: A comprehensive survey. Proc.

of the IEEE, 2015.

[22] Myungjin Lee, Nick Duffield, and Ramana Rao Kompella. Not all microseconds are

equal: Fine-grained per-flow measurements with reference latency interpolation. In

ACM SIGCOMM, 2010.

[23] Myungjin Lee, Nick Duffield, and Ramana Rao Kompella. MAPLE: A scalable

architecture for maintaining packet latency measurements. In ACM IMC, 2012.

[24] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan, Tao Ye, and Hui Zang. Is sam-

pled data sufficient for anomaly detection? In ACM IMC, 2006.



Bibliography 53

[25] M. Malboubi, Liyuan Wang, Chen-Nee Chuah, and P. Sharma. Intelligent sdn based

traffic (de)aggregation and measurement paradigm (istamp). In IEEE INFOCOM,

2014.

[26] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innova-

tion in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March

2008.

[27] Masoud Moshref, Minlan Yu, and Ramesh Govindan. Resource/accuracy tradeoffs

in software-defined measurement. HotSDN. ACM, 2013.

[28] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. Dream: Dy-

namic resource allocation for software-defined measurement. In ACM SIGCOMM,

2014.

[29] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-

halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and

Martin Casado. The design and implementation of open vswitch. In USENIX NSDI,

2015.

[30] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent

checkpointing under unix. In Proceedings of the USENIX 1995 Technical Confer-

ence Proceedings, TCON’95, pages 18–18, Berkeley, CA, USA, 1995. USENIX

Association.

[31] Fernando M. V. Ramos, Diego Kreutz, and Paulo Verissimo. Software-defined net-

works: On the road to the softwarization of networking. Cutter IT Journal, 2015.

[32] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agar-

wal, John Carter, and Rodrigo Fonseca. Planck: Millisecond-scale monitoring and

control for commodity networks. In ACM SIGCOMM, 2014.

[33] Sajad Shirali-Shahreza and Yashar Ganjali. FleXam: Flexible sampling extension

for monitoring and security applications in openflow. In ACM HotSDN, HotSDN,

2013.

[34] Junho Suh, T.T. Kwon, C. Dixon, W. Felter, and J. Carter. OpenSample: A low-

latency, sampling-based measurement platform for commodity SDN. In IEEE

ICDCS, 2014.



Bibliography 54

[35] Peng Sun, Minlan Yu, MichaelJ. Freedman, Jennifer Rexford, and David Walker.

Hone: Joint host-network traffic management in software-defined networks. Journal

of Network and Systems Management, 23(2), 2015.

[36] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. Opentm: Traffic matrix

estimator for openflow networks. In PAM, 2010.

[37] Niels L. M. van Adrichem, Christian Doerr, and Fernando A. Kuipers. OpenNet-

Mon: Network monitoring in openflow software-defined networks. In IEEE NOMS,

2014.

[38] Han Wang, Ki Suh Lee, Erluo Li, Chiun Lin Lim, Ao Tang, and Hakim Weather-

spoon. Timing is everything: Accurate, minimum overhead, available bandwidth

estimation in high-speed wired networks. In ACM IMC, New York, NY, USA, 2014.

ACM.

[39] Curtis Yu, Cristian Lumezanu, Abhishek Sharma, Qiang Xu, Guofei Jiang, and Har-

sha V. Mahdyastha. Software-defined latency monitoring in data center networks.

In PAM, 2015.

[40] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and

Harsha V. Madhyastha. FlowSense: Monitoring network utilization with zero mea-

surement cost. In PAM, 2013.

[41] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic measurement with

OpenSketch. In USENIX NSDI, 2013.

[42] Ye Yu, Chen Qian, and Xin Li. Distributed and collaborative traffic monitoring in

software defined networks. In Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking, HotSDN ’14, pages 85–90, New York, NY, USA,

2014. ACM.

[43] Ying Zhang. An adaptive flow counting method for anomaly detection in sdn. In

ACM CoNEXT, 2013.


	List of Figures
	List of Tables
	Introduction
	From the Power Grid to a Smart Grid
	From a conventional network to a Software Defined Network
	Motivation
	Contributions
	Planning
	Document structure

	Background and related work
	Software Defined Networking
	OpenFlow
	SDN controllers
	NOX
	Beacon
	Floodlight


	Network Monitoring
	SDN-based monitoring frameworks
	SDN-based monitors
	A more detailed view on OpenNetMon

	Networking tools
	Mininet
	Ettercap
	Scapy


	Network monitoring under attack
	Threat model
	Implementation
	A1 plugins
	Delay attack
	Throughput attack

	A2 and A3 plugins
	Delay attack
	Throughput attack


	Attacking the monitor
	Testing environment
	Attacking delay measurements
	Injection
	Eavesdropping and Injection

	Attacking throughput measurements
	Decreasing throughput
	Increasing throughput



	Discussion: securing the network monitor
	Strategies to secure the network monitor
	Traditional security techniques
	Path delay probing techniques
	DoS attacks

	Using SDN holistic view
	Correlating switch counters
	Correlating sampled packets

	Enhancing switch design

	Conclusion
	Bibliography

