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ABSTRACT
The state of web security remains troubling as web appli-
cations continue to be favorite targets of hackers. Static
analysis tools are important mechanisms for programmers
to deal with this problem as they search for vulnerabilities
automatically in the application source code, allowing pro-
grammers to remove them. However, developing these tools
requires explicitly coding knowledge about how to discover
each kind of vulnerability. This paper presents a new ap-
proach in which static analysis tools learn to detect vulnera-
bilities automatically using machine learning. The approach
uses a sequence model to learn to characterize vulnerabili-
ties based on a set of annotated source code slices. This
model takes into consideration the order in which the code
elements appear and are executed in the slices. The model
created can then be used as a static analysis tool to discover
and identify vulnerabilities in source code. The approach
was implemented in the DEKANT tool and evaluated ex-
perimentally with a set of open source PHP applications
and WordPress plugins, finding 16 zero-day vulnerabilities.

CCS Concepts
•Software and its engineering → Software verifica-
tion and validation; •Security and privacy → Vul-
nerability management; Web application security;
•Computing methodologies → Machine learning;

Keywords
vulnerabilities, web application, software security, static anal-
ysis, sequence models, machine learning

1. INTRODUCTION
The state of web application security continues to be a

concern. In the OWASP Top 10 of 2013, vulnerabilities
such as SQL injection (SQLI) and cross-site scripting (XSS)
maintain a high risk level [32]. Moreover, specific vulnera-
bilities continue to cause major problems, with allegedly 12
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million sites compromised in Oct. 2014 due to an SQLI vul-
nerability in Drupal [2] and data of 37 million users stolen
in Aug. 2015 from the Ashley Madison site using an SQLI
attack [29].

Many of these vulnerabilities are related to malformed in-
puts that reach some relevant asset (e.g., the database or
the user’s browser) by traveling through a certain code slice
(a series of instructions). Therefore, a good practice for web
application security is to pass inputs through sanitization
functions that invalidate dangerous metacharacters or vali-
dation functions that evaluate their content.

Programmers often use static analysis tools to search for
vulnerabilities automatically in the application source code,
then removing them. However, developing these tools re-
quires explicitly coding knowledge about how each vulnera-
bility is detected [5, 8, 10, 14], which is complex. Moreover,
this knowledge may be wrong or incomplete, making the
tools inaccurate [6]. For example, if the tools do not un-
derstand that a certain function sanitizes inputs, this could
lead to a false positive (a warning about an inexistent vul-
nerability).

This paper presents a new approach for static analysis,
leveraging classification models for sequences of observations
that are commonly used in the field of natural language
processing (NLP). Currently, NLP tasks such as parts-of-
speech tagging or named entity recognition are typically
modeled as sequence classification problems, in which a class
(e.g., a given morpho-syntactic category) is assigned to each
word in a given sentence, according to estimates given by
a structured prediction model that takes word order into
consideration. The model’s parameters (e.g., symbol emis-
sion and class transition probabilities, in the case of hidden
Markov models) are typically inferred using supervised ma-
chine learning techniques, leveraging annotated corpora. We
propose applying the same approach to programming lan-
guages. These languages are artifical but they have many
characteristics in common with natural languages, such as
the existence of words, sentences, a grammar, and syntac-
tic rules. NLP usually employs machine learning to extract
rules (knowledge) automatically from a corpus. Then, with
this knowledge, other sequences of observations can be pro-
cessed and classified. NLP has to take into account the order
of the observations, as the meaning of sentences depends on
this order. Therefore it involves forms of classification more
sophisticated than classification based on standard classifiers
(e.g., naive Bayes, decision trees, support vector machines)
that simply verify the presence of certain observations, with-
out considering any order and relation between them.
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This paper is the first to propose an approach in which
static analysis tools learn to detect vulnerabilities automati-
cally using machine learning. The approach involves using
machine language techniques that take the order of source
code instructions into account – sequence models – to allow
accurate detection and identification of the vulnerabilities in
the code. Previous applications of machine learning in the
context of static analysis neither produced tools that learn
to make detection nor used sequence models. PHPMinerII
uses machine learning to train standard classifiers, which
are then used to verify if certain code elements exist in the
code, but not to identify the location of the vulnerabilities
[24, 25]. WAP uses a taint analyzer (with no machine learn-
ing involved) to search for vulnerabilities and a standard
classifier to classify them as true or false positives [14]. Nei-
ther of the two tools considers the order of code elements
or the relation between them, leading to false positives and
false negatives.

We specifically use a hidden Markov model (HMM) [20]
to characterize vulnerabilities based on a set of source code
slices with their code elements (e.g., function calls) anno-
tated as tainted or not, taking into consideration the code
that validates, sanitizes, and modifies inputs. The model
can then be used as a static analysis tool to discover vul-
nerabilities in source code. A HMM is a Bayesian network
composed of nodes representing states and edges represent-
ing transitions between states. In a HMM the states are
hidden, i.e., are not observed. Given a sequence of observa-
tions, the hidden states (one per observation) are discovered
following the HMM, taking into account the order of the
observations. The HMM can be used to find the sequence
of states that best explains the sequence of observations (of
code elements, in our case). To detect vulnerabilities we in-
troduce the idea of revealing the discovered hidden states
of the code elements that compose the slice. This is inter-
esting because the state of the elements determines if they
are tainted, i.e., if the state may have been defined by an
input, which may have been provided by an adversary. This
allows the tool to interpret the execution of the slice stat-
ically, i.e., without actually running it. Notice that transi-
tioning from a state to another requires understanding how
the code elements behave in terms of sanitization, validation
and modification, or if they affect the data flow somehow.
This understanding is performed by the machine learning
algorithm we propose.

The paper also presents the hidDEn marKov model di-
AgNosing vulnerabiliTies (DEKANT) tool that implements
our approach. DEKANT first extracts slices from the source
code, next translates these slices into an intermediate lan-
guage – intermediate slice language (ISL) – and retrieves
their variable map. Then it analyses that representation,
with the assistance of its variable map, to understand if
there are vulnerabilities or not. Finally, the tool outputs
the vulnerabilities, identifying them in the source code.

We evaluated the tool experimentally with 10 plugins of
the WordPress content management system (CMS) [34] and
it discovered 16 zero-day vulnerabilities (i.e., 16 previously-
unknown vulnerabilities). These vulnerabilities were repor-
ted to the developers of the plugins that confirmed their
existence and fixed the plugins. Also, we ran the tool with
10 publicly-available open source web applications written
in PHP with vulnerabilities disclosed in the past, adding up
to more than 4,200 files and 1.5 million lines of code. From

the 310 slices analyzed, 211 were classified as containing
vulnerabilities and 99 as not. The tool found 21 vulnerabili-
ties reported in the Common Vulnerabilities and Exposures
(CVE) [4] and the Open Source Vulnerability Database (OS-
VDB) [18]. Our results suggest that the tool is capable of
relating the elements that characterize a vulnerability in or-
der to classify slices correctly as vulnerable or not.

The main contributions of the paper are: (1) a novel ap-
proach for improving the security of web applications by
letting static analysis tools learn to detect vulnerabilities
using annotated code slices; (2) a sequence model and an
intermediate language used by the model to detect vulnera-
bilities taking into consideration the order in which the code
elements appear in the slices; (3) a static analysis tool that
implements the approach, learning to detect vulnerabilities
using annotated code slices, then using this knowledge to dis-
cover and identify vulnerabilities in web application source
code; (4) an experimental evaluation that shows the ability
of this tool to detect known and zero-day vulnerabilities.

2. RELATED WORK
Static analysis tools search for vulnerabilities in the code

of applications, typically in source code [8, 9, 10, 17, 23, 28,
35]. Many of these tools do taint analysis, i.e., track user
inputs to verify if they reach a sensitive sink (a function that
can be exploited). Pixy [10] is one of the first tools of the
kind for PHP code. phpSAFE [17, 8] is a recent tool that
does taint analysis to search for vulnerabilities in CMS plu-
gins (e.g., WordPress plugins) without analysing the CMS
source code, so it is configurable with the functions of the
CMS that work as entry points and sensitive sinks. Static
analysis tools tend to generate many false positives and false
negatives due to the complexity of coding knowledge about
vulnerabilities. WAP [14, 15] also does taint analysis, but
uses data mining to predict false positives, besides also going
one step further and correcting automatically the detected
vulnerabilities. Yamaguchi et al. [35] presented an approach
to do more precise static analysis based on a novel data
structure to represent source code (code property graph).
We propose an alternative approach that unlike these works
does not involve coding knowledge about vulnerabilities, in-
stead extracts this knowledge from annotated code samples.

Machine learning has been used in some works to mea-
sure software quality by collecting attributes that reveal the
presence of software defects [1, 3, 12]. Other works use ma-
chine learning to predict the existence of vulnerabilities in
the source code, which is different from identifying precisely
their existence, which is what we do in this paper [16, 27,
31, 19]. They use attributes such as past vulnerabilities and
function calls [16], or code complexity and developer ac-
tivities [27], or a combination of code-metric analysis with
metadata gathered from code repositories [19].

PhpMinerI and PhpMinerII use machine learning to pre-
dict the presence of vulnerabilities in PHP programs [24, 25].
These tools extract a set of attributes from program slices
that end in a sensitive sink but do not necessarily start in
a entry point. The tools are first trained with a set of an-
notated slices, then used to assess the presence of vulnera-
bilities. The tools do not perform directly the data mining
process, but instead the user has to use the WEKA tool to
do it [33]. Recently, these authors enhanced the detection
using traces of program executions [26]. WAP is different
because it uses machine learning and data mining to predict
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if a vulnerability detected by taint analysis is a real vul-
nerability or a false positive [14, 15]. Furthermore, unlike
PhpMiner, it identifies the location of vulnerabilities in the
source code, which is required to remove them. The Php-
Miner tools and WAP use standard classifiers (e.g., Logistic
Regression, Naive Bayes, or a Multi-Layer Perceptron), in-
stead of structured prediction models (i.e., a sequence clas-
sifier) as we propose here.

There are a few static analysis tools that use machine
learning techniques in contexts other than web applications.
Chucky discovers vulnerabilities by identifying missing checks
in C source code [36]. The tool does taint analysis to identify
checks between entry points and sensitive sinks, applies text
mining to discover the neighbors of these checks, then builds
a model to identify missing checks. Scandariato et al. use
text mining to predict vulnerable software components in
Android applications [21]. They use text mining techniques
to get the terms (words) present in software components
(files) and their frequencies, and use a static code analyzer
to check if those software components are vulnerable or not.
Then, they correlate the term frequencies in vulnerable soft-
ware components and build a model to predict if a given
software component is vulnerable or not.

This paper is the first to explore the use of sequential
models, learned from training data, in the context of static
analysis for security.

3. SURFACE VULNERABILITIES
The major classes of security flaws in web applications are

due to improper handling of user input and may be denom-
inated surface vulnerabilities or input validation vulnerabil-
ities. Such a vulnerability may be exploited by crafting an
input that combines normal characters with metacharacters
or metadata (e.g., ’, OR). Considering the case of programs
in PHP, such input enters the program though an entry point
like $ POST and reaches a sensitive sink like mysql query,
echo or include, exploiting the vulnerability. This section
presents the classes of surface vulnerabilities considered in
the experimental evaluation of DEKANT: SQLI, XSS, re-
mote and local file inclusion, directory traversal, source code
disclosure, operating system and PHP command injection.

SQLI has the highest risk in [32]. The following PHP
script has a simple example of a SQLI vulnerability that we
found in SchoolMate 1.5.4 (ValidateLogin.php) [22]. $u takes
the username provided by the user (line 1), then is inserted
in a query (lines 2-3). An attacker can inject a malicious
username like ’ OR 1 = 1 - - , modifying the structure of
the query and obtaining all users’ passwords.

1 $u = $_POST[‘username ’];
2 $q = "SELECT pass FROM users WHERE user=’".$u."’";
3 $query = mysql_query($q);

XSS vulnerabilities allow attackers to execute scripts in
the users’ browsers. There are some varieties of XSS, but
we explain only reflected XSS for space reasons. The fol-
lowing code shows an example of this vulnerability that we
discovered in ZeroCMS 1.0 (zero compose.php) [37]. If the
input is not empty, it is stored in $user_id and inserted in
the HTML file returned to the user by the echo function.

1 $user_id = (isset($_POST[’user_id ’])) ?
$_POST[’user_id ’] : ’’;

2 echo ’<input type=" hidden" name=" user_id" value="’ .
$user_id . ’">’;

The other six vulnerabilities are presented briefly. Re-
mote and local file inclusion (RFI/LFI) vulnerabilities allow
attackers to insert code in the vulnerable web application.
While in RFI the code can be located in another web site, in
LFI it has to be in the local file system (but there are sev-
eral strategies to insert it there). Directory traversal / path
traversal (DT/PT) and source code disclosure (SCD) vulner-
abilities let an attacker read files from the local file system.
An operating system command injection (OSCI) vulnera-
bility lets an attacker inject commands to be executed in
a shell. A PHP command injection (PHPCI) vulnerability
allows an attacker to supply PHP code that is executed by
a PHP eval function.

4. THE APPROACH
The approach has two phases: learning and detection. In

the first, an annotated data set is used to acquire knowledge
about vulnerabilities. In the second, vulnerabilities are de-
tected using a sequence model, a HMM. The HMM captures
how calls to sanitization functions, validation and string
modification affect the data flows between entry points and
sensitive sinks. These factors may lead state to change from
not tainted to tainted or vice-versa. However, we do not tell
the model how to understand these functions, but train it
automatically using the annotated data set (see Section 6).

The two phases are represented in Figure 1. The learning
phase is executed when the corpus is first defined or later
modified and is composed of the following sequence of steps:

(1) Building the corpus: to build the corpus with a set
of source code slices annotated either as vulnerable or non-
vulnerable, to characterize code with flaws and code that
handles inputs adequately (see Section 6.1). Duplicates have
to be removed;

(2) Knowledge extraction: to extract knowledge from the
corpus (the parameters of the model) and represent it with
probability matrices (see Section 6.2.4).

(3) Training HMM: to train the HMM to characterize vul-
nerabilities with knowledge contained in the parameters.

The detection phase is composed of the following steps:
(1) Slice extraction: to extract slices from the source code,

with each slice starting in an entry point and finishing in a
sensitive sink. This is done by the slice extractor, which
tracks the entry points and their dependencies until they
reach a sensitive sink, independently if they are sanitized,
validated and/or modified. The resulting slice is a sequence
of tracked instructions;

(2) Slice translation: to translate the slice into Interme-
diate Slice Language (ISL). We designate the slice in ISL by
slice-isl. During this translation, a variable map is created
containing the variables present in the slice source code. ISL
is a categorized language with grammar rules that aggre-
gate in categories the functions of the server-side language
by their functionality;

(3) Vulnerability detection: to use the HMM to find the
best sequence of states that explains slice-isl. Each slice-
isl instruction (sequence of observations) is classified by the
model after the tainted variables from the previous instruc-
tion determine which emission probabilities will be selected
for the instruction to be classified. The classification of the
last observation from the last instruction of the slice-isl will
classify the whole slice as containing a vulnerability or not.
If a vulnerability is detected, its description (including its
location in the source code) is reported.
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Figure 1: Overview on the proposed approach.

Token Description PHP Func. Taint

input entry point $ GET Yes
var variable – No
sanit f sanitization function htmlentities No
ss sensitive sink mysql query Yes
typechk str type checking string function is string Yes
typechk num type checking numeric function is int No
contentchk content checking function preg match No
fillchk fill checking function isset, is null Yes
cond if instruction presence if No
join str join string function implode, join No
erase str erase string function trim Yes
replace str replace string function preg replace No
split str split string function str split Yes
add str add string function str pad Yes/No
sub str substring function substr Yes/No
sub str replace replace substring function substr replace Yes/No
char5 substring with less than 6 chars – No
char6 substring with more than 5 chars – Yes
start where where the substring starts – Yes/No
conc concatenation operator – Yes/No
var vv variable vulnerable – Yes

Table 1: Intermediate Slice Language tokens.

5. INTERMEDIATE SLICE LANGUAGE
As explained, slices are translated into ISL. All slices begin

with an entry point and end with a sensitive sink; between
them there can be other entry point assignments, input vali-
dations, sanitizations, modifications, etc. A slice contains all
instructions (lines of code) that manipulate an entry point
and the variables that depend on it, but no other instruc-
tions. These instructions are composed of code elements
(e.g., entry points, variables, functions) that are categorized
in classes of elements with the same purpose (e.g., class in-

put contains PHP entry points like $_GET and $_POST). The
classes are the tokens of the ISL language. ISL is essen-
tially a representation of the instructions in terms of these
classes. Therefore, the representation of a slice in ISL is
an abstraction of the original slice, which is simpler to pro-
cess. Next we present the ISL, assuming the language of
the code inspected is PHP, but the approach is generic and
other languages could be considered.

5.1 ISL tokens and grammar
To define the ISL tokens, we studied which PHP code

elements could manipulate entry points and be associated
to vulnerabilities or prevent them (e.g., functions that do
sanitization or replace characters in strings). Moreover, we
examined many slices (vulnerable and not) to check the pres-
ence of these code elements. The code elements representing
PHP functions were carefully studied to understand which
of their parameters are relevant for vulnerability detection.
Some code elements are represented by more than one token.
For instance, the mysql query function and its parameter are
represented by two tokens: ss (sensitive sink) and var (vari-
able; or input if the parameter is an entry point).

Table 1 shows the 21 ISL tokens (column 1). The first
20 represent code elements and their parameters, whereas
the last is specific for the corpus (see Section 6). Each of
the 20 tokens represents one or more PHP functions. Col-

1 grammar isl {
2 slice -isl: statement+
3 statement:
4 sensitive_sink: ss (param | concat)
5 | sanitization: sanit_f param
6 | valid: (typechk_str | typechk_num | fillchk |

contentchk) param
7 | mod_all: (join_str | erase_str | replace_str |

split_str) param
8 | mod_add: add_str param num_chars param
9 | mod_sub: sub_str param num_chars start_where?

10 | mod_rep: sub_str_replace param num_chars param
start_where?

11 | concat: (statement | param) (conc concat)?
12 | cond statement+ cond?
13 | (statement | param) attrib_var
14 param: input | var
15 attrib_var: var
16 num_chars: char5 | char6
17 }

Figure 2: ISL grammar rules.

umn 2 says the purpose of the functions and column 3 gives
function examples (full list at [13]). Some remarks on some
tokens. cond corresponds to an if statement with validation
functions over variables (user inputs) from the slice. This
token allows the correlation and verification of the relation
between the validated variables and the variables that ap-
pear inside the if branches. char5 and char6 represent the
amount of characters from a string manipulated by functions
that extract or replace the user input contents. start_where

represents the place in the string (begin, middle or end)
where the user input contents suffers modifications by func-
tions that extract or replace characters. var_vv, used in the
corpus, represents variables that have Taint state (that are
tainted, i.e., that have values that depend on inputs).

The ISL grammar is composed of the rules shown in Fig-
ure 2. It is used to translate a slice, composed of code
elements (Table 1, column 3), into what we designate by
slice-isl, composed of tokens (column 1). Each rule denotes
how each code element is represented, as exemplified above
for the mysql query function and its parameter, where the
sensitive_sink rule was applied (line 4 on Figure 2). A
HMM processes observations from left to right and a PHP
assignment instruction assigns the right-hand side to the
left-hand side; the assignment rule in ISL follows the HMM
scheme. This means, for example, that the PHP instruction
$u = $_GET[’user’]; is translated to input var, where input

is the right-hand side and var the left one.

5.2 Variable map
A slice-isl does not contain information about the vari-

ables represented by the var token. However, this infor-
mation is crucial for the vulnerability detection process as
var may apply to different variables and the existence of a
vulnerability may depend on that information. Therefore,
during slice translation a data structure called variable map
is populated. This map associates each occurrence of var in
the slice-isl with the name of the variable that appears in the
source code. This allows tracking how input data propagates
to different variables or is sanitized/validated or modified.
Each line of the variable map starts with 1 or 0, indicating
if the instruction is an assignment or not. The rest of the
line contains one item per token in a slice-isl instruction.

5.3 Slice translation process
The process of slice translation consists in representing

the slice using ISL and creating the corresponding variable
map. This section presents this process with two examples.
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The slice extractor analyses the source code, extracting
slices that start in entry points and end in sensitive sinks.
The instructions between these points are those that handle
entry points and variables depending on them. The slice
extractor performs intra- and inter-procedural analysis, as
it tracks the entry points and their dependencies along the
source code, walking through different files and functions.
The analysis is also context-sensitive as it takes into account
the results of function calls.

Figure 3(a) shows PHP code (a slice) vulnerable to SQLI
and Figure 3(b) shows this code translated into ISL and the
corresponding variable map (ignore the right-hand side for
now). The first line represents the assignment of an input to
a var: input var in ISL. The variable map entry starts with
1 (assignment) and has two items, one for input (-) and the
other for var (u, the variable name without the $ character).
The next line is a variable assignment represented by var

var in ISL and by 1 u q in the variable map. The last line
contains a sensitive sink (ss ) and two variables.

The second example is in Figure 4. The slice extractor
takes from that code two slices: lines {1, 2, 3} and {1, 2,
4}. The first has input validation, but not the second that
is vulnerable to XSS. The corresponding ISL and variable
map are shown in the middle columns. The interesting cases
are lines 2 and 3 that represent the if statement and its
true branch. Both are prefixed with the cond token and the
former also ends with the same token.

6. THE MODEL
This section presents the model used to learn and detect

vulnerabilities. The section covers the two phases of the pro-
posed approach (Section 4). The learning phase is mainly
presented in Sections 6.1 and 6.2.4. The detection phase
is presented in Section 6.3. In the learning phase, the cor-
pus (a set of annotated sequences of observations) is used
to set the parameters of the sequence model (matrices of
probabilities). In the detection phase, a sequence of obser-
vations represented in ISL is processed by the model using
the Viterbi algorithm [11] with some adaptations to decode
the sequence of states that explains those observations. This
algorithm is often used in NLP to decode (i.e., discover) the
states given the observations. The states classify the obser-
vations as tainted or not; and in particular the last state of
the sequence indicates if the slice is vulnerable or not.

6.1 Building the corpus
Our approach involves configuring the model automati-

cally using machine learning. The corpus is a set of se-
quences of observations annotated with states, that contains
the knowledge that will be learned by the model. The cor-
pus is crucial for the approach as it includes the information
about which sequences of instructions lead to vulnerabilities
or not.

The corpus is built in four steps: collecting a set of (PHP)
instructions associated with slices vulnerable and not vul-
nerable; representing these instructions in ISL (sequences of
observations); annotating manually the state to each obser-
vation (to each ISL token) of the sequences; and removing
duplicated sequences of observations annotated with states.
The upper part of Figure 1(a) represents these steps.

The most critical step is the first, in which a set of slices
representing existing vulnerabilities (and non-vulnerabilities)
with different combinations of code elements has to be ob-

tained. In practice we used a large number of slices from
open source applications (see Section 7).

A sequence of the corpus is composed of two or more pairs
〈token,state〉. The instruction $var = $_POST[’paramater’],
for instance, translated into ISL becomes input var and is
represented in the corpus as 〈input,Taint〉 〈var_vv,Taint〉.
Both states are Taint (compromised) because the input is
always Taint (input is the source of attacks we consider).

In the corpus, the sequences of observations are anno-
tated according to their taintdness status and type, as pre-
sented in column 4 of Table 1, and the tokens representing
some class of functions from that table. For instance, the
PHP instruction $var = htlmentities($_POST[’parameter’])

is translated to sanit_f input var and represented in the
corpus by the sequence 〈sanit_f,San〉 〈input, San〉 〈var,N-
Taint〉. The first two tokens were annotated with the San

state, because the sanitization function sanitizes its param-
eter, and the last token was annotated with N-Taint state,
meaning that the operation and the final state of the se-
quence are not tainted.

Notice that in the previous examples the state of the last
observation is the final state of the sequence. In the saniti-
zation example that state is N-Taint, indicating that the se-
quence is not-tainted (not compromised), while in the other
example that state is Taint, indicating that the sequence is
tainted (compromised).

As mentioned above, the token var_vv is not produced
when slices are translated into ISL, but used in the corpus
to represent variables with state Taint (tainted variables).
In fact, during translation into ISL variables are not known
to be tainted or not, so they are represented by the token
var. In the corpus, if the state of the variable is annotated
as Taint, the variable is represented by var_vv, forming the
pair 〈var_vv,Taint〉.

6.2 Sequence model

6.2.1 Hidden Markov model
A hidden Markov model (HMM) is a dynamic Bayesian

network with nodes that represent random variables and
edges that represent probabilistic dependencies between these
variables [11]. These variables are divided in two sets: ob-
served variables – observations – and hidden variables –
states. The edges are the transition probabilities, i.e., the
probabilities of going from one state to another. States are
said to emit observations. A HMM is composed of: (1) a
vocabulary, a set of symbols or tokens that compose the se-
quence of observations; (2) a set of states; (3) parameters, a
set of probabilities: (i) the start-state or initial probabilities,
which specify the probability of a sequence of observations
starting in each state of the model; (ii) the transition proba-
bilities; (iii) and the emission probabilities, which specify the
probability of a state emitting a given observation. The pa-
rameters are calculated – learned – by counting observations
and state transitions over the training corpus, afterwards
normalizing the counts in order to obtain probability distri-
butions, and using some smoothing procedure (e.g., add-one
smoothing) to deal with rare events in the training data.

Sequence models correspond to a chain structure [11] (e.g.,
the sequence of observations of tokens in a slice-isl). These
models use sequential dependencies in the states, meaning
that the i-th state depends of the i-1 previously generated
states. In a HMM, the states are generated according to a
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PHP code slice-isl variable map tainted list slice-isl classification

1 $u = $_POST[‘username’]; input var 1 - u TL = {u} 〈input,Taint〉 〈var_vv_u,Taint〉
2 $q = "SELECT pass FROM users WHERE user=’".$u."’"; var var 1 u q TL = {u, q} 〈var_vv_u,Taint〉 〈var_vv_q,Taint〉
3 $result = mysql_query($q); ss var var 1 - q result TL = {u, q, result} 〈ss,N-Taint〉 〈var_vv_q,Taint〉 〈var_vv_result,Taint〉

(a) code with SQLI vulnerability (b) slice-isl (c) outputting the final classification

Figure 3: Code vulnerable to SQLI, translation into ISL, and detection of the vulnerability.

PHP code slice-isl variable map list

1 $u = $_POST[’name’]; input var 1 - u TL = {u}; CTL = {}

2 if (isset($u) && preg_match(’/[a-zA-Z]+/’, $u)) cond fillchk var contentchk var cond 0 - - u - u - TL = {u}; CTL = {u}

3 echo $u; cond ss var 0 - - u TL = {u}; CTL = {u}

4 echo $u; ss var 0 - u TL = {u}; CTL = {}

(a) code with XSS vulnerability and validation (b) slice-isl and variable map (c) artifacts lists

Figure 4: Code with a slice vulnerable to XSS (lines {1, 2, 4}) and a slice not vulnerable (lines {1, 2, 3}), with translation into ISL.

Figure 5: Model graph of the proposed HMM.

first order Markov process, in which the i-th state depends
only of the previous state.

In the context of NLP, a HMM is often used to find the
sequence of states that best explains a new sequence of ob-
servations, given the learned parameters. This is known as
the decoding problem, which can be solved by the Viterbi de-
coding algorithm [30], by picking the best global hidden state
sequence through dynamic programming. In a nutshell, the
algorithm iteratively obtains the probability distribution for
the i-th state based on the probabilities obtained for the
(i-1)-th state and the learned parameters.

6.2.2 Vocabulary and states
The HMM vocabulary consists in the 21 ISL tokens. The

HMM contains the 5 states in Table 2. The final state
of slice-isl will be vulnerable (Taint ) or not vulnerable (N-
Taint ), but for correct detection it is necessary to take into
account sanitization (San ), validation (Val ) and modification
(Chg_str ) of the user inputs. Therefore these three factors
are represented as intermediate states in the model.

State Description Emitted observations

Taint Tainted input, var, var vv, conc
N-Taint Not tainted Input, var, var vv, ss, cond, conc
San Sanitization input, var, var vv, sanit f
Val Validation input, var, var vv, typechk str,

typechk num, contentchk, fillchk
Chg str Change string input, var, var vv, join str, add str,

erase str, replace str, split str, sub str,
sub str replace, char5, char6, start where

Table 2: HMM states and the observations they emit.

6.2.3 Model graph
The model uses the knowledge in the corpus to discover

the states of new sequences of observations, detecting vul-
nerabilities. The knowledge that we want to be learned can
be expressed as a graph, which represents the model to de-
tect vulnerabilities. Figure 5 shows the graph for the specific
HMM we use, where the nodes represent the states and the
edges the transitions between them. Table 2 shows the ob-
servations that can be emitted in each state (column 3).

A sequence of observations can start in any state except
Val, and end in the states Taint or N-Taint. The exception is
due to validated instructions that begin with the cond obser-

(a) PHP instruction: $p = htlmentities($_GET[’user’])
ISL instruction: sanit_f input var
Sequence: 〈sanit_f,San〉 〈input,San〉 〈var,N-Taint〉

(b) PHP instruction: $u = $_GET[’user’]
ISL instruction: input var
Sequence: 〈input,Taint〉 〈var_vv,Taint〉

Figure 6: Models for two example corpus sequences.

vation (e.g., lines 2-3 in Figure 4), which is emitted by the
N-Taint state, but after this observation the state transits to
the Val state. In relation to the final state, an instruction
(a sequence of observations) from slice-isl is classified for all
its observations, where the state of the last observation will
be the final state of all observations, meaning that an in-
struction is always classified as Taint or N-Taint. Therefore,
the final state of the last instruction of slice-isl gives the
final classification, i.e., says if the slice-isl is vulnerable or
not. State outputs and transitions depend on the previously
processed observations and the knowledge learned.

Figure 6 shows the instantiation of the graph for two se-
quences. The sanitization code of Figure 6(a) is translated
to the ISL sequence sanit_f input var. The sequence starts
in the San state and emits the sanit_f observation; next it
remains in the same state and emits the input observation;
then, it transits to N-Taint state, emitting the var observa-
tion (non-tainted variable). Figure 6(b) depicts the assign-
ment of an entry point to a variable, turning this one tainted
(Taint ) and emitting var_vv (tainted variable).

6.2.4 Parameters
The parameters of the model are probabilities for the ini-

tial states, the state transitions, and symbol emissions (Sec-
tion 6.2.1). The parameters are calculated using the cor-
pus and the add-one smoothing technique to ensure that all
probabilities are different from zero.

The probabilities are calculated from the corpus counting
the number of occurrences of observations and/or states for
each type of probability. The result are 3 matrices of proba-
bilities with dimensions of (1× s), (s× s) and (t× s), where
s and t are the number of states and tokens of the model.
For our model these numbers are 5 and 21, resulting in ma-
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trices of dimensions (1× 5), (5× 5) and (21× 5). They are
calculated as follows:

Initial-state probabilities: count how many sequences start
in each state. Then, calculate the probability for each state
dividing these counts by the number of sequences of the
corpus, resulting in a matrix with the dimension (1× 5).

Transition probabilities: count how many times in the cor-
pus a certain state transits to another state (or to itself).
Recall that we consider pairs of states. We can calculate the
transition probability by dividing this count by the number
of pairs of states from the corpus that begin with the start
state. For instance, the transition probability from the N-

Taint state to Taint state is the number of occurrences of
this pair of states divided by the number of pairs of states
starting in the N-Taint state. The resulting matrix has a
dimension of (5×5), that represents the possible transitions
between the 5 states.

Emission probabilities: count how many times in the cor-
pus a certain token is emitted by a certain state, i.e., count
how many times a certain pair 〈token,state〉 appears in the
corpus. Then, calculate the emission probability by dividing
this count by the total of pairs 〈token,state〉 for that specific
state. The resulting matrix – called global emission prob-
abilities matrix – has a dimension of (21 × 5), representing
the 21 tokens emitted by the 5 states.

Zero-probabilities have to be avoided because the Viterbi
algorithm uses multiplication to calculate the probability of
the next state, and therefore we need to ensure that this
multiplication is never zero. The add-one smoothing tech-
nique [11] is used to calculate the parameters, avoiding zero
probabilities. This technique adds a unit to all counts, mak-
ing zero-counts equal to one and the associated probability
different from zero.

6.3 Detecting vulnerabilities
This section describes the detection phase of Figure 1(b).

6.3.1 Detection
A sequence of observations in ISL is processed by the

model using the Viterbi algorithm to decode the sequence
of states. For each observation, the algorithm calculates the
probability of each state emitting that observation, taking
for this purpose the emission and transition probabilities
and the maximum of probabilities calculated for the pre-
vious observation in each state, i.e., the order in which the
observation appears in the sequence and the previous knowl-
edge. For the first observation of the sequence the initial-
state probabilities are used, whereas for the rest of the prob-
abilities these are replaced by the maximum of probabilities
calculated for each state for the previous observation. For
emission probabilities, the matrix for the observations to be
processed is retrieved from the global emission probabilities
matrix. The multiplication of these probabilities is calcu-
lated for each state – score of state – and the maximum of
scores is selected, assigning it the state with bigger score
to the observation. The process is repeated for all observa-
tions and the last observation is the one with the highest
probability of the states of the sequence. In our case, this
probability classifies the sequence as Taint or N-Taint.

A slice-isl is composed by a set of sequences of obser-
vations. The model is applied to each sequence, classifying
each one as tainted or not (Taint, N-Taint ). However, for the
classification to be correct the model needs to know which

variables are tainted and propagate this information between
the sequences processed. For this purpose, three artefacts
are used in the model: the lists of tainted variables (tainted
list, TL) (explained next), inputs and tainted variables vali-
dated by validation functions (conditional tainted list, CTL),
and sanitized variables (sanitized list, SL) (Section 6.3.3).

There are two relevant interactions between the variable
map, the emission probabilities and var_vv to fill the three
lists in two moments of the sequence processing: after and
before. After: if the sequence represents an assignment, i.e.,
the last observation of the sequence is a var, the variable
map is visited to get the variable name for that var , then
TL is updated: (i) inserting the variable name if the state
is Taint ; or (ii) removing it if its state is N-Taint and the
variable belongs to TL. In case (ii) and in the presence of
a sanitization sequence, SL is updated inserting the vari-
able name; if the sequence represents an if condition (the
first and last observations of the sequence must be cond ), for
each var and var_vv observation, the variable map is visited
to get the variable name, next TL to verify if it contains
the variable name, and then, in that case, CTL is updated
inserting that variable name. Before: for each var observa-
tion, the variable map is visited to get the variable name,
then TL and SL are accessed to verify if they contain that
variable name. CTL is also accessed if the sequence starts
with the token cond ; in case of variable name only belong
to TL, the var observation is updated to var_vv, then the
emission probabilities matrix for the observations from the
sequence is retrieved from the global emission probabilities
matrix.

In order to detect vulnerabilities, the Viterbi algorithm
was modified with these artefacts and interactions. Our
model processes each sequence of observations from slice-isl
as follows: (1) “before” is performed; (2) the decoding step
of the Viterbi algorithm is applied; (3) “after” is performed.

6.3.2 Detection example
Figure 3 shows an example of detection. The figure con-

tains from left to right: the code, the slice-isl, the variable
map, and TL after the model classifies the sequence of ob-
servations. Observing TL, it is visible that it contains the
tainted variables and that they propagate their state to the
next sequences, influencing the emission probability of the
variable. In line 1, the var observation is vulnerable because
by default the input observation is so; the model classifies
it correctly; and in TL the variable u is inserted. Next, line
2, before the Viterbi algorithm is applied the first var ob-
servation is updated to var_vv because it represents the u

variable which belongs to TL. The var_vv var sequence is
classified by the Viterbi algorithm, resulting in Taint as fi-
nal state, and the variable q is inserted in TL. The process
is repeated in the next line.

Figure 3(c) presents the decoding of slice-isl, where it is
possible to observe the replacement of var by var_vv, with
the variable name as suffix. Also, the states of each obser-
vation are presented and the state of the last observation
indicates the final classification (there is a vulnerability).
Looking for the states generated it is possible to understand
the execution of the code without running it, why the code
is vulnerable, and which variables are tainted.

6.3.3 Validation and sanitization
The conditional tainted list (CTL) is an artefact used to

help interpret inputs and variables that are validated. This
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list will contain the validated inputs and variables, i.e., the
inputs (token input ) and tainted variables that belong to
TL, and that are validated by validation functions (tokens
typechk_num and contentchk ). Therefore, when line 2 of Fig-
ure 4 is processed, this list is created and will be passed
to the other sequences. That figure contains two slice-isl
executed alternatively, depending on the result of the con-
dition in line 2: {1, 2, 3} and {1, 2, 4}. When the model
processes the former, it sets TL = {u} and CTL = {u}, as
the variable {u} is the parameter of the contentchk token.
The final state of the slice-isl (corresponding to line 3) is
N-Taint, as the variable is in CTL. In the other slice there is
no interaction with CTL and the final state is Taint.

The sanitized list (SL) is a third artefact. Its purpose is
essentially the same as CTL, except that SL will contain
variables sanitized using sanitization functions or modified
using functions that, e.g., manipulate strings.

7. DEKANT AND THE CORPUS
To evaluate our approach and model we implemented them

in the DEKANT tool. Moreover, we defined a corpus that
we used to train the model before running the experiments.
This corpus can be later extended with additional knowledge
(remember that the tool is able to learn, so also to evolve).

7.1 DEKANT
The DEKANT tool was implemented in Java. The tool

has four main modules: knowledge extractor, slice extractor,
slice translator, and vulnerability detector.

The knowledge extractor module is independent of the
other three and executed just when the corpus is first created
or later modified. It runs in three steps. (1) Corpus process-
ing: the sequences of the corpus are loaded from a plain
text file; each sequence is separated in pairs 〈token,state〉
and the elements of each pair are inserted in the matrices
of observations and states. (2) Parameter calculation: the
parameters (probabilities) of the model are computed using
the two matrices, and inserted in auxiliary matrices. (3) Pa-
rameter storage: the parameters are stored in a plain text
file to be loaded by the vulnerability detector module.

The slice extractor extracts slices from PHP code by track-
ing data flows starting at entry points and ending at sensi-
tive sinks, independently if the entry points are sanitized,
validated and modified.

The slice translator parses the slices, translates them into
ISL applying the grammar, and generates the variable maps.

The vulnerability detector works in three steps. (1) Pa-
rameter loading: the parameters (probabilities) are loaded
from a text file and stored in matrices. (2) Sequence of
observations decoding: the modified Viterbi algorithm is ex-
ecuted. (3) Evaluation of sequences of observations: the
probability of a sequence of observations to be explained
by a sequence of states is estimated, the most probable is
chosen, and a vulnerability flagged if it exists.

7.2 Model and corpus assessment
A concern when specifying a HMM is to make it accu-

rate and precise, i.e., to ensure that it classifies correctly se-
quences of observations or, in our case, that it detects vulner-
abilities correctly. Accuracy measures the total of slices well-
classified as vulnerable and non-vulnerable, whereas preci-
sion measures the fraction of vulnerabilities identified that
are really vulnerabilities. The objective is high accuracy

Observed
Vulnerable Not Vulnerable

Predicted
Vulnerable 412 16

Not Vulnerable 2 80

Table 3: Confusion matrix of the model tested with the corpus.
Observed is the reality (414 vulnerable slices, 96 not vuln.). Predicted
is the output of DEKANT with our corpus (428 vuln., 82 not vuln.).

and precision or, equivalently, minimum rates of false posi-
tives (inexistent vulnerabilities classified as vulnerabilities)
and false negatives (vulnerabilities not classified as vulner-
abilities). The model is configured with the corpus, so its
accuracy and precision depend strongly on that corpus con-
taining correct and enough information.

We created a corpus with 510 slices: 414 vulnerable and
96 non-vulnerable. These slices were extracted from several
open source PHP applications1 and contained vulnerabilities
from the eight classes presented in Section 3.

To evaluate the accuracy and precision of the model con-
figured with this corpus, we did 10-fold cross validation [7],
a common technique to validate training data. This form
of validation involves dividing the training data (the corpus
of 510 slices) in 10 folds. Then, the tool is trained with a
pseudo-corpus of 9 of the folds and tested with the 10th fold.
This process is repeated 10 times to test every fold with the
model trained with the rest. This estimator allows assessing
the quality of the corpus without the bias of testing data
used for training or just a subset of the data.

The confusion matrix of Table 3 presents the results of
this estimator. The precision and accuracy of the model
were around 96%. The rate of false positives was 17% and
the rate of false negatives almost null (0.5%). There is a
tradeoff between these two rates and it is better to have
a very low rate of false negatives that leads to some false
positives (non-vulnerabilities flagged as vulnerabilities) than
the contrary (missing vulnerabilities). These results show
that the model has good performance using this corpus.

8. EXPERIMENTAL EVALUATION
The objective of the experimental evaluation was to an-

swer the following questions using DEKANT and the corpus
presented in the previous section: (1) Is a tool that learns to
detect vulnerabilities able to detect vulnerabilities in plugins
and real web applications? (Section 8.1) (2) Can it be more
accurate and precise than other tools that do data mining
using standard classifiers? (Section 8.2) (3) Can it be more
accurate and precise than other tools that do taint analysis?
(Section 8.3) (4) Is it able to classify correctly vulnerabilities
independently of their class? (Section 8.1)

8.1 Open source software evaluation
To demonstrate the ability of DEKANT to classify vul-

nerabilities, we run it with 10 WordPress plugins [34] and
10 packages of real web applications, all written in PHP, us-
ing the corpus of the previous section. The code used in the
evaluation was not the same used to build the corpus.

8.1.1 Zero-day vulnerabilities in plugins
WordPress is the most adopted CMS worldwide and sup-

ports plugins developed by different teams. Plugins are in-
teresting because they are often less scrutinized than full

1
bayar, bayaran, ButterFly, CurrentCost, DVWA 1.0.7, emon-

cms, glfusion-1.3.0, hotelmis, Measureit 1.14, Mfm-0.13, mongodb-
master, Multilidae 2.3.5, openkb.0.0.2, Participants-database-1.5.4.8,
phpbttrkplus-2.2, SAMATE, superlinks, vicnum15, ZiPEC 0.32,
Wordpress 3.9.1.
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Plugin Slices
Real vulnerabilities

N-Vul FP
SQLI XSS DT & LFI

appointment-booking-calendar 1.1.7* 12
1 3 – 6 2

CVE-2015-7319, CVE-2015-7320
calculated-fields-form 1.0.60 3 – – – 2 1
contact-form-generator 2.0.1 5 – – – 4 1

easy2map 1.2.9* 6
– 1 2 3 0

CVE-2015-7668, CVE-2015-7669
event-calendar-wp 1.0.0 6 – – – 6 0

payment-form-for-paypal-pro 1.0.1* 11
– 2 – 8 1

CVE-2015-7666

resads 1.0.1* 2
– 2 – 0 0

CVE-2015-7667

simple-support-ticket-system 1.2* 20
5 – – 15 0

CVE-2015-7670
wordfence 6.0.17 6 – – – 6 0
wp-widget-master 1.2 9 – – – 6 3

Total 80 6 8 2 56 8
*confirmed and fixed by the developers and registered in CVE

Table 4: Vulnerabilities found by DEKANT in WordPress plugins.

applications. We selected 10 plugins based on two criteria:
development team and number of downloads. For the for-
mer, we choose 5 plugins developed by companies and the
other 5 by individual developers. For the second, we choose
5 with less than 1000 downloads and the other 5 with more
than 21,000 downloads. The plugins with less downloads
were not always those developed by individual developers.

WordPress has a set of functions that sanitize and validate
different data types, which are used by some of the plugins.
Therefore, to run DEKANT with the source code of the plu-
gins but without the WordPress code base, we added the in-
formation about those functions to the tool. Notice that the
entry points and sensitive sinks remain mostly the same, ex-
cept for sinks that handle SQL commands ($wpdb class). We
configured DEKANT with these functions, mapping them to
the ISL tokens. Recall that ISL abstracts the PHP instruc-
tions, so it can capture behaviors such as sanitization and
validation even for the functions that were added.

DEKANT discovered 16 new vulnerabilities as shown in
Table 4. 80 slices were extracted and translated into ISL.
The tool classified 24 slices as vulnerable and 56 as not vul-
nerable (N-Vul), but 8 of the vulnerable were false positives
(FP). This classification was confirmed by us manually. The
16 real vulnerabilities detected (columns 3-5) were 6 SQLI, 8
XSS, and 2 DT/LFI. These vulnerabilities were reported to
the developers, who confirmed and fixed them, releasing new
versions. The plugins appointment-booking-calendar 1.1.7,
easy2map 1.2.9, payment-form-for-paypal-pro 1.0.1, resads
1.0.1 and simple-support-ticket-system 1.2 were fixed thanks
to this work. We registered the vulnerabilities in CVE with
the IDs shown in the table.

The 16 zero-day vulnerabilities were found in 5 plugins:
2 developed by companies and 3 by individual developers;
plus 2 having more than 21,000 downloads. These results
show that, independently of the development teams and the
number of downloads, the WordPress plugins are vulnera-
ble and may contain more vulnerabilities than other web
applications, as recent research suggests [17].

8.1.2 Real web applications
To demonstrate the ability of DEKANT to classify vul-

nerabilities from the 8 classes, we run it with 10 open source
software packages with vulnerabilities disclosed in the past.
These packages were not used to build the corpus.

DEKANT classified 310 slices of the 10 applications. The
results are in Table 5, columns 10-13. After this process we
confirmed this classification manually in order to assess the
results of DEKANT and the other tools (columns 2-5; Vul
stands for vulnerable, San for sanitized, and VC for vali-
dated and/or changed). The 4 right-hand columns of the

Web application
Slices WAP DEKANT

Vul San VC Total Vul FPP FP FN Vul N-Vul FP FN

cacti-0.8.8b 2 0 8 10 2 2 6 0 2 6 2 0
communityEdition 16 36 8 60 16 6 2 0 16 44 0 0
epesi-1.6.0-20140710 25 1 8 34 25 6 2 0 25 5 4 0
NeoBill0.9-alpha 19 0 0 19 19 0 0 0 19 0 0 0
phpMyAdmin-4.2.6-en 1 6 7 14 1 0 7 0 1 13 0 0
refbase-0.9.6 5 4 3 12 5 0 3 0 5 1 6 0
Schoolmate-1.5.4 120 0 0 120 117 0 0 3 120 0 0 0
VideosTube 1 0 2 3 1 1 1 0 1 2 0 0
Webchess 1.0 20 0 0 20 18 0 0 2 20 0 0 0
Zero-CMS.1.0 2 5 11 18 2 5 6 0 2 16 0 0

Total 211 52 47 310 206 20 27 5 211 87 12 0

Table 5: Results of running the slice extractor, WAP and DEKANT
in open source software.

Observed
DEKANT WAP Original Analyzed

Predicted Vul N-Vul Vul N-Vul Vul N-Vul Vul N-Vul
Vul 211 12 206 27 182 36 50 218

N-Vul 0 87 5 72 86 821 109 748

Table 6: Confusion matrix of DEKANT, WAP and C4.5/J48
in PhpMinerII data set (original and analyzed).

table show that DEKANT correctly classified 211 slices as
being vulnerable (Vul) and the remaining as not-vulnerable
(N-Vul), except 12 wrongly classified as vulnerable (false
positives – FP). This misclassification is justified by the pres-
ence of validation and string modification functions (e.g.,
preg match and preg replace) with context-sensitive states.
In such cases we set DEKANT to classify the slices as vul-
nerable but printing a warning on a possible false positive.
Table 6 shows the confusion matrix summarizing these val-
ues. Overall, DEKANT had accuracy and precision of 96%
and 95%, 12% of false positives, and no false negatives.

Table 7 summarizes the results and presents additional
metrics. For the 10 packages, more than 4,200 files and
1,525,865 lines of code were analyzed and 223 vulnerabilities
found (12 false positives). The largest packages were epesi
and phpMyAdmin (741 and 241 thousand lines of code).

Table 8 presents the 223 slices classified by DEKANT as
vulnerable (12 false positives) distributed by the 6 classes
of vulnerabilities. Interestingly, all false positives were PH-
PCI and XSS vulnerabilities. The tool correctly classified
the sanitized slices as not vulnerable. The vulnerabilities
correctly classified by DEKANT correspond to 21 entries of
vulnerabilities that appear in CVE [4] and OSVDB [18].

8.2 Comparison with data mining tools
To answer the second question, DEKANT was compared

with WAP and PHPMinerII with the 10 packages of the
previous section. We opted by evaluating these tools with
those packages and not with the plugins, because they are
not configurable for the plugins. When run with the plugins
these tools provide much worse results than DEKANT.

Both tools also classify slices previously extracted, but us-
ing data mining based on standard classifiers, which do not
consider order. WAP performs taint analysis to extract the
slices that start in an entry point and reach a sensitive sink,
with attention to sanitization, then uses data mining to pre-
dict if they are false positives or real vulnerabilities. The
tool deals with the same vulnerability classes as DEKANT.
PhpMinerII uses data mining to classify slices as being vul-
nerable or not, without considering false positives. This tool
handles only SQLI and reflected XSS vulnerabilities.

8.2.1 Comparison for all vulnerability classes
Columns 6 to 9 of Table 5 present WAP’s results for

the 8 vulnerability classes. WAP reported 206 vulnera-
bilities (Vul), 20 false positives predicted (FPP), with 27
false positives and 5 false negatives (vulnerabilities not de-
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Web application Files
Lines of Analysis Vuln. Vulner.

code time (s) files found

cacti-0.8.8b 249 95,274 7 7 4
communityEdition 228 217,195 21 11 16
epesi-1.6.0-20140710 2246 741,440 90 13 29
NeoBill0.9-alpha 620 100,139 5 5 19
phpMyAdmin-4.2.6-en 538 241,505 12 1 1
refbase-0.9.6 171 109,600 8 5 11
Schoolmate-1.5.4 64 8,411 2 41 120
VideosTube 39 3,458 2 1 1
Webchess 1.0 37 7,704 2 5 20
Zero-CMS.1.0 21 1,139 2 2 2

Total 4,213 1,525,865 151 91 223

Table 7: Summary of results of DEKANT with open source code.

Web application SQLI
RFI, LFI

PHPCI XSS Total
DT/PT

cacti-0.8.8b 0 0 2 2 4
communityEdition 4 4 3 5 16
epesi-1.6.0-20140710 0 3 4 22 29
NeoBill0.9-alpha 0 2 0 17 19
phpMyAdmin-4.2.6-en 0 0 0 1 1
refbase-0.9.6 0 0 0 11 11
Schoolmate-1.5.4 69 0 0 51 120
VideosTube 0 0 0 1 1
Webchess 1.0 6 0 0 14 20
Zero-CMS.1.0 1 0 0 1 2

Total 80 9 9 125 223

Table 8: Results of the classification of DEKANT considering dif-
ferent classes of vulnerabilities extracted by the slice extractor.

tected). WAP identified the same 258 slices without san-
itization (columns 2 and 4 from Table 5) than the slice
extractor and detected the same 206 vulnerabilities than
DEKANT (5 less than DEKANT, false negatives, FN). More-
over and as expected, from the 47 slices classified as not vul-
nerable by DEKANT, WAP predicted correctly 20 of them
as false positives (FPP), meaning that 27 slices were wrongly
classified as vulnerabilities (FP), reporting 27 false positives.

This difference of false positives is justified by: (1) the
presence of symptoms in the slice which are not contem-
plated by WAP as attributes in its data set; (2) lack of
verification of the relations between attributes, once the
data mining mechanism only verifies the presence of the at-
tributes in the slice, does not relates them. The false nega-
tives are justified by reason (2) plus the importance of the
order of the code elements in the slice. The misclassification
was based in the concatenation of variables tainted with not-
tainted (variables validated or modified), in that order; then
data mining matches the presence of symptoms related with
validation and classified the slices as false positives. In these
5 slices is evident the importance of the order of code ele-
ments for a correct classification and detection. DEKANT
implements a sequence model that takes into account that
order, prevailing in these cases.

Columns 4 and 5 of Table 6 present the confusion matrix
with these values. WAP had an accuracy of 90%, a preci-
sion of 88%, 2% of false negatives and 27% of false positives
(Table 10, third column).

8.2.2 Comparison for SQLI and reflected XSS
For a fair comparison with PHPMinerII, only SQLI and

reflected XSS vulnerabilities classes considered. Table 9
shows the results; columns 2 to 4 are the 158 vulnerabili-
ties classified by DEKANT (80 SQLI, 78 XSS) and 6 false
positives. The next four columns are about WAP, with the
153 vulnerabilities (77 SQLI, 76 XSS), but with 21 false pos-
itives and 5 false negatives. The next 12 columns present
the PHPMinerII results.

PhpMinerII does not come trained, so we had to create a
data set to train it. For that purpose, PhpMinerII extracts
slices that end in a sensitive sink, but that do not have to
start in an entry point. It outputs the slices, the vector of
attributes of each slice, and a preliminary classification as

Metric DEKANT WAP
PhpMinerII

Pixy
original analyzed

acurracy 96% 90% 89% 71% 18%
precision 95% 88% 83% 19% 13%
false positive 12% 27% 4% 23% 87%
false negative 0% 2% 32% 69% 24%

Table 10: Evaluation metrics of DEKANT, WAP, PhpMinerII, Pixy.

vulnerable or not. Then a classification has to be assigned
to each attribute vector manually. This data set is used
to train the data mining part of the tool. We present ex-
perimental results of the tool running it both without and
with data mining. Table 9 shows the analysis without data
mining and the intersection of both sets of slices for SQLI
and XSS with the DEKANT slices. For these two classes,
columns 9, 10, 15 and 16 (Yes, No) show the number of slices
classified by the tool, columns 11 and 17 (Y - Y) show the
intersection (the number of vulnerabilities detected by both
tools), whereas columns 12 and 18 (Y - N) depict the num-
ber of vulnerabilities that DEKANT classified correctly but
PHPMinerII did not report. We observe that from the SQLI
vulnerabilities detected by DEKANT, PHPMinerII only de-
tected correctly approximately 16%, presenting high rates of
false negatives and false positives. For XSS, PHPMiner II
presents again an elevated rate of false negatives and false
positives, besides a small number of true positives compared
with the number of vulnerabilities detected by DEKANT.

To perform the data mining process the WEKA tool was
used [33] with the same classifiers as PhpMinerII [24, 25].
The best classifier was the C4.5/J48. Columns 6 to 9 of
Table 6 show the results of this classifier. The first two
columns of these four are relative to the slices flagged by the
tool without data mining, while the last two columns are
relative to the data mining process presented above. The
accuracy and precision are equal to 71% and 19%, and the
false positives and negatives rates are 23% and 69%, justi-
fying the very low precision rate.

Table 10 summarizes the comparison between DEKANT,
WAP and PhpMinerII. DEKANT was the best of all. WAP
was the second, also with low false negatives but high false
positives. Despite PhpMinerII presenting the lowest false
positive rate, it had the highest rate of false negatives and
lower accuracy and precision rates, making it the weakest
tool (false negatives are specially problematic as they repre-
sent vulnerabilities that were not found).

8.3 Comparison with taint analysis tools
We compare DEKANT with Pixy [10], a tool that per-

forms taint analysis to detect SQLI and reflected XSS vul-
nerabilities, taking sanitization functions in consideration.
The last four columns of Table 9 are related to the analysis
made with Pixy. Despite Pixy reporting 902 vulnerabilities
in 10 packages, they are mostly false positives. Those vul-
nerabilities were 421 SQLI and 481 XSS (first two columns
of the last 4). The same process of the previous section was
executed over the results of Pixy. In summary, only 120 vul-
nerabilities are the same as for DEKANT, while the rest are
false positives and some false negatives (last 2 columns).

9. DISCUSSION
DEKANT is a static analysis tool because it searches for

vulnerabilities in source code, without execution. DEKANT
has two main parts: one programmed, another learned. The
former corresponds to the slice extractor that does part of
what other static analysis tools do: parses the code and ex-
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Web application
DEKANT WAP PhpMinerII - SQLI PhpMinerII - XSS Pixy

SQLI XSS FP SQLI XSS FP FN Yes No Y - Y Y - N FP FN Yes No Y - Y Y - N FP FN SQLI XSS FP FN

cacti-0.8.8b 0 2 0 0 2 6 0 0 0 0 0 0 0 6 11 2 0 4 0 0 6 4 0
communityEdition 4 5 0 4 5 0 0 5 0 0 0 5 4 43 521 0 0 43 5 5 8 13 9
epesi-1.6.0-20140710 0 18 0 0 18 0 0 0 0 0 0 0 0 1 1 1 0 0 16 0 1 0 17
NeoBill0.9-alpha 0 17 0 0 17 0 0 0 0 0 0 0 0 20 3 17 0 3 0 0 20 3 0
phpMyAdmin-4.2.6-en 0 1 0 0 1 6 0 0 0 0 0 0 0 24 74 0 0 24 1 – 25 24 0
refbase-0.9.6 0 5 6 0 5 3 0 3 0 0 0 3 0 82 115 0 1 82 5 3 93 96 5
Schoolmate-1.5.4 69 14 0 66 14 0 3 41 11 11 0 30 58 2 0 2 0 0 12 303 113 339 6
VideosTube 0 1 0 0 1 0 0 10 19 0 0 10 0 2 28 1 0 1 0 12 2 13 0
Webchess 1.0 6 14 0 6 12 0 2 1 0 1 0 0 5 13 7 13 0 0 1 92 206 279 1
Zero-CMS.1.0 1 1 0 1 1 6 0 6 2 1 1 5 0 9 65 1 0 8 0 6 7 11 0

Total 80 78 6 77 76 21 5 66 32 13 1 53 67 202 825 37 1 165 40 421 481 782 38

Table 9: Comparison of results between DEKANT, WAP, PHPMinerII and Pixy with open source projects.

tracts slices. The latter uses the sequence model we propose,
configured with knowledge extracted from the corpus.

In classic static analysis tools this knowledge was pro-
grammed, involving several data structures and variables
representing and relating the code elements that create and
avoid vulnerabilities. Programming this knowledge is a hard,
complex task, for the programmers, who may leave errors
that lead to false positives and false negatives [6].

Taking this difficulty into account, machine learning star-
ted to be used to reduce the effort required to programming
static analysis tools. Table 10 compares the results of WAP
and PHPMinerII (both use machine learning) with Pixy (an
older tool that does not use it). In that table it is possible to
see that tools based on machine learning can provide good
results. The application of data mining requires a defini-
tion of a data set with the knowledge about vulnerabilities,
making it a crucial part of the process for correct detection.

This paper presents the first static analysis approach and
tool that learns to detect vulnerabilities automatically using
machine learning (WAP has most knowledge programmed
and PHPMinerII does not identify vulnerabilities, only pre-
dicts if they exist). Furthermore, we go one step further by
using for the first time in this context a sequence model in-
stead of standard classifiers. This model not only considers
the code elements that appear in the slices, but also their
order and relations between them. Again, similarly to what
happens with standard classifiers, the definition of the cor-
pus for the sequence model is crucial. Table 10 compares the
results of DEKANT with WAP and PHPMinerII, showing
that this approach indeed improves the results.

10. CONCLUSION
The paper explores a new approach to detect web applica-

tion vulnerabilities inspired in NLP in which static analysis
tools learn to detect vulnerabilities automatically using ma-
chine learning. Whereas in classical static analysis tools it is
necessary to code knowledge about how each vulnerability
is detected, our approach obtains knowledge about vulnera-
bilities automatically. The approach uses a sequence model
(HMM) that, first, learns to characterize vulnerabilities from
a corpus composed of sequences of observations annotated
as vulnerable or not, then processes new sequences of obser-
vations based on this knowledge, taking into consideration
the order in which the observations appear. The model can
be used as a static analysis tool to discover vulnerabilities
in source code and identify their location.
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[3] Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V.:
Exploring the relationships between design measures
and software quality in object-oriented systems.
Journal of Systems and Software 51(3), 245–273 (2000)

[4] CVE: http://cve.mitre.org

[5] Dahse, J., Holz, T.: Simulation of built-in PHP
features for precise static code analysis. In:
Proceedings of the 21st Network and Distributed
System Security Symposium (Feb 2014)

[6] Dahse, J., Holz, T.: Experience report: An empirical
study of PHP security mechanism usage. In:
Proceedings of the 2015 International Symposium on
Software Testing and Analysis. pp. 60–70 (Jul 2015)
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