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Abstract—This paper presents preliminary results regarding
the performance of a Byzantine fault-tolerant (BFT) state ma-
chine replication (SMR) protocol executing over a wide area net-
work (WAN). Some well known optimizations were implemented
and evaluated in the protocol. Our preliminary results suggest
SMR can show stable performance across WANs, but some of
the optimizations evaluated may be ineffective in practice.

I. INTRODUCTION

The state machine replication technique [17], [28] enables
an arbitrary number of client to issue requests into a set
of replicas. These replicas implement a stateful service that
updates its state after receiving those requests. The goal of this
technique is to enforce strong consistency within the service,
by making it completely and accurately replicated at each
replica. The key to make the state evolve with such consistency
is to execute a distributed protocol that forces each operation
sent by clients to be delivered at each replica in the exact same
order. When clients get the service’s reply, their requests are
already reflected in the service’s state.

This paper reports preliminary results regarding the per-
formance of a Byzantine fault-tolerant (BFT) state machine
replication (SMR) protocol executing over a wide area network
(WAN). Besides evaluating the protocol’s performance, we
also implemented and evaluated some optimizations from the
literature which aim to render executions of SMR protocols
more stable and efficient across WAN environments. The
experiments presented in this paper were made using BFT-
SMaRt [1], a library that implements a generic BFT-SMR
protocol similar to the well known PBFT [10].

The main motivation behind these preliminary experiments
is twofold. First, we wanted to evaluate the behavior of a
generic BFT-SMR protocol when deployed on a large scale
environment. Secondly, there is significant research in op-
timizing SMR for large scale environments (e.g., [4], [21],
[27]) which propose several optimizations to SMR aimed at
improving performance in a WAN. We decided to perform
our own evaluation of some of the optimizations introduced in
those works. We did this by implementing them in a generic
BFT-SMR protocol (used by BFT-SMaRt).

Both LAN and WAN settings assume the same system
model; some hosts are assumed to be malicious, and the
network connecting each host does not offer any time guaran-
tees. This is in accordance to the assumptions made by BFT-
SMaRt’s protocol [29]. The practical difference is that, in a
WAN setting, network delay is much higher and variable, and
message loss is much more frequent than it is in a LAN.

Our preliminary results suggest that a generic BFT-SMR
protocols can display stable performance across WANs. How-
ever, out of the three optimizations evaluated, only one seemed

to significantly improve the protocol’s performance; the re-
maining two did not introduce any observable improvement.
Further experiments will be required in order to reach conclu-
sive results.

The rest of this paper is organized as follows. We discuss
some related work in Section II. Section III presents the
hypotheses we aim to investigate. Section IV describes the
methodology used to conducted the experiments. We report
our results for each hypothesis in Sections V, VI, VII and VIII.
Finally, we discuss future work in Section IX and present our
conclusions in Section X.

II. RELATED WORK

In this section we give a brief overview of related work
regarding Byzantine fault tolerance, state machine replication,
wide area replication and wide area measurements.

a) Byzantine fault tolerance: Byzantine fault tolerance
(BFT) is a sub-field of fault tolerance research within dis-
tributed systems. In classical fault tolerance, processes are
assumed to fail only by stopping to execute. On the other hand,
in the Byzantine faults model, processes of a distributed system
are allowed to fail in a arbitrary way, i.e., a fault is charac-
terized as any deviation from the specified algorithm/protocol
imposed on a process. Thus, Byzantine fault tolerance is the
body of techniques that aims at devising protocols, algorithms
and services that are able to cope with such arbitrary behavior
of the processes that comprise the system [20]. In Byzantine
fault tolerance it is common practice to make assumptions as
weak as possible, not only from the processes that comprise
the system, but also from the network that connects them. In
BFT, it is typically adopted either the partially synchronous or
asynchronous system model [14].

b) State machine replication: The state machine repli-
cation (SMR) model was first proposed by Lamport in [17],
and later generalized by Schneider in [28]. In this model, an
arbitrary number of client processes send commands to a set
of servers, which function as replicas of a stateful service that
updates its state after processing commands sent by clients.
The goal of this technique is to make the state at each replica
to evolve in a consistent way, resulting in a service which is
accurately replicated across all replicas. Since the service state
was already updated by the time clients receive a response from
the service, this technique is able to offer strong consistency.
In order to enforce this behavior, it is necessary to satisfy the
following properties: (1) If any two correct replicas r and r′

apply operation o to state s, both r and r′ will obtain state s′;
(2) Any two correct replicas r and r′ start with state s0; (3)
Any two correct replicas r and r′ execute the same sequence
of operations O0, ..., Oi; (4) Operations from correct clients
get executed.



Castro and Liskov showed that executing SMR under
Byzantine faults is feasible, by presenting the PBFT protocol
[10]. PBFT is capable of withstanding up to f Byzantine
replicas out of at least 3f + 1. The main difference between
PBFT and previous proposals for BFT were that PBFT avoided
expensive cryptographic operations such as digital signatures
by using MAC vectors instead. PBFT spawned a renaissance in
BFT research, and is considered the baseline for all BFT-SMR
protocols published afterwards. Moreover, the idea of porting
SMR protocols into WANs also found new momentum.

c) Wide Area Replication: Mencius [21] is a SMR
protocol derived from Paxos [18], [19] which is optimized to
execute in WANs. It can survive up to f crashed replicas out of
at least 2f+1. According to the paper, its rotating coordinator
mechanism can significantly reduce clients’ latency in WANs.
Replicas take turns as the leader and propose client requests in
their turns. Clients send requests to the replicas in their sites,
which are submitted for ordering when the replicas becomes
the leader.

Veronese et. al. introduced Efficient Byzantine Agreement
for Wide-Area Networks (EBAWA) [27], a BFT-SMR protocol
optimized for WANs. Since it uses the trusted/trustworthy
USIG service introduced in [30], it requires only 2f + 1
replicas to tolerate f Byzantine faults. Similarly to Mencius,
it uses a rotating leader scheme to prevent a faulty leader from
degrading system performance.

d) Measurements: The aforementioned replication pro-
tocols rely on some form of quorum systems to be capable
of guaranteeing their safety properties. Given a set of hosts, a
quorum system is a collection of sets of hosts (called quorums)
such that any two quorums intersect in at least one common
host [12], [13]. Since quorum systems are building blocks used
to implement a variety of services (e.g., consensus [8], mutual
exclusion [3], distributed access control [23]), there is interest
in predicting their availability and performance in WANs.

The traditional approaches for evaluating quorum systems
used to be either by analysis and/or by emulation. Amir et.
al. proposed in [5] an empirical approach, which consisted
of gathering uptime data from a real system consisting of
multiple hosts. These hosts were scattered across two distinct
sites which communicated with each other over the internet.
The aforementioned data was obtained using a group commu-
nication framework responsible for generating uptime logs for
each host in the experiment. These logs were then integrated
into one single global log, which represented the availability of
all hosts within some time period. According to the authors, the
results obtained suggest that machine crashes are correlated,
network partitions are frequent, and a system crash is a rare,
yet possible event. They also confirm that, if network partitions
are frequent, dynamic quorum systems (e.g., [15]) yield better
availability than static quorums.

Bakr et. al. also employed empirical measurements in [6].
Whereas Amir et. al. investigated the availability of a quorum
system, Bakr et. al. investigate the latency of distributed
algorithms over the internet. Both works used real hosts to
obtain their measurements, but the methodology was different:
instead of using a communication group framework to con-
struct logs, Bakr et. al. implemented their own daemons that
would periodically initiate the algorithms, and keep track of the

running time for each iteration. Furthermore, the hosts were
geographically distributed across more than two sites. Upon
evaluating some of these algorithms, the authors observed
the message loss rate over the internet was not negligible.
Moreover, algorithms with high message complexity display
higher loss rate. This is evident in protocols that employ all-
to-all communication, like PBFT and BFT-SMaRt.

However, the experiments performed in [6] did not as-
sume quorum systems, i.e., each interaction of a communi-
cation round was only considered finished once every host
received/replied to all messages. In a quorum system, each
hosts only waits for a majority of hosts to receive/reply to
all messages. The authors conducted further research in [7]
considering quorum systems and how the number of hosts
probed by a client impacts latency and availability. Further-
more, two quorum types were studied: (1) majority quorum
systems, where the quorums are sets that include a majority
of the hosts, and (2) crumbling walls quorum systems1 [25],
which uses smaller quorums with varying sizes. The authors
argue that their results suggest that majority quorums do not
perform well with small probe sets. Moreover, the authors also
claim that increasing the size of the probe by as few as a single
host can reduce latency by a considerable margin. They also
argue that their results show that crumbling walls can display
better latency than majority quorums, and also comparable
availability. On the other hand, this study only investigated
availability of quorums as a function of the probing performed
by clients; the behavior of complex distributed protocols which
execute over quorum systems was not explored.

Finally, it is worth mentioning the experiments presented in
[5]–[7] were conducted from 1996 to 2008. Given the current
advances in network infrastructures, the same experiments may
yield different results if they were executed in 2013.

III. HYPOTHESES

In the experiments reported in this paper, we evaluated
some protocol optimizations known in the literature, which
are implemented by the SMR protocols described in Section
II-c, and one optimization related to quorum systems proposed
in [13], [26]. More precisely, we want to test the following
hypotheses:

1) The leader location influences the observed latency
of the protocol (Section V);

2) A bigger quorum size can reduce the observed latency
(Section VI);

3) Read-only and tentative executions significantly re-
duces the observed latency (Section VII).

Finally, we evaluated the stability of BFT-SMaRt’s protocol
within a WAN, i.e., how much the latency observed by BFT-
SMaRt clients vary across a long execution. More specifically,
the following hypothesis was tested in Section VIII: A generic
BFT-SMR protocol is stable and predictable enough in a WAN
environment and can be used to implement services capable
of exhibiting satisfactory performance and usability.

1In a crumbling wall, hosts are logically arranged in rows of varying widths,
and a quorum is the union of one full row and a representative from every
row below the full row.



IV. METHODOLOGY

The following experiments were conducted over the course
of approximately 40 days on Planetlab [11], a distributed
testbed scattered throughout the world, dedicated to computer
networking and distributed systems research. A total of eight
host were selected for these experiments. These hosts are
listed in Table I, and were divided into groups A and B,
each one executing a single instance of a simple benchmarking
application implemented over BFT-SMaRt.

Group A is comprised of a set of 6 replicas, whereas group
B is comprised of 4. Furthermore, replica 1 is represented in
2 hosts. The reasons for this are the following: (1) one extra
host was necessary for the experiment described in Section VI,
and (2) the original host for replica 1 (Italy, Parma) became
unavailable during the course of the experiments. Hence, we
needed to deploy a new host to take its place (Braga, Portugal).

No additional hosts were used to run the clients. Each host
ran two processes simultaneously: one executed a BFT-SMaRt
replica, and the other ran multiple threads which implemented
BFT-SMaRt clients. Each client sent a request to the replicas
every 2 seconds. A distinguished client at each host was
programmed to write its observed latency into a log file. Each
client issued a 4 kB request, and received a 4 kB reply.

Group A
Replica Location Hostname

0 (leader) Birmingham, England planetlab1.aston.ac.uk

1 Italy, Parma planet1.unipr.it
Portugal, Braga planetlab-um00.di.uminho.pt

2 Germany, Darmstadt host2.planetlab.informatik.tu-darmstadt.de
3 Norway, Oslo planetlab1.ifi.uio.no
4 Belgium, Namur orval.infonet.fundp.ac.be

Group B
Replica Location Hostname

0 (leader) Poland, Gliwice plab4.ple.silweb.pl
1 Spain, Madrid utet.ii.uam.es
2 France, Paris ple3.ipv6.lip6.fr
3 Switzerland, Basel planetlab-1.cs.unibas.ch

TABLE I. HOSTS USED IN EXPERIMENTS

V. LEADER LOCATION

The goal of this first experiment is to observe how much the
leader’s proximity to an aggregate of clients can improve their
observed latency. This is motivated by the fact that Mencius
[21] and EBAWA [27] both use a rotating leader scheme to
improve client’s latency: if the leader is close to the clients,
their messages arrive sooner and thus are ordered faster.

This experiment ran on Group B with an aggregate of
10 clients. The experiment was repeated 4 times, each one
placing the aggregate in a distinct host. Each iteration took
approximately one day to run. Only one client was launched
on the rest of the hosts that did not had the aggregate.

Table II presents the average latencies observed by client in
each distinct location. Each row depicts the observed latency
for the client location, whereas each column depicts the
location of the aggregate. In the case of Gliwice - where clients
run in the same machine as the leader - the average latency
was lowest when the aggregate was placed in the same host as
the leader. Moreover, for the rest of the locations, latency was
highest when they also hosted the aggregate (only exception

being Basel). This indicates that moving an aggregate of clients
close to the leader may improve latency. However, if the leader
is in a distinct site, client latency tends to increase at the site
that hosts the aggregate.

XXXXXXXClient

Aggregate Gliwice Madrid Paris Basel

Gliwice 112 ± 54.07 117 ± 211.02 113 ± 34.44 118 ± 39.61
Madrid 120 ± 44.78 122 ± 158.38 122 ± 150.28 90 ± 42.12
Paris 120 ± 68.64 123 ± 230.96 125 ± 90.71 94 ± 56.56
Basel 119 ± 182.55 122 ± 151.83 119 ± 33.50 96 ± 173.31

TABLE II. AVERAGE LATENCY AND STANDARD DEVIATION OBSERVED
IN GROUP B’S DISTINGUISHED CLIENTS, WITH THE LEADER IN GLIWICE.

ALL VALUES ARE GIVEN IN MILLISECONDS.

Figures 1 and 2 illustrate the cumulative distribution for
the latencies observed by distinguished clients in Gliwice and
Madrid. Figure 1 illustrate the latency when the aggregate
is close to the leader (both located in Gliwice), whereas 2
illustrate the latency observed once the leader and aggregate
are detached (leader located in Gliwice, aggregate in Madrid).
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Fig. 1. Cumulative distribution of latencies when aggregate is hosted in
Gliwice (close to the leader).
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Fig. 2. Cumulative distribution of latencies when aggregate is hosted in
Madrid (far from the leader).

Despite placing the aggregate close to the leader, the above
results suggest that doing so just barely improves client latency
(e.g, moving the aggregate from Madrid to Gliwice results
in a average improvement of less than 3%). There are two
possible explanations for such small benefit: a) BFT-SMaRt’s
protocol needs to execute two all-to-all communication steps,
which combined take much more time to finish than the time it
takes for the clients to contact all replicas (regardless of their
geographic location). Mencius and EBAWA are able to avoid
such communication complexity because, unlike BFT-SMaRt,
they do not assume a full BFT model (Mencius assumes crash
faults and EBAWA uses a trusted component); b) The size
of the message sent on the one-to-all communication step
initialized by the leader is much larger than any of the all-to-all
communication steps sent afterwards (since they only contain a
cryptographic hash of the requests being ordered). The results
shown in Section VII suggests this is the correct explanation.
Given these results, it does not seem to be advantageous to
periodically change the leader’s location.



VI. QUORUM SIZE

The purpose of this experiment was to observe how client
latency is affected by the quorum size demanded by the
protocol. This is motivated by the works of Gifford [13] and
Pâris [26], which use voting schemes with additional hosts
to improve availability. While Gifford makes all hosts hold a
copy of the state with distinct voting weights, Pâris makes a
distinction between hosts that hold a copy of the state and
hosts that do not hold such copy, but still participate in the
voting process (thus acting solely as witnesses).

This experiment ran on Group A, with replica 1 hosted in
Braga. It was repeated twice: one using 4 hosts and other using
5. BFT-SMaRt was modified to use only 3 replicas out of the
whole set in each iteration (thus, in each execution waiting for
3/4 and 3/5 replicas respectively). Each experiment executed
for approximately 24 hours. Five clients were launched at each
host, creating a total of 20 clients in the experiment.

Client Location Quorum size
3/4 3/5

Birmingham 551 ± 1440.44 812 ± 1319.025
Braga 258 ± 132.83 171 ± 38.3

Darmstadt 266 ± 149.89 200 ± 291.88
Oslo 260 ± 131.027 203 ± 203.39

TABLE III. AVERAGE LATENCY AND STANDARD DEVIATION
OBSERVED IN GROUP A. ALL VALUES ARE GIVEN IN MILLISECONDS.

The results shown in Table III display the average latency
and standard deviation observed in the distinguished clients
in both iterations. After running the experiment with one
more replica in the group, both average latency and stan-
dard deviation decreased in all distinguished clients (with the
exception of Birmingham). Since BFT-SMaRt still waits for
the same number of replies in each communication step, the
slowest replica within that set is replaced by the additional
one, thus decreasing latency. Birmingham did not display this
behavior because the host was visibly unstable throughout both
iterations.
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(a) Quorum size: 3/4.
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(b) Quorum size: 3/5.

Fig. 3. Cumulative distribution of latencies observed in Braga (group A).

The difference between both iterations is better illustrated
in Figure 3, which displays the cumulative distribution function
of the latency observed in Braga’s distinguished client. When
using 3/4 quorums, the 95th percentile of all latencies is
approximately 350 milliseconds (Figure 3(a)), whereas when
using 3/5 the same percentile is approximately 240 millisec-
onds (Figure 3(b)). This observation further indicates that using
additional replicas can improve the latency observed by clients.

VII. COMMUNICATION STEPS

The purpose of the following experiments is to observe
how client latency is affected by the amount of communication
steps performed by the BFT-SMR protocol. More precisely, we
wanted to observe how efficient read-only and tentative exe-
cutions are in a WAN. These two optimizations are proposed
in PBFT [10] to reduce latency. The message pattern for each
of these optimizations is illustrated in Figure 4.
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(a) Normal execution.
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C

R0

R1

R2

R3
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Fig. 4. Message patterns evaluated.

Figure 4(a) depicts the normal execution of our generic
SMR protocol, which is comprised of 5 communications steps
(as in BFT-SMaRt). Figure 4(b) displays the message pattern
for tentative executions. This optimization reduces the number
of communication steps from 4 to 5 by bypassing one of
the all-to-all communication steps of normal execution. This
optimization comes at the cost of potentially needing to per-
form a rollback on the application state. Figure 4(c) shows the
message pattern for read-only executions. This optimization
enables the clients to fetch a response from the service in only
2 communication steps (the client’s request and the replicas’
replies). However, this optimization can only be used to read
the state from the service, and never to modify it.

The experiment here reported ran on Group B. To perform
the tentative executions, BFT-SMaRt was modified to skip one
of the all-to-all communication steps specified by its protocol
[29]. Read-only executions were already implemented in BFT-
SMaRt. Each iteration was executed for approximately 12
hours. Five clients were launched at each host, thus creating a
total of 20 clients in the experiment.

Client Location Execution Type
Read Only Tentative Normal

Gliwice 59 ± 11.14 100 ± 35.79 112 ± 29.33
Madrid 31 ± 6.86 112 ± 37.09 122 ± 183.54
Paris 25 ± 154.32 110 ± 39.38 118 ± 43.61
Basel 33 ± 224.7 110 ± 35.78 117 ± 30.315

TABLE IV. AVERAGE LATENCY AND STANDARD DEVIATION
OBSERVED IN GROUP B. ALL VALUES ARE GIVEN IN MILLISECONDS.

Table IV shows the average latency and standard deviation
observed by the distinguished clients in each iteration. Figure
5 depicts the cumulative distribution for latencies observed by
Madrid’s distinguished clients for each type of execution. Both
Table IV and Figure 5 show that read-only execution signif-
icantly exhibits the lowest latency, finishing each execution
faster than any of the other iterations (in Madrid’s case, as
less as 25.4% of the latency of normal execution).
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Fig. 5. Cumulative distribution of latencies observed in Madrid (group B).

Tentative execution also manages to reach lower latency
values than normal execution does. However, even though this
optimization omits an entire all-to-all communication step, the
difference is not significant (less than 8% improvement on
average). This may be explained by the fact that the size
of the message sent on the one-to-all communication step
initialized by the leader is much larger than any of the all-
to-all communication steps performed afterwards (which only
contains a cryptographic hash of the requests being ordered).
In any case, the results for this particular experiment are
inconclusive, and will be further investigated in future work.

VIII. BFT-SMART STABILITY

The goal of this experiment was to observe how stable
BFT-SMaRt’s protocol is once deployed in a WAN, and to
find if there is a time interval within which it is highly likely
to finish ordering requests. This was done by observing the
latencies experienced by distinguished clients. None of the
optimizations evaluated in Sections V-VII were used in this
experiment.

This experiment was executed within group A over a period
of approximately 600 hours. In this experiment, replica 1 was
hosted in Parma, Italy. Five clients were launched at each host,
thus making a total of 20 clients in the experiment.

Client Location Invocations Average Latency Median 90th 95th

Birmingham 717782 195 ± 144.61 172 287 436
Parma 918293 210 ± 237.81 183 280 462

Darmstadt 444054 203 ± 207.54 172 305 459
Oslo 708811 220 ± 166.16 192 293 444

TABLE V. AVERAGE LATENCY, STANDARD DEVIATION, MEDIAN,
90TH AND 95TH PERCENTILE OBSERVED IN GROUP A. VALUES ARE

GIVEN IN MILLISECONDS.

Table V shows the results for the average latency, standard
deviation, Median, 90th and 95th percentile calculated at
each distinguished client. It also discriminates the number of
invocations performed by each one of them. Figure 6 plots the
cumulative distribution for those latencies. During this 600-
hour experiment, the average latency ranged from 195 to 220
milliseconds across all sites. Even though these averages fall

in an acceptable range, their associated standard deviations are
high, ranging from 144.51 to 237.81. This demonstrates that
latency was quite variable during this experiment.

On the other hand, about 95% of the observed latencies
fall under 462 milliseconds at all locations. This means that
latency, albeit variable, rarely exceeds 500 milliseconds. Even
though it is approximately 5 times higher than the ideal
latency of 100 miliseconds identified in [9], [22], [24], clients
received their response under much less than one second in the
95th percentile (which according to the same studies, is still
sufficient for user satisfaction). This suggests that BFT-SMR
protocols can be stable enough to be used across WANs and
are able to reply to clients within a predictable time interval.
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(a) Birmingham.
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(b) Parma.
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(c) Darmstadt.
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(d) Oslo.

Fig. 6. Cumulative distribution of latencies of group A over the course of
two weeks.

IX. DISCUSSION & FUTURE WORK

Out of the three optimizations evaluated, only the quorum
size was shown to be effective in improving the clients’s
latency. Our 600-hour experiment indicated that clients ex-
perience latency that remains within user satisfaction limits.
Both optimizations tested in Sections V and VII seem to be
ineffective due to the message size sent by clients. There is
one more explanation for such lack of performance gain: a
4 kB payload is likely to cause packet fragmentation, which
implies more probability of packet loss. Since we use TCP
connections, the packets are retransmitted, but the remaining
ones may get hold in TCP buffers. Given that we are working
within a WAN, this is a possible explanation for these results.
In the future we plan to repeat these experiments using 1 kB
of payload in client messages.

However, these initial results only reflect the performance
of a generic BFT SMR protocol within PlanetLab; they are
dependent on both BFT-SMaRt’s implementation and the
testbed environment. To obtain conclusive results, it would be
necessary to run these experiments in more testbeds such as
EmuLab [2] or even across distinct cloud providers.

Nonetheless, we intend to conduct further investigation
regarding all optimizations evaluated in this work. We wish
to run all experiments during a larger time interval, using
hosts scattered across all continents, instead of limiting the



scope of the experiments to Europe. We will also fiddle with
more variables in each experiment. For instance, in Section V
we only moved the aggregate’s position; in a new iteration
of the experiment, we will also want to observe how the
leader position affects the results. We will evaluate quorum size
with larger and smaller quorums, and evaluate the protocol’s
performance using speculative execution [16]. We will also
evaluated more optimizations, such as sending client requests
to only one replica instead of sending those requests to the
whole set.

X. CONCLUSION

In this paper we have reported preliminary results from
experiments conducted in PlanetLab executing a state machine
replication protocol capable of withstanding Byzantine faults.
These experiments were meant to find how would a standard
BFT SMR protocol benefit from optimizations taken from
the literature, and to learn how it would perform over a
WAN environment. Albeit further work is necessary, these
results indicate that out of the three optimizations evaluated,
using smaller quorums is the one that yields best performance
enhancement. Using a rotating leader scheme does not seem
to bring any benefit, and it is inconclusive whether or not
removing communication steps improves performance. Finally,
we showed that a standard BFT SMR protocol can display
sufficiently predictable and acceptable latency in a WAN.
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