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Byzantine fault tolerance in a nutshell 

It is a technique that allows services to execute correctly even 
in the presence of faults
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BFT-Intrusion tolerance

• Clean the replicas faulty state – recovery techniques

• Create replicas' fault independence – diversity mechanisms
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Can we trust on a faulty replica to self-recover?
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Why do we need to trust some part?

• In the Byzantine model a compromised replica is lost for the 
attacker.

• We need additional mechanisms to ensure the correct operation:
• Tamper proof components or software isolation



E.g., Hypervisors

• Hypervisors have been used in several works to provide 
isolation between a Byzantine environment and a controlled 
(trusted) environment
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Existent solutions



Existent solutions

• There are two types of solutions:

• Bare metal: difficult to implement recovery/diversity techniques

• Virtualized: make it easier to recover and diversify replicas
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Bare metal: Roeder 2010
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Virtualized: Sousa 2007

Hypervisor

UD

TD
Hypervisor

UD

TD
Hypervisor

UD

TD….

Controlled Network

ReplicaReplica Replica Replicareplicas

logic



Virtualized: Sousa 2007

Hypervisor

UD

TD
Hypervisor

UD

TD
Hypervisor

UD

TD….

Controlled Network

ReplicaReplica Replica Replica



Virtualized: Sousa 2007

Hypervisor

UD

TD
Hypervisor

UD

TD
Hypervisor

UD

TD….

Controlled Network

ReplicaReplica Replica Replica

Synced clocks



Virtualized: Platania 2014
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Can we do better?

• Can we reduce the assumptions?

• Can we make Byzantine fault tolerant controllers?

• Can we live without trusted parts?

• Is it heavier?



Lazarus backend
The main Lazarus contributions are waiting for re-submission
The following ideas are work in progress



Lazarus 2018 (centralized)
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Lazarus 2018 (centralized)
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Some challenges

• Make it Byzantine fault tolerant

• Replicate OSINT database

• Implement distributed random generator



Lazarus 2018 –BFT(distributed)
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Lazarus 2018 –BFT(distributed)

Lazarus

….

Lazarus Lazarus

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Total order multicast



Distributed random generator

• Lazarus selects different OS to run in the replicated system. We 
developed an algorithm to select OS. The algorithm uses some 
randomness

• Lazarus needs a distributed random generator that offers:
• Unpredictability

• Unbiasability

• Verifiability



Distributed random generator

In 2017 IEEE Symposium on Security and Privacy



Distributed random generator

• This paper proposes a distributed random generator that provides the 
previous properties.

• The protocol is cooperative as all the replicas contribute the generate 
the random value



Replicate OSINT DB

• In the current version there is a crawler that collect vulnerability data 
from OSINT.

• It is expected that updates on this data flow are not so frequent
• For example, two consecutive reads will produce the same vulnerability data.



Replicate OSINT DB
• State machine replication BFT protocols are client-driven, i.e., a client 

sends a request the server replicas respond to the client.
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Replicate OSINT DB

In 2014 IEEE Transactions on Smart Grid



Replicate OSINT DB

• One of the paper contributions is a logical timeout protocol (LTP).

• LTP allows, without strict clock synchrony assumptions, that different 
replicas trigger a timeout at the same logical time
• The protocol minimizes the differences between real clock time

• This allow the replicas to poll the OSINT sources at the same (logical) 
time



Logical Timeout Protocol
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Logical Timeout Protocol
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Recoveries

• We use a similar protocol to trigger recoveries.

• In this case, the controller replicas communicate with the trusted 
proxy to recover its replica.
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Logical Timeout Protocol
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Replica
Proxy

Lazarus

No malicious Service Replica can 
restart a Replica

A replica is restarted only when the 
Proxy receives f+1 restart requests 
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Conclusions

• Can we reduce the assumptions?
• Yes, we no longer assume the whole controller as trusted, no real-time 

assumptions

• Can we make Byzantine fault tolerant controllers?
• Yes, to some extent

• Can we live without trusted parts?
• No, each node needs a tamper proof component that ensures the correct 

behavior even if the of the replica is compromised

• Is it heavier?
• Yes, it is the price of BFT replication



Questions ?
Thanks



Replica
UD

TD

Lazarus N'= 3f + 1

N = 3f + k + 1

Lazarus 2018 –BFT system model

N – replicas
F – faults
K – recovering replicas

Communication have a bounded delay



LTP Protocol (overview)

Ri Rj
<SYNC,0+x, t1, Ri>

Timeout(t1,3)

Timeout(t1, 3)

Rj LastTimeOutSet=0

Ri LastTimeOutSet=0

...

Cr + 3 = 0+x +3
<SYNC,3+x, t1, Ri>

<SYNC,0+x, 0, Ri>

f+1 t1 timeouts



Virtualization advantages

• Fast recoveries, it allows shadow replicas to be ready on time

• Provides security layers with the hypervisor



Wrap up

• The execution system is intrusion-tolerant

• The controller system is Byzantine fault-tolerant

• It tolerates f Byzantine faults in "one shot"

• To recover Byzantine node one admin needs to restart the machine properly


