
BFT-controllers for Intrusion-tolerant systems
Miguel Garcia
Navtalk'2018



Byzantine fault tolerance in a nutshell 

It is a technique that allows services to execute correctly even 
in the presence of faults



Byzantine fault tolerance in a nutshell

Replica Replica ReplicaReplica

Client

Total order multicast



Byzantine fault tolerance in a nutshell

Replica Replica ReplicaReplica

Client

Total order multicast

Correct



Byzantine fault tolerance in a nutshell

Replica Replica ReplicaReplica

Client

Total order multicast



Byzantine fault tolerance in a nutshell

Replica Replica ReplicaReplica

Client

Total order multicast

Correct



BFT-Intrusion tolerance

• Clean the replicas faulty state – recovery techniques

• Create replicas' fault independence – diversity mechanisms



BFT-Intrusion tolerance

Replica Replica ReplicaReplica

Client

Total order multicast

Can we trust on a faulty replica to self-recover?



BFT-Intrusion tolerance

Replica Replica ReplicaReplica

Client

Total order multicast

Trusted component



Why do we need to trust some part?

• In the Byzantine model a compromised replica is lost for the 
attacker.

• We need additional mechanisms to ensure the correct operation:
• Tamper proof components or software isolation



E.g., Hypervisors

• Hypervisors have been used in several works to provide 
isolation between a Byzantine environment and a controlled 
(trusted) environment

Hypervisor

Untrusted 
domain

(UD)Trusted 
domain

(TD)



Existent solutions



Existent solutions

• There are two types of solutions:

• Bare metal: difficult to implement recovery/diversity techniques

• Virtualized: make it easier to recover and diversify replicas



Bare metal: Roeder 2010

machine machine machine
….

Power 
switch

clock

Power

Network

replicas

logic

Replica Replica Replica



Bare metal: Roeder 2010

machine machine machine
….

Power 
switch

clock

Power

Network

Replica Replica Replica

The power switch turns 
on/off the CD ROM device



Bare metal: Roeder 2010

machine machine machine
….

Power 
switch

clock

Power

Network

Replica Replica Replica

On: recovery mode install the OS from the CD Rom
Off: normal mode , to run the OS



Bare metal: Platania 2014 

machine

netbooters

Power

Network

replicas

logic

machine machine machine
….

Replica Replica Replica



machine machine machine
….

netbooters

Replica Replica Replica

Bare metal: Platania 2014

machine
Power

Network



Virtualized: Sousa 2007

Hypervisor

UD

TD
Hypervisor

UD

TD
Hypervisor

UD

TD….

Controlled Network

ReplicaReplica Replica Replicareplicas

logic



Virtualized: Sousa 2007

Hypervisor

UD

TD
Hypervisor

UD

TD
Hypervisor

UD

TD….

Controlled Network

ReplicaReplica Replica Replica



Virtualized: Sousa 2007

Hypervisor

UD

TD
Hypervisor

UD

TD
Hypervisor

UD

TD….

Controlled Network

ReplicaReplica Replica Replica

Synced clocks



Virtualized: Platania 2014

Hypervisor

UD

TD

Hypervisor

UD

TD

Hypervisor

UD

TD….

Hypervisor

UD

TD

replicas Replica Replica Replica

logic



Virtualized: Platania 2014

Hypervisor

UD

TD

Hypervisor

UD

TD

Hypervisor

UD

TD….

Hypervisor

UD

TD

Replica Replica Replica



Can we do better?

• Can we reduce the assumptions?

• Can we make Byzantine fault tolerant controllers?

• Can we live without trusted parts?

• Is it heavier?



Lazarus backend
The main Lazarus contributions are waiting for re-submission
The following ideas are work in progress



Lazarus 2018 (centralized)

Lazaruslogic

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

replicas



Lazarus 2018 (centralized)

Lazarus

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

OSINT

Collect OSINT data from web 
sources



Lazarus 2018 (centralized)

Lazarus

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Store the data in a database

OSINT

Collect OSINT data from web 
sources DB



Lazarus 2018 (centralized)

Lazarus

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

OSINT

Collect OSINT data from web 
sources DB

Store the data in a database

Runs an algorithm to manages the 
replicas (diversity and recoveries)



Some challenges

• Make it Byzantine fault tolerant

• Replicate OSINT database

• Implement distributed random generator



Lazarus 2018 –BFT(distributed)

Lazarus

….

Lazarus Lazarus

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

replicas

logic



Lazarus 2018 –BFT(distributed)

Lazarus

….

Lazarus Lazarus

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Hypervisor

UD
TD

Total order multicast



Distributed random generator

• Lazarus selects different OS to run in the replicated system. We 
developed an algorithm to select OS. The algorithm uses some 
randomness

• Lazarus needs a distributed random generator that offers:
• Unpredictability

• Unbiasability

• Verifiability



Distributed random generator

In 2017 IEEE Symposium on Security and Privacy



Distributed random generator

• This paper proposes a distributed random generator that provides the 
previous properties.

• The protocol is cooperative as all the replicas contribute the generate 
the random value



Replicate OSINT DB

• In the current version there is a crawler that collect vulnerability data 
from OSINT.

• It is expected that updates on this data flow are not so frequent
• For example, two consecutive reads will produce the same vulnerability data.



Replicate OSINT DB
• State machine replication BFT protocols are client-driven, i.e., a client 

sends a request the server replicas respond to the client.

Service
Replica

Service
Replica

Service
Replica

Service
Replica

Proxy

Total order multicast



Replicate OSINT DB

In 2014 IEEE Transactions on Smart Grid



Replicate OSINT DB

• One of the paper contributions is a logical timeout protocol (LTP).

• LTP allows, without strict clock synchrony assumptions, that different 
replicas trigger a timeout at the same logical time
• The protocol minimizes the differences between real clock time

• This allow the replicas to poll the OSINT sources at the same (logical) 
time



Logical Timeout Protocol

Replicate OSINT DB (implementation)

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

The LTP is running all the time to keep the controller replicas synchronized



Logical Timeout Protocol

Replicate OSINT DB (implementation)

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

Each replica receives f+1 timeouts and triggers an action



Logical Timeout Protocol

Replicate OSINT DB (implementation)

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

The replicas decide which Proxies will fetch OSINT data



Logical Timeout Protocol

Replicate OSINT DB (implementation)

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

The replicas decide which Proxies will fetch OSINT data



Logical Timeout Protocol

Replicate OSINT DB (implementation)

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

Then each Service Replica waits for f+1 equal "data"



Logical Timeout Protocol

Replicate OSINT DB (implementation)

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

If the data does not match => use another Lazarus controller to 
decide which data is correct



Logical Timeout Protocol

Replicate OSINT DB (implementation)

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

Then it is stored in the DB



Recoveries

• We use a similar protocol to trigger recoveries.

• In this case, the controller replicas communicate with the trusted 
proxy to recover its replica.



Logical Timeout Protocol

Recoveries

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

Each replica receives f+1 timeouts and it trigger an action



Logical Timeout Protocol

Recoveries

Hypervisor

replica

dom0

….DB

OSINT

Service
Replica

Proxy

Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

Hypervisor

replica

dom0Proxy

DB
Service
Replica

Proxy

DB
Service
Replica

Proxy

The controller replicas know which trusted proxy 
need to contact to recover the replica



Replica
Proxy

Lazarus

No malicious Service Replica can 
restart a Replica

A replica is restarted only when the 
Proxy receives f+1 restart requests 

from the Service Replicas

Replica

Recoveries

DB
Service
Replica

Proxy



Conclusions

• Can we reduce the assumptions?
• Yes, we no longer assume the whole controller as trusted, no real-time 

assumptions

• Can we make Byzantine fault tolerant controllers?
• Yes, to some extent

• Can we live without trusted parts?
• No, each node needs a tamper proof component that ensures the correct 

behavior even if the of the replica is compromised

• Is it heavier?
• Yes, it is the price of BFT replication



Questions ?
Thanks



Replica
UD

TD

Lazarus N'= 3f + 1

N = 3f + k + 1

Lazarus 2018 –BFT system model

N – replicas
F – faults
K – recovering replicas

Communication have a bounded delay



LTP Protocol (overview)

Ri Rj
<SYNC,0+x, t1, Ri>

Timeout(t1,3)

Timeout(t1, 3)

Rj LastTimeOutSet=0

Ri LastTimeOutSet=0

...

Cr + 3 = 0+x +3
<SYNC,3+x, t1, Ri>

<SYNC,0+x, 0, Ri>

f+1 t1 timeouts



Virtualization advantages

• Fast recoveries, it allows shadow replicas to be ready on time

• Provides security layers with the hypervisor



Wrap up

• The execution system is intrusion-tolerant

• The controller system is Byzantine fault-tolerant

• It tolerates f Byzantine faults in "one shot"

• To recover Byzantine node one admin needs to restart the machine properly


