
Exploiting Non-intrusive Monitoring in Real-Time
Embedded Operating Systems∗

Ricardo C. Pinto, José Rufino
Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa

LaSIGE - Navigators Research Team
{ricardo.pinto, jmrufino}@ciencias.ulisboa.pt

ABSTRACT
Monitoring in embedded system software can have several
uses, ranging from system characterization to run-time veri-
fication (RV). Traditional monitoring techniques require code
instrumentation, imposing an overhead on system execution
both in performance and timeliness. In real-time systems
this is exarcebated by the need of new worst-case execution
time estimation and schedulability analysis. In this paper
we discuss how monitoring can be exploited in real-time em-
bedded operating systems, via non-intrusive mechanisms.

General Terms
Run-time Verification, Real-time Embedded Operating Sys-
tems, Non-intrusive Monitoring

1. INTRODUCTION
Exploitation of Cyber-Physical Systems (CPSs) requires adap-
tive behaviour in the presence of faults. A contributing so-
lution comes from Run-time Verification (RV), where the
application could assess the CPS state and act accordingly,
e.g. enable safe operation modes. The basis of RV consists
in monitoring system state, which can be described through:
values of variables; execution of functions and procedures;
input/output activities. All these are materialized by the
reading/writing of specific memory addresses, or ports.

Monitoring data collection usually requires software modifi-
cations (instrumentation). In the realm of real-time embed-
ded operating systems, it poses obstacles: performance, due
to resource scarcity; timeliness, due to the need of Worst-
Case Execution Time (WCET) re-evaluation and schedula-
bility analysis, possibly deeming the system as unschedu-
lable. A non-intrusive approach to monitoring voids these
shortcoming.

∗This work was partially supported by the EC, through project
IST-FP7-STREP-288195 (KARYON) and by FCT, through
project PTDC/EEI-SCR/3200/2012 (READAPT), through
LaSIGE Strategic Project PEst-OE/EEI/UI0408/2014, and In-
dividual Doctoral Grant SFRH/BD/72005/2010.

EWiLi’14, November 2014, Lisbon, Portugal.
Copyright retained by the authors.

2. MONITORING ARCHITECTURE
A non-intrusive Observer Entity (OE) [6] is the crux of the
monitoring system, targeting a System-on-a-Chip (SoC) ar-
chitecture with a central bus for data exchange. The OE
is embedded in a SoC system based on a SPARC LEON3
processor [1] and connected via the SoC Advanced Micro-
controller Bus Architecture (AMBA) [2] (see Figure 1). The
AMBA bus data is monitored and compared with a set of
configured observation points. Upon detection an event is
created, time-stamped and the pertaining information re-
layed to an external system, for storage and processing.

Figure 1: LEON3 System-on-a-Chip with Observer Entity

The OE architecture is composed by several functional blocks:
Bus Interface, allowing the OE to peek the bus activity
and access the configuration via the bus (fallback method);
Event Observer, which compares the current bus opera-
tions against a set of configured observation points stored in
the Observer Configuration; an External I/O Inter-
face, to send the detected event data to an external system
and receive the observation points to be configured.

Figure 2: Observer Entity Architecture

3. OBSERVATION POINTS
Observation points for monitoring are extracted from a bi-
nary application file using a combination of off-the-shelf and
specially-crafted tools. The extracted entities are called
symbols, e.g. functions and variables, and are shown in Fi-
gure 3. The memory addresses (Value) corresponding to
symbols (Name) are extracted.

Name Value Class Type Size Section
f |40001924| T | FUNC|00000058| .text
main |4000197c| T | FUNC|0000002c| .text
atoi |40002140| T | FUNC|0000001c| .text
global_var |4000606c| D | OBJECT|00000004| .data
__bss_start |40006bc0| B | NOTYPE| | .bss

Figure 3: Map of Symbols of a C Application

After symbols are extracted, they are selected and the cor-
responding memory address is used to create a configuration
file for the OE. The flow is depicted in Figure 4.

Figure 4: Observation Point Extraction Flow for Symbol-
based Monitoring

The tools referred in Figure 4 are: GNU Binutils tools [3],
such as nm, for symbol extraction; standard Unix tools, such
as grep, for symbol selection and awk for formatting the
selected symbols into a configuration file for the OE.

4. EXPLOITATION
Exploitation of monitoring data can be split in three time-
liness profiling categories: Scheduling Analysis enabling
the analysis of a given task set schedule as provided by an-
alytic tools; WCET Measurement, assessing the correct-
ness of WCET estimates obtained from external tools; Run-
time Verification, to assess the correctness of execution at
run-time, by the application.

4.1 Scheduling Analysis
Cheddar [7] is a tool providing schedulability analysis for
a set of real-time tasks, outputting the resulting schedule.
Monitoring data can be used to perform experimental eval-
uation of the analytic results provided by Cheddar. Exper-
imental results can be filtered and fed to Grasp [5], a tool
enabling visualization of real-time system execution, namely
task execution and switching. Composing both tools enables
a work flow for designing and validating task schedule.

4.2 WCET Measurement
The existence of data pertaining to timeliness profiling of
the system can provide insight into task WCET characteri-
zation, and assist the activities in the design-cycle. WCET
values provided by tools are pessimistic, and can be off the
real task execution values by an order of magnitude [4].
Monitoring of task execution times allows to get a realis-
tic magnitude of WCET value, which can then be fed into
the schedulability analysis tools.

4.3 Run-time Verification
Non-intrusive monitoring data can be fed into verification
techniques, in order to achieve RV. Given that CPSs need
to interact with the physical environment, uncertain by na-
ture, the usage of RV is a valuable asset to enable adaptive
behaviour of embedded applications. For example, an un-
manned aerial vehicle (drone) may require a level of thrust
until the aircraft has reached a certain altitude. Both vari-
ables - thrust and altitude - can be monitored, and fed into
a RV mechanism coupled with the fault detection, isola-
tion and recovery mechanisms. Such an approach improves
on the current state-of-the-art by its non-intrusiveness and
flexibility.

5. CONCLUSIONS
The availability of a non-intrusive monitoring infrastructure
can enrich an embedded application at all stages of its life-
cycle, by allowing the collection of execution data from the
system. Such data can be exploited to assess properties per-
taining to system performance and timeliness; scheduling
analysis and Worst-Case Execution Time (WCET) measure-
ment; and serve as a supporting basis for Run-time Verifi-
cation (RV) techniques.

6. REFERENCES
[1] Aeroflex Gaisler A.B. GRLIB IP Library User’s

Manual, Apr. 2014.

[2] ARM Limited. AMBA Specification, May 1999.

[3] Free Software Foundation. GNU Binutils.

[4] J. Garrido, J. Zamorano, and J. A. de la Puente. Static
Analysis of WCET in a Satellite Software Subsystem.
In OASIcs-OpenAccess Series in Informatics,
volume 30. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2013.

[5] M. Holenderski, M. van den Heuvel, R. J. Bril, and
J. J. Lukkien. Grasp: Tracing, visualizing and
measuring the behavior of real-time systems. In
International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems
(WATERS), pages 37–42, 2010.

[6] R. C. Pinto and J. Rufino. Towards Non-invasive
Run-time Verification of Real-time Systems. In
Proceedings of the 2014 European Conference on
Real-time System - Work in Progress Session, ECRTS
’14. Euromicro, 2014.

[7] F. Singhoff, J. Legrand, L. Nana, and L. Marcé.
Cheddar: a Flexible Real Time Scheduling Framework.
In ACM SIGAda Ada Letters, volume 24, pages 1–8.
ACM, 2004.

