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Abstract. Software execution monitoring in embedded systems can be
performed with different purposes, ranging from system characterization
to run-time verification (RV). Traditional RV techniques require the in-
trumentation of the code for monitoring, which brings an overhead to the
execution of the system - both in performance and timeliness. In real-
time systems this overhead is exarcebated by the need of new worst-case
execution time estimation and schedulability analysis.
In this paper we show how non-intrusive monitoring mechanisms can be
exploited to support Run-time Verification (RV) in real-time embedded
systems, thus allowing run-time verification without the need for code
instrumentation and therefore negating the penalties incurred by instru-
mentation.
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1 Introduction

Ever increasing deployments of applications based on cyber-physical systems
have pushed the topic of system monitoring and Run-time Verification (RV)
for embedded systems into the agendas of both academia and industry. Such
systems have a strong (feedback) connection to their surroundings - e.g. au-
tonomous vehicles - and failure of such a system may translate into catastrophic
consequences. Therefore, guaranteeing correctness of the behaviour at all times
is essential.

The basis of RV consists in monitoring the state of a system. Such state can
be described through: values of variables; execution of functions and procedures;
input/output activities, materialized by the reading/writing of specific memory
addresses, or ports. The result of the monitoring activities is then verified against
a specification, in order to assess the adherence of the system’s behaviour to the
specification - in short, system correctness.
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The collection of data needed by monitoring usually requires the modification
of the source-code (instrumentation). While such approach can be reasonable
for large scale systems, it faces many obstacles upon application to the realm
of real-time embedded systems. Some obstacles are the scarcity of resources
which characterizes such systems, e.g. computational resources, data storage and
energy. Other obstacles are the need to re-evaluate the Worst-Case Execution
Time (WCET) and performing a new schedulability analysis - which in the
extreme case may deem the system as unschedulable with RV enabled.

Therefore, novel and innovative techniques are in need for enabling RV in
real-time embedded systems. An answer comes from the realm of reconfigurable
computing platforms, where the usage of System-on-a-Chip (SoC) architectures
enables the monitoring to be performed in hardware, at the lowest possible level
and in a non-intrusive way, negating the overhead incurred by code instrumen-
tation.

In this paper we present how the exploitation of a non-intrusive monitoring
infrastructure can be achieved. Such exploitation can have two facets: monito-
ring, for system characterization purposes, or more importantly, run-time veri-
fication, paving the way for safer embedded systems.

2 Observer Entity

Contemporary embedded computing platforms are often implemented in a single
integrated circuit, being comprised of at least one processing element and varied
peripherals for Input/Output (I/O) activities. Memory storing and supporting
the executable software is external, being accessed through a memory controller.
Such an architecture is commonly called System-on-a-Chip (SoC), due to having
a complete embedded system in a single chip. A diagram depicting a generic SoC
architecture for embedded systems is shown in Figure 1.

Fig. 1: Generic System-on-a-Chip Architecture

The SoC components are connected via an internal SoC bus. The most com-
mon SoC bus architectures [4, 2] share many architectural similarities, namely



memory-mapped access to components. A hardware mechanism attached to the
SoC bus will have access to information pertaining to data exchange among
the components of the SoC, including the execution of the software application.
Therefore, a component providing non-intrusive monitoring mechanisms must
be attached to the SoC bus, gathering information concerning the execution of
the applications on the computing platform.

2.1 Architecture and Implementation

A non-intrusive Observer Entity (OE) [10] is the crux of the proposed RV system,
exploiting the central nature of the SoC bus. The OE hardware mechanism
synchronously monitors the SoC bus, comparing the values being exchanged
in the bus with a set of configured observation points. Upon detection of an
event, i.e. match between bus value and observation point, it time-stamps it and
relays the pertaining information to an external system, e.g. an independent
Personal Computer (PC) where the event-related information can be stored and
processed. A block diagram depicting the OE architecture is shown in Figure 2.

Fig. 2: Observer Entity Architecture

The OE architecture of Figure 2 is composed by several functional blocks:
Bus Interface, allowing the OE to peek the bus activity and access the config-
uration via the bus (fallback method); Event Observer, which compares the
current bus operations against a set of configured observation points stored in
the Observer Configuration; an External I/O Interface, to send the de-
tected event data to an external system and receive the observation points to be
configured. For RV purposes, and in a standalone embedded system, the OE can
alternatively be configured via software executing in the computing platform.

The OE is specified in VHDL1, and embedded in a SoC system [3] with a
LEON3 processor, a SPARCv8 [14] Central Processing Unit (CPU), embody-
ing a state-of-the-art computing architecture. The LEON3 is the the reference
computer architecture for european Space applications, e.g. satellites, being also

1 Very High-Speed Integrated Circuit Description Language



used in other real-time control applications. The SoC bus is the Advanced Mi-
crocontroller Bus Architecture (AMBA) [4]. A block diagram with the global
system is shown in Figure 3.

Fig. 3: LEON3 System-on-a-Chip with the Observer Entity

2.2 Operation

The operation of the OE for monitoring application execution is shown in Al-
gorithm 1. The OE monitors the (AMBA) Bus, compares (line 3 ) the transfer
operations Bus.trf with a configured set of observation points, Config. Upon
match, it sends a piece of information to the external system (line 7 ). This
piece of information is an event evt, being comprised of: the time-stamp of the
occurrence; the id of the event, specified in the configuration (lines 5-6 ).

Algorithm 1: Application Execution Event Monitoring

Input: System clock hardware clock tick
Output: Event evt

1 foreach hardware clock tick do
2 numTicks ← numTicks + 1
3 if newEvent(Bus) then
4 if ∃ id ∈ Config : Config[id] = Bus.trf then
5 evt.time ← numTicks
6 evt.id ← id
7 outputEvent(evt)

The numTick value (line 2 ) is incremented at every system clock tick, and
used as the event time-stamp. This clock is drawn from the same source as
the entire system under monitoring (System Clock), usually an external crystal
oscillator, capturing the exact instant of occurrence of an event.



3 Observation Points

The exploitation of the Observer Entity (OE) requires its configuration with
observation points. The extraction of observation points is motivated by the
definition of objects of interest, such as function calls or variables, which will be
monitored. The extraction method uses as working basis the application (pro-
gram) file, which is a self-contained binary file, i.e. without any dependency on
external files.

3.1 Anatomy of an Embedded Application

Embedded applications usually follow a similar development flow: coding, map-
ping a specification into source-code; compiling, translating the source-code
into one or more machine-code object files; linking, merging the object files and
external libraries into a self-contained binary file, without external dependencies
and ready for execution. The remainder of the text assumes that:

– the compiler is the GNU C Compiler [7];
– the format of the binary file is Executable and Linkable Format (ELF) [15];
– the tools used are part of the GNU Binutils [6] package;
– the debug information format is DWARF [5];
– the target Instruction Set Architecture (ISA) is SPARCv8 [14];
– the target executes the instructions from RAM2, i.e. at boot time everything

is copied into RAM memory;
– there is no virtual memory.

Although these assumptions may seem too tight, they represent the majority
of embedded applications, which are developed with standard-conforming tools,
either open-source or commercial, and are used in current embedded architec-
tures, such as the SPARC or ARM [12].

Binary File Structure and Organization The binary file contains the appli-
cation itself and is divided in sections, the logical containers which are mapped
into memory upon execution. Applications usually have three sections: text, con-
taining the instructions (machine-code) to be executed; data, containing global
and static variables; bss, a content-less section which defines the memory area
for storing dynamic and uninitialized variables. There may also exist an addi-
tional section rodata, for read-only data, such as strings, whose contents can be
merged together with the text section. The binary file contains these sections,
together with information regarding how they should be handled by the loader.
This includes information regarding how each section must be placed in memory,
namely its initial memory address and its size (see Figure 4).

2 Random Access Memory



Fig. 4: Binary ELF File Structure

The location of the sections inside the file is defined in the ELF header. The
linking process generates a list of symbols, which are unique names for referenced
entities. Examples of symbols are: function names; global variables; labels, in-
cluding the ones used as section delimiters. The mapping between symbol names
and memory addresses is kept in a symbol table, another section contained in
the binary file (not shown in Figure 4). Furthermore, the usage of debug switches
upon compilation also creates sections with information usable by debuggers, e.g.
debug info, detailing the location of the local variables of each function in the
stack and the data types of such variables.

Memory Organization and Execution The loading of the binary file into
memory places the contents of the sections into segments3: text is placed in
the code segment, data and bss are placed in the data segment. A stack area
supports the dynamics of application execution, namely function invocation (see
Figure 5).

Fig. 5: Application Memory Structure

The stack starts at the end of the data segment, and grows towards the
beginning of the data segment. Growth and shrinkage of the stack occur on
function invocation/completion. This behavior, together with the function call
conventions is defined in the Application Binary Interface (ABI) of the target
architecture, e.g. the SPARC ABI [11].

3 This designation comes from the ELF specification and is not necessarily related to
the memory segmentation technique.



Local (function) variables are stored in the stack, and their location is dy-
namic w.r.t. absolute memory position. Upon the invocation of a function, space
is created in the stack for storing the input parameters and local variables - a
stack frame. The stack and its organization upon a function call is shown in
Figure 6 for the SPARC architecture, following the ABI specification [11].

Fig. 6: Stack Organization upon Function Invocation

The Stack Frame Pointer is the delimiter of a stack frame, which is the
local storage area of a function, used for local variable and parameter reference.
Due to the volatility of function execution, (non-static) variables and parameters
are always referenced as an offset of the stack frame pointer, thus there is no
static reference to them.

3.2 Observation Point Extraction

The objective of extracting observation points from the binary file is to generate
a configuration file for the OE machinery. The extraction relies chiefly on the
table of symbols, both for monitoring entities which are present there - function
calls, global and static variables - but also to derive the (dynamic) address of
local variables. An excerpt from the map of symbols of a binary application file
is presented in Figure 7.

The interpretation of the symbol map of Figure 7 is the following: Name
is the name of the symbol; Value is the memory address of the symbol; Class
can be Text, Data, Bss; Type is function (FUNC), variable (OBJECT) or a label
(NOTYPE), e.g. a section delimiter; Size is the ammount of space used, applicable
to functions and variables; Section where the symbol is defined/resides.

In Figure 7 there are five symbols represented: functions f, atoi and main,
all residing in the text section; global variable global var, in the data section;
the bss section start delimiter, start bss in the bss section. For the purpose of



Name Value Class Type Size Section

f |40001924| T | FUNC|00000058| .text

main |4000197c| T | FUNC|0000002c| .text

atoi |40002140| T | FUNC|0000001c| .text

global_var |4000606c| D | OBJECT|00000004| .data

__bss_start |40006bc0| B | NOTYPE| | .bss

Fig. 7: Map of Symbols of a C Application

monitoring, the columns of interest are: Value, informing of the absolute mem-
ory address of the symbol; Size, for variable monitoring - both for global/static
and local variables.

The extraction of observation points for function execution and global/static
variable is straightforward, from the symbol map. However, the observation
points for local variables are dynamic (see Figure 6), and are not present in the
symbol map. The extraction of these observation points is based on the offset
(displacement) of the variable w.r.t. the stack frame pointer. Such displacement
is constant across function invocations, but the stack frame pointer value may
not be. Nevertheless, the local variable offset can be easily acquired by resorting
to the debug symbols present in the debug info of the ELF binary application
file. The debug info section provides for each function auxiliary data, in the
DWARF format, comprising the variable location offset w.r.t. the stack frame
pointer, and the data type (size) of the variable(s). This is the preferred way, but
it assumes the source code has been compiled with the debug switches enabled.

Alternatively, given the existence of a binary file with a symbol table sec-
tion, it is also possible (to some extent) to extract the the observation points,
using the disassembly operations. This method however, it is much harder given
the lack of structured information, as opposed to the debug symbol method.

3.3 Observation Point Configuration

The extraction of observation points is used to generate a configuration file for
the OE. The configuration of an observation point uses the following parameters:

– Memory Address
– Read/Write (relevant for variables)
– Unique ID

The configuration file is read by an application which communicates with the
OE via the external interface. An example of such file is shown in Figure 8.

In the example of Figure 8, where there are four observation points. The
syntax of the configuration file is the following: the Address field contains the
address to be monitored; the ID field is the unique ID to be given to events
originating on that address; the R/W is the read/write direction of the event, i.e. if



# This is a comment

#Address ID R/W Type Size Displ FSize

40002140 0 0 0

4000606c 1 1 1 4

40001924 0 0 2 4 4 58

Fig. 8: Observer Entity Configuration File

it should be generated on a read, write or both; the Type identifies the object type
to be monitored: instruction; global/static variables; local variables of a function.
These four fields are required for instruction monitoring. For variable monitoring,
additional fields are needed: Size, in bytes, for capturing the variable’s value;
and in the case of local variables the displacement Displ of the variable relative
to the stack frame pointer and the function size FSize, for the OE to know when
the execution is being performed inside the function.

For example, in the third entry of Figure 8 is exemplified the monitoring of
a variable local to a function with entry point located at address 0x40001924.
The variable to be monitored has an offset of 4, which must be subtracted from
the actual value of the stack frame pointer (stored in the corresponding CPU
register), in order to obtain the memory address to be monitored.

The process of extracting the observation points and creating a configuration
file for the OE is integrated in a work flow, and takes as input: binary application
file, with the application; object of interest list, with the functions and variables
to be monitored. The work flow is depicted in Figure 9.

Fig. 9: Observation Point Extraction Flow for Symbol-based Monitoring



The tools referred in Figure 9 are: GNU Binutils tools, such as nm, for symbol
extraction; standard Unix tools, such as grep, for symbol selection and awk for
formatting the selected symbols into a configuration file to be loaded into the
OE. All these are wrapped in a shell script. However, these can be invoked from
an especially crafted tool.

3.4 Deployment

The final step towards having observation data is the deployment of both the
binary and configuration file with the observation points into the SoC, enhanced
with the OE machinery. The SoC is implemented in a reconfigurable hardware
device, part of a prototyping board, thus representing a reference embedded
system architecture (see Figure 10). The operation of the system will generate
monitoring data regarding the configured observation points. An external system
can receive the monitoring data, for offline exploitation purposes.

External
Interface

Binary

0110010100101
1010101101001
0100101101010
1101001000100
1111001001010
1010010100100
0010010011001
0010010111010

R
A
M

LEON3
SoC

Config

Addr: 0x40021
ID : 01

Addr: 0x40011
ID : 02

Addr: 0x40102
ID : 03

Fig. 10: Reference Reconfigurable-based Embedded System used in Prototyping

4 Exploitation of Non-intrusive Monitoring Data

The exploitation of the monitoring data created by the OE can be split in four
categories: Performance Evaluation and Timeliness Profiling, to assess
the performance and timeliness properties of the embedded system via another
system external to the SoC platform, e.g. a Personal Computer; Scheduling
Analysis enabling the analysis of a given task set schedule as provided by an-
alytic tools; WCET Measurement, assessing the correctness of the WCET
estimate obtained from external tools; Run-time Verification, to assess the
correctness of the execution at run-time, by the real-time embedded application.



4.1 Performance Evaluation and Timeliness Profiling

The transfer of the monitoring data to an external system enables the poste-
rior offline analysis of such data. One of the envisaged uses for the observation
infrastructure is the evaluation of performance and timeliness properties of an
embedded system, e.g. system under different operating conditions.

An example is presented next, based on an application running on the Real-
Time Executive for Multiprocessor Systems (RTEMS) Real-Time Operating Sys-
tem (RTOS) [1]. The system under evaluation is composed by a task, named Task

Sine, which produces the sample values of a sine wave with a given frequency.
The task is executed periodically, with a 50 ms period. The monitoring aims
at measuring the execution time of the task, under several load conditions. The
monitoring data is collected over a period of 14 seconds. In the first experiment
the system is lightly loaded. This data is represented in a graphical manner
through Figure 11, together with a table containing its statistical analysis.
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Fig. 11: Real-time Task Execution Time Measurement in a Lightly-loaded Sys-
tem

The null competition for the processing resources allows Task Sine to exhibit
a somewhat stable execution time, i.e. with low variance.



Another experiment was performed on the same system, but with a heavily
competing higher-priority aperiodic task, with the intent of monitoring a heavily-
loaded system. The results are shown in Figure 12.
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Fig. 12: Real-time Task Execution Time Measurement in a Heavily-loaded Sys-
tem

In this case, it is clear that there are disturbances, given the highly irregular
shape of the graphical display of the monitored data. These stem from the inter-
ference caused by the execution of the aperiodic task to the execution of the Task
Sine, causing several interruptions (preemptions) of Task Sine. Furthermore, it
can be noticed that the execution times are larger by one order of magnitude;
however, the maximum execution time recorded (26.9 ms) is still lower than the
deadline of the Task Sine (50 ms).

4.2 Scheduling Analysis

Another facet of timeliness profiling is given by task scheduling analysis in a real-
time system. Given a set of real-time tasks, with certain timeliness requirements,
it is necessary to assess if a system can be built satisfying every task timeliness
requirements, i.e. if the task set is schedulable.



Cheddar [13] is a tool providing schedulability analysis for a set of real-time
tasks, which is also able to output the resulting schedule. The OE can be ex-
ploited to perform experimental evaluation of the analytic results provided by
Cheddar. Moreover, the experimental results can be filtered and fed to Grasp [9],
a tool enabling visualization of real-time systems’ execution, namely task exe-
cution and switching. Such a chain would enable a work flow for designing and
validating task schedule, combining the analytic results of a tool with the visu-
alization capabilities of another.

4.3 WCET Measurement

Yet another facet of timeliness profiling is the verification of the WCET of a given
task set, being a particularly important part in the design-cycle of a real-time
embedded system. The existence of data regarding the timeliness profiling of the
deployed system can be exploited to provide insight into WCET characterization,
and assist the activities in the design-cycle.

Usually the WCET values provided by the estimation tools are pessimistic,
and can be off the real task execution values by an order of magnitude [8]. The
monitoring of real task execution values allows to get a more realistic estimation
of the WCET value, which can then be fed into the schedulability analysis tools.

4.4 Run-time Verification

An extremely useful exploitation of the non-intrusive monitoring data is feeding
verification techniques, in order to achieve RV. Given that embedded systems
often need to interact with the physical environment, which is uncertain by
nature, the usage of RV is a valuable asset to enable adaptive behaviour of
embedded applications.

For example, the control system of an unmanned aerial vehicle (drone) may
be designed to provide thrust until the aircraft has reached a certain altitude.
Both variables - thrust and altitude - can be monitored in a non-intrusive way.
Their values can then be fed into a RV mechanism, which would be coupled
with the fault detection, isolation and recovery mechanisms of the control sys-
tem. Such an approach improves on the current state-of-the-art by its non-
intrusiveness and flexibility.

5 Conclusion and Future Work

The availability of a non-intrusive monitoring infrastructure can enrich an em-
bedded application at all stages of its life-cycle, by allowing the collection of
execution data from the system. Such data can be exploited to assess proper-
ties pertaining to system performance and timeliness; scheduling analysis and
Worst-Case Execution Time (WCET) measurement; and serve as a supporting
basis for Run-time Verification (RV) techniques.



This paper has shown the work flow for exploiting an hardware-based Ob-
server Entity (OE), embedded in a System-on-a-Chip (SoC) architecture. The
crux of the OE configuration is the definition and extraction of observation
points, by combining the information contained in the binary application file
with a list of objects of interest to be monitored. A tool-based approach enables
an effective work flow that culminates in the generation of a configuration file
for the OE machinery.

A line for future work points towards the refinement of the interaction be-
tween tools for observation point extraction. Such refinement aims at streamlin-
ing the whole process.

The main focus of future work, however, is researching effective RV for real-
time embedded systems. Such techniques can benefit greatly with the formalisms
brought by the formal languages, namely Temporal Logics, which can be useful
tools to model the behaviour of embedded applications, and therefore used in
effective RV mechanisms.
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