
Safe Online Reconfiguration of
Time- and Space-Partitioned Systems

Joaquim Rosa, João Craveiro, and José Rufino
University of Lisbon, Faculty of Sciences, LaSIGE

FCUL, Ed. C6, Piso 3, Campo Grande, 1749-016 Lisbon, Portugal
{jrosa, jcraveiro}@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Abstract—Future space missions call for advanced computing
system architectures fulfilling strict size, weight and power
consumption (SWaP) requisites, decreasing the mission cost and
ensuring the safety and timeliness of the system. The AIR
(ARINC 653 in Space Real-Time Operating System) architecture
defines a partitioned environment for the development and
execution of aerospace applications, following the notion of time
and space partitioning (TSP), preserving application timing and
safety requisites. Due to the change of the mission plans or in the
presence of unexpected events, it may be necessary or useful to
be able to reconfigure the scheduling of the system applications
at execution time. In this paper we present an algorithm for
updating application schedules, showing results from the proof-
of-concept prototype in the scope of the AIR architecture.

I. INTRODUCTION

Future space missions demand for innovative computing
architectures and onboard software systems, meeting strict
requisites of size, weight and power consumption (SWaP), thus
decreasing the overall cost of the mission and obeying to strict
safety and timeliness requirements.

Partitioned architectures implementing the logical separa-
tion of applications in criticality domains, named partitions,
permit to host several partitions in the same computational
infrastructure, thus fulfilling the SWaP requirements [1]. The
notion of temporal and spatial partitioning (TSP) implies that
the execution of applications in one partition does not affect
other partitions’ timing requisites and that separate addressing
spaces are assigned to different partitions [2].

The design of AIR Technology has been supported by the
interest of the space industry partners, especially the European
Space Agency (ESA), in applying the TSP concepts to the
aerospace domain [3]. A typical spacecraft hosts several sub-
systems consisting of avionics functions and payload, which
closely interact with each other. Relevant examples are the
Attitude and Orbit Control Subsystem (AOCS), Communi-
cations, Onboard Data Handling (OBDH), and Telemetry,
Tracking and Command (TTC). In TSP systems, the several
functions share the same computational resources being hosted
in different partitions.

This work was partially developed within the scope of the European Space
Agency Innovation Triangle Initiative program, through ESTEC Contract
21217/07/NL/CB, Project AIR-II (ARINC 653 in Space RTOS – Industrial
Initiative, http://air.di.fc.ul.pt). This work was partially supported by Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology), through the Multiannual Funding and CMU-Portugal Programs
and the Individual Doctoral Grant SFRH/BD/60193/2009.

Many episodes in the history of space missions showed that,
during the course of a mission, it may be useful, necessary or
even primordial to introduce new functions in spacecraft or
modify existing ones to deal with unexpected external events
and internal failures. The potential to adapt to changing envi-
ronmental or operating conditions is of great importance for
a mission’s survival. NASA’s Mars Pathfinder is an example
of a mission where the possibility to remotely modify the
system’s configuration was crucial for its survival [4]. Flexible
adaptation to unforeseen events has been proven to prolong the
lifetime of space vehicles by years [5].

This paper addresses reconfiguration in time- and space-
partitioned systems enabling onboard update of partition
scheduling tables (PSTs). The methodology defined here was
motivated by spaceborne systems’ need to adapt to changing
conditions and unexpected events. The remainder of this
paper is organized as follows. Section II briefly describes
the AIR architecture. AIR reconfigurability and adaptability
features are addressed in Section III. The specific components
added to secure safe PST reconfiguration are explained in
Section IV. Section V analyses the complexity for the update
of PSTs. Section VI presents the proof-of-concept prototype
and relevant results. Section VII describes the related work.
Finally, Section VIII issues concluding remarks and future
research directions.

II. AIR TECHNOLOGY

The AIR Technology is currently evolving to the definition
of an industrial product through the improvement and com-
pletion of the architecture design and engineering process.

A. System architecture

The AIR architecture, illustrated in Fig. 1, relies on the AIR
Partition Management Kernel (PMK) to enforce robust TSP.
A (real-time or generic) operating system herein referred as
Partition Operating System (POS), is provided per partition.
Each POS is wrapped by the AIR POS Adaptation Layer (PAL)
hiding its particularities from other AIR components [3].

An AIR-based system provides a way to achieve the con-
tainment of faults to the domain where they occur using the
architectural principle of robust TSP. Temporal partitioning
ensures that the real-time requisites of the different functions
executing in each partition, as ensured by the partition’s
scheduling policy, are not affected by the coexistence with



Fig. 1. AIR system architecture and integration of partition operating systems

other functions in other partitions. The spatial partitioning
relies on having dedicated addressing spaces for applications
executing on different partitions.

The Application Executive (APEX) interface component
provides a standard programming interface with a service
definition derived from the ARINC 653 specification [6].
The set of available services concerns partition and pro-
cess management, time management, intra and interpartition
communication and health monitoring. The AIR architecture
implements the advanced notion of Portable APEX, ensuring
portability between the different POSs [7]. The original APEX
interface has been extended to cope with services related to
onboard update operations [8].

B. Scheduling Partitions

The AIR architecture uses a two-level scheduling scheme,
where partitions are scheduled under a predetermined se-
quence of time windows, cyclically repeated over a major time
frame (MTF). In each partition, the respective processes are
scheduled according to the native operating system’s process
scheduler (Fig. 2).

The AIR Technology design incorporates the notion of
mode-based partition schedules to address timeliness and
fault tolerance limitations in the original ARINC 653 notion
of a single fixed PST, defined offline [6]. The support for
mode-based schedules requires the provision of additional
APEX services. The APEX SWITCH SCHEDULE service,
represented in Algorithm 1 sets the schedule that will start
executing at the begin of the next MTF. This primitive receives,
as its only parameter, the scheduleId, referencing the index
of the next PST to be used.

The AIR Partition Scheduler is responsible for guaranteeing
to make a schedule switch effective at the end of the respective
MTF and functions as described in the Algorithm 2. The first
verification to be made is whether the current instant is a
partition preemption point (Algorithm 2, line 2). In case it
is not, the execution of the partition scheduler is over; this
is both the best case and the most frequent one. If it is a
partition preemption point, a verification is made (Algorithm 2,
line 3) as to whether there is a pending schedule switch to
be applied and the current instant is the end of the MTF. A
pending schedule switch is originated by a request to change
to a different PST (Algorithm 1). Since a schedule switch

Fig. 2. Two-level mode-based partition scheduling

Algorithm 1 APEX SWITCH SCHEDULE primitive
1: function APEX SWITCH SCHEDULE(scheduleId )
2: nextSchedule ← scheduleId
3: end function

Algorithm 2 AIR Partition Scheduler (mode-based schedules)
1: ticks ← ticks + 1 . ticks: global system clock tick counter
2: if schedulescurrentSchedule .tabletableIterator .tick =

(ticks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf then

3: if currentSchedule 6= nextSchedule ∧
(ticks − lastScheduleSwitch) mod
schedulescurrentSchedule .mtf = 0 then

4: currentSchedule ← nextSchedule
5: lastScheduleSwitch ← ticks
6: tableIterator ← 0
7: end if
8: heirPartition←

schedulescurrentSchedule .tabletableIterator .partition
9: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionWindows
10: end if

happens only at the end of the current MTF, in order to
maintain the timeliness, this may result on a waiting time
before the PSTs switching [3]. If the referred conditions apply,
then a different PST will be used henceforth (Algorithm 2,
line 4). The partition which will hold the processing resources
until the next preemption point, dubbed the heir partition, is
obtained from the PST in use (Algorithm 2, line 8) and the
AIR Partition Scheduler will now be set to expect the next
partition preemption point (Algorithm 2, line 9) [3].

III. RECONFIGURABILITY AND ADAPTABILITY

Adaptation to changing or unexpected conditions is of great
importance for a mission’s survival. The AIR architecture
employs several adaptability mechanisms, to maintain and
improve the system effectiveness when facing internal or
external changes. This enables the safe reconfiguration of
system components. Reconfigurability may also involve self-
adaptability, which concerns the system’s autonomous inter-
pretation and adaptation to environmental changes.



Fig. 3. Spacecraft time- and space-partitioned computing platform

A. Achieving reconfigurability

The support for robust reconfiguration in the AIR archi-
tecture is done through mechanisms such as mode-based
scheduling; health monitor, responsible for handling and con-
taining errors to their domains of occurrence; process deadline
violation monitoring, to detect violations of the processes’
timing constraints, and; low-level event overload control, to
control the timeliness of asynchronous events [9], [3].

B. Achieving (self-)adaptability

By offering the possibility to host natively multiple PSTs
and switch among them on demand during the execution of
the system, AIR permits the (self-)adaptation of the system
to the mission’s different phases and to operational condition
changes [9]. For example, a request to use a different set
of PSTs can be issued by the ground mission control or
autonomously by the onboard system through the spacecraft
Attitude and Orbit Control Subsystem (AOCS), when an event
implies changing the partitions’ temporal requirements.

IV. SAFE UPDATE OF PARTITION SCHEDULES

We define a methodology to permit the update of partition
scheduling tables on spaceborne TSP systems during a mis-
sion. The challenges faced are related to maintaining the real-
time and safety guarantees of the original mission [8]. This
should not affect the correct overall behaviour of the system,
including the timeliness of the already running applications.

A. Integration on spacecraft onboard platform

The safe update of PSTs is carried out by the Update Han-
dler, which is a process/thread integrated in the spacecraft’s
partition hosting the Communications functions. The Update
Handler, illustrated in Fig. 3, is responsible for handling and
managing the updates of PSTs. This involves providing the
received sets of PSTs to the Partition Scheduler component of
the AIR PMK. The update operation is supported by a (secure)
communication channel and data communication protocol.
The Communications partition also includes a component
for command detection, which passes the commands issued
from the ground mission control to the TTC through an
interpartition communication channel. The example illustrated
in Fig. 3 includes a ground command to switch schedule.

B. The XAPEX PSTUPDATE service

To support the introduction of the operation for updating
PSTs, the original APEX interface was extended with an
appropriate service, referred as XAPEX PSTUPDATE. This

Algorithm 3 XAPEX PSTUPDATE primitive
1: function XAPEX PSTUPDATE(newSchedules)
2: while ¬safePstUpdate do
3: if currentSchedule = nextSchedule then
4: for newSchedulesi ∈ newSchedules do
5: if newSchedulesi≡schedulescurrentSchedule then
6: safePstUpdate ← TRUE
7: newCurrentSchedule ← i
8: newNextSchedule ← i
9: break

10: end if
11: end for
12: end if
13: end while
14: SWAP(schedules ,newSchedules)
15: currentSchedule ← newCurrentSchedule
16: nextSchedule ← newNextSchedule
17: end function

primitive, provided by an extended APEX (XAPEX) interface,
is available only to specifically authorized partitions, such
as the one responsible for the spacecraft communications, as
illustrated in Fig. 3.

C. Methodology for onboard update of PSTs

The complete onboard update methodology consists of the
definition of a new set of PSTs and the modification of
systemwide configurations, to upgrade the original mission and
reconfigure it according to new requirements. The activation
of the new set of PSTs must guarantee the safety of switching
between the old and the new sets of PSTs (see Fig. 4),
thus ensuring that the correctness of system scheduling is not
compromised. The update methodology consists of a four-step
procedure described as follows:

1) Offline verification and validation of redefined PSTs:
The definition of new sets of PSTs must involve the verifica-
tion and validation of such components. This aims to secure
the correctness of the redefined set of PSTs thus ensuring that
the safety and timeliness of the target system would not be
compromised [10].

2) Formatting of redefined PSTs: The general goal of this
step is to create an object file consisting of the new set of
PSTs. This object file should be built according to a specific
format in order to be recognized by the Update Handler. After
this step, the object file with the new set of PSTs will be
uploaded to the spacecraft onboard computer.

3) Transfer of redefined PSTs: In the spacecraft, the PSTs
are received by the partition hosting the communication func-
tions (Fig. 3). The Update Handler inspects the uploaded
object, recognizes it as a set of PSTs and invokes the
XAPEX PSTUPDATE primitive to issue a request to apply
the set of PSTs updated.

4) Activation of redefined PSTs: The first condition to the
safe application of a new set of PSTs is that a schedule switch
is not pending (Algorithm 3, line 3). This further means that a
request to switch to another schedule was not issued, through
the invocation of the APEX SWITCH SCHEDULE primitive
(Algorithm 1). The activation of the new set of PSTs will



Fig. 4. Update of a set of PSTs

only become effective at the end of the current MTF. This
condition prevents an eventual switch to an unexpected PST.
The second condition to the safe application of a new set of
PSTs is that the currently selected schedule has an identical
counterpart in the new PSTs set (Algorithm 3, lines 4–8).
In other words, a requested PSTs set update operation can
be performed if the set of the modified PSTs received has
a non-empty subset identical to a subset of the PSTs set
currently active on the system. This avoids a non-requested
schedule switch after applying the update. If this second
condition is not met, the update will only be applied when
a switch to a PST which meets the said criterion occurs. This
scenario is illustrated in Fig. 4. To provide the possibility to
update currently operational PSTs, a safe-mode PST (which is
guaranteed to always exist on both the old and the new PSTs
set) can be employed (represented in Fig. 4 as χ2 and χ′

2).

V. PSTS UPDATE ALGORITHM ANALYSIS

The requirements for code efficiency and bounded execution
times should be met during the implementation of the update
of the PSTs set operation, although maintaining the safety and
timeliness of the remaining system functions.

A. Code complexity

Code complexity increases the probability of there being
software bugs and requires more efforts on the verification,
validation and certification process. A metric for code com-
plexity concerns its size, in source lines of code (SLOC).
To compare programs written by distinct developers, the use
of standardized accounting methods is required, such as the
logical source lines of code (logical SLOC) metric of the
Unified CodeCount tool [11]. Other typical software metric is
the cyclomatic complexity (CC), which gives an upper bound
for the number of tests needed for full branch coverage, and
a lower bound for those needed for full path coverage. The
Table I shows the logical SLOC and CC values for the C
implementation of the XAPEX PSTUPDATE primitive and
the AIR Partition Scheduler [9].

B. Computational complexity

We analyse the computational complexity of the
XAPEX PSTUPDATE primitive (see Algorithm 3).
Access to multielement structures, such as schedules
and newSchedules, is made by index thus the inherent
complexity does not depend on the number of elements.

TABLE I
LOGICAL SLOC AND CYCLOMATIC COMPLEXITY (CC) FOR THE

XAPEX PSTUPDATE PRIMITIVE AND THE AIR PARTITION SCHEDULER

Logical SLOC CC

XAPEX PSTUPDATE 11 4

AIR Partition Scheduler 13 4

Searching the set of the updated PSTs (newSchedules in
Algorithm 3) to find one PST that matches with the currently
selected PST (schedulescurrentSchedule in Algorithm 3) is a
linear operation (lines 4 and 5). In the best case, this wields
O(1), which happens if the first PST in the set of the updated
PSTs is identical to the one currently selected. In the worst
case, this operation wields O(n), where n is the number of
PSTs, since we may need to compare all the PSTs in the
updated set until we reach one that is identical to the PST
currently active. Verifying if two PSTs are identical is also
a linear operation (Algorithm 3, line 5). This comparison
involves verifying whether the MTF values and the number
of preemption points of the two PSTs being compared are
equal, and; verifying, for each preemption point, whether the
same clock tick corresponds to the same partition. PSTs that
do not meet these conditions are considered non-identical. This
operation wields O(m), where m is the number of preemp-
tion points (numberPartitionWindows in Algorithm 2). The
remaining XAPEX PSTUPDATE instructions wields O(1).

The overall computational complexity of the
XAPEX PSTUPDATE primitive wields O(m) × O(n) =
O(mn). In practice, n corresponds to the number of different
mission phases. The expected value for m is the maximum
number of partition preemption points.

VI. PROOF-OF-CONCEPT PROTOTYPE AND EVALUATION

A. Prototyping

Aiming to demonstrate the onboard update of partition
scheduling tables, we modified an existing prototype of an
AIR-based system to include facilities for the update of PSTs.
This prototype includes four partitions, each one running a
RTEMS-based mockup application [12] representing typical
spacecraft functions (Fig. 5). Partition P1 is associated to the
AOCS functions; P2 features the Communications functions,
being responsible for the execution of the Update Handler; P3

concerns OBDH, and; P4 features the TTC operations.
In order to allow the visualization and interaction during

the proof of concept demonstration, the prototype takes profit
of VITRAL, a text-mode windows manager for RTEMS [13],
illustrated in Fig. 5. Each partition has its own output window,
which presents relevant information concerning the partitions’
applications. There are also two windows allowing the obser-
vation of the behaviour of AIR components. For demonstration
purposes, the support for keyboard interaction allows the acti-
vation of the update of PSTs (Algorithm 3) and the switching
between different partition scheduling tables (Algorithm 1).
The demonstration was implemented for an Intel IA-32 target
platform and tested on the QEMU emulator [14].



Fig. 5. Prototype implementation demonstration, featuring the VITRAL text-
mode windows manager for RTEMS

B. Evaluation: test scenarios and results

We analyze the functional behaviour of the partition
scheduling during the update of a new set of PSTs. In order
to test different scenarios and compare the results, we set up
the demonstration with different possible configurations. Then,
we perform several operations in a specific execution order.
These operations concern the activation of the PSTs set update,
which is achieved through a call to the XAPEX PSTUPDATE
primitive (Algorithm 3), described in Section IV, and; the
request to switch to a different schedule, through a call to
the APEX SWITCH SCHEDULE primitive (Algorithm 1),
described in Section II-B. In the real world, a request to change
to a different schedule may be either issued autonomously by
the spacecraft or upon decision from the ground control [3].

For demonstration purposes, the system is configured with
a set of two PSTs, χ1 and χ2. The set of redefined PSTs is
composed by two PSTs, χ′

1 and χ′
2, described in Fig. 6 and

Table II. The PST χ′
1 is an update of χ1, whereas the PST

χ′
2 is identical to χ2 and therefore both assume the role of

safe-mode PSTs (Fig. 4). The referred PSTs have all a MTF
of 1300 time units.

At first, we will define four base scenarios and then we
discuss some variations. The following test scenarios 1 to 4
cover those four cases, which concern update currently ac-
tive/inactive PSTs with/without a pending switch schedule
request (Algorithm 3, line 3).

Test scenarios:

1) The initial PST is χ1. There is no switch schedule re-
quest pending (Algorithm 3, line 3). The update of PSTs
set is requested, simulating the issuing of a command
with this purpose from the ground mission control, but
the new set of PSTs is not activated.
Result: The system continues its execution according to
PST χ1. Since a condition required to the safe update
was not accomplished (Algorithm 3, line 5), the update
cannot be applied. The XAPEX PSTUPDATE algorithm
invoked by partition P2 remains in loop (Algorithm 3,
line 2) until the referred condition is reached, which only
occurs if a request to switch to PST χ2 is issued. This
scenario is addressed in Fig. 4.

Fig. 6. Partition scheduling tables for the prototype implementation

TABLE II
PARTITION SCHEDULING TABLES USED IN TEST SCENARIOS

Preemption point Partitions (per PST)
(time units) χ1 χ2 ≡ χ′

2 χ′
1

0 P1 P1 P4

200 P2 P4 P1

300 P3 P3 P4

400 P4 P2 P2

1000 P2 P4 P4

1100 P3 P3 P3

1200 P2 P2 P1

MTF = 1300 time units

2) The initial PST is χ1. There is no switch schedule re-
quest pending (Algorithm 3, line 3). A switch to PST χ2

is requested. Then, the update of PSTs set is activated.
After the current MTF, the system starts being scheduled
by χ2. When the process which remained blocked on the
XAPEX PSTUPDATE primitive’s loop is scheduled for
execution, during a time window assigned to partition
P2, the update is applied (the conditions represented in
lines 3 and 5 of the Algorithm 3 were accomplished).
Following, a switch to PST χ1 is requested.
Result: After the end of the current MTF, the system
starts being scheduled by the updated PST χ′

1.
3) The initial PST is χ2. There is no switch schedule

request pending (Algorithm 3, line 3). The update of
PSTs set is activated. The update is applied during a time
window of the partition P2 (the conditions represented
in lines 3 and 5 of the Algorithm 3 were accomplished).
Following, a switch to PST χ1 is requested.
Result: After the end of the current MTF, the system
starts being scheduled by the updated PST χ′

1.
4) The initial PST is χ2. There is no switch schedule

request pending (Algorithm 3, line 3). A switch to
PST χ1 is requested. Then, the update of PSTs set is
activated.
Result: After the end of the current MTF, the system
starts being scheduled by the PST χ1. The update is
not applied (the condition represented in line 3 of the
Algorithm 3 was not accomplished). This will happen
eventually when the system conditions change. In this



case we face another scenario, namely the test sce-
nario 2. The update would only be applied during the
execution of the Update Handler process in the partition
P2, after an effective schedule switch to the PST χ2.
Thus, on the next schedule switch to PST χ1, the system
would start being scheduled by the updated PST χ′

1.
Additional tests concern modifying χ′

1 and simulate the
update of a new set of PSTs to the spacecraft. The purpose
of these tests was to verify that the obtained results were in
conformity with those achieved in the four base scenarios pre-
viously described. The first additional test concerns defining
χ′
1 with different time window durations. The second addi-

tional test defines a PST χ′
1 with no time window attributed to

partition P3. Switching to this PST may be useful in a mission
phase that requires more processing time to be assigned to
a specific spacecraft function. For example, during an orbit
insertion maneuver, the AOCS may require more processing
time than the OBDH. The third additional test uses an MTF
of 650 time units in the definition of χ′

1. The results obtained
through the alternative definitions of the PST χ1 correspond
to the same as those described in the test scenarios 1 to 4.

VII. RELATED WORK

There are different approaches regarding aerospace system
reconfiguration. In airborne systems, these concern complex
online or offline techniques to ensure the flight or mission’s
effectiveness. The method proposed in [15] uses multi-static
reconfiguration, which consist of the activation of a prede-
fined configuration, selected autonomously according to the
system health state at system startup. Moreover, the in-field
verification and validation of system configurations and soft-
ware components have a remarkable importance to determine
whether it is safe to proceed with update operations and
reconfigurations [16], [17]. Online update methodologies, such
as the one approached in this paper, may benefit from the
use of techniques of dynamic software update, which refers
to the modification of software components without stopping
the system execution [18]. Different techniques of dynamic
software update have been studied and developed, including
in the domain of real-time systems [19], [20]. However, these
do not directly apply to aerospace TSP systems.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a methodology for the update
of partition scheduling tables, addressing the requisites of
time- and space-partitioned systems. The update of partition
scheduling tables is motivated by the need to adapt to changing
and unexpected environmental conditions, and to overcome se-
vere incidents or internal failures during the system operation.
We discussed and detailed the algorithm behind the onboard
update methodology. The possibility to reconfigure system
parameters, such as partition scheduling tables, is extremely
important since it may contribute to reach a safe system upon
the occurrence of environmental changes or spacecraft failures,
thus increasing the mission’s survivability.

Future development involves the update of application soft-
ware components hosted in partitions. This must attend, at
first, partitions in the idle mode, and next, partitions in the
active mode. The latter may benefit from the use of dynamic
software update techniques. The update of critical software
components without interrupting the system execution is fore-
seen. Other future challenges fall in remote system monitoring
and modification of systemwide control parameters.

REFERENCES

[1] TSP Working Group, “Avionics time and space partitioning user needs,”
Technical Note TEC-SW/09-247/JW, Aug. 2009, ESA–ESTEC.

[2] J. Rushby, “Partitioning in avionics architectures: Requirements, mech-
anisms and assurance,” SRI International, California, USA, Tech. Rep.
NASA CR-1999-209347, Jun. 1999.

[3] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and
timeliness in a new generation of aerospace systems,” in Architecting
Dependable Systems VII, ser. LNCS, A. Casimiro, R. de Lemos, and
C. Gacek, Eds., vol. 6420. Berlin Heidelberg: Springer, 2010.

[4] M. Jones, “What really happened on Mars Rover Pathfinder,” The Risks
Digest (http://catless.ncl.ac.uk/Risks), Forum on Risks to the Public in
Computers and Related Systems Issue 49, Dez 1997.

[5] M. Tafazoli, “A study of on-orbit spacecraft failures,” Acta Astronautica,
vol. 64, no. 2-3, pp. 195–205, 2009.

[6] AEEC (Airlines Electronic Engineering Committee), “Avionics applica-
tion software standard interface, part 1 - required services,” Aeronautical
Radio, Inc., ARINC Spec. 653P1-2, Mar. 2006.

[7] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor, “A portable
ARINC 653 standard interface,” in Proc. 27th Digital Avionics Systems
Conf., St. Paul, MN, USA, Oct. 2008.

[8] J. Rosa, J. Craveiro, and J. Rufino, “Adaptability and survivability in
spaceborne time- and space-partitioned systems,” in EUROCON 2011 -
International Conference on Computer as a Tool, Lisboa, Portugal, Apr.
2011.

[9] J. Craveiro and J. Rufino, “Adaptability support in time- and space-
partitioned aerospace systems,” in Proceedings of the Second Interna-
tional Conference on Adaptive and Self-adaptive Systems and Applica-
tions (ADAPTIVE 2010), Lisboa, Portugal, Nov. 2010, pp. 152–157.

[10] J. Craveiro, J. Rufino, and F. Singhoff, “Architecture, mechanisms
and scheduling analysis tool for multicore time- and space-partitioned
systems,” in 23rd Euromicro Conference on Real-Time Systems (ECRTS
2011) — Work-in-Progress session, Porto, Portugal, Jul. 2011.

[11] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A SLOC count-
ing standard,” in The 22nd Int. Ann. Forum on COCOMO and Sys-
tems/Software Cost Modelling, Los Angeles, USA, 2007.

[12] RTEMS C User’s Guide, 4th ed. On-Line Applications Research
Corporation, 2010.

[13] M. Coutinho, C. Almeida, and J. Rufino, “VITRAL - a text mode
window manager for real-time embedded kernels,” in Proc. of the ETFA
2006, Prague, Czech Republic, Sep. 2006, pp. 1254–1260.

[14] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
ser. ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005.

[15] C. Engel, A. Roth, P. H. Schmitt, R. Coutinho, and T. Schoofs, “En-
hanced dispatchability of aircrafts using multi-static configurations,” in
Proceedings of the Embedded Real Time Software and Systems (ERTS2
2010), Toulouse, France, 2010.

[16] M. Neukirchner, S. Stein, H. Schrom, and R. Ernst, “A software update
service with self-protection capabilities,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, Dresden, Germany, Mar.
2010, pp. 903–908.

[17] A. T. Bahill and S. J. Henderson, “Requirements development, verifica-
tion, and validation exhibited in famous failures,” Systems Engineering,
vol. 8, no. 1, pp. 1–14, 2005.

[18] M. Hicks, “Dynamic software updating,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 27, no. 6, Nov. 2005.

[19] J. Montgomery, “A model for updating real-time applications,” Real-
Time Syst., vol. 27, no. 2, pp. 169–189, 2004.

[20] M. Wahler, S. Ritcher, and M. Oriol, “Dynamic software updates for
real-time systems,” in Proc. HotSWUp’09, Orlando, FL, USA, Oct. 2009.


