
Non-intrusive Runtime Verification of
Embedded Software

Inês Gouveia and José Rufino

LaSIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal,
igouveia@lasige.di.fc.ul.pt, jmrufino@ciencias.ulisboa.pt

Abstract. The increasing development in cyber-physical systems (CPS)
has lead to new concerns regarding performance, safety and security,
while ensuring timeliness requisites are met. Conventional runtime verifi-
cation approaches tend to resort to code instrumentation among other in-
trusive methodologies, affecting the CPS timing characteristics. As such,
by taking advantage of reconfigurable logic technologies, we introduce
a hardware-based non-intrusive observer entity that is configurable by
means of observation points of interest extracted directly from the CPS
software components binary code.

Keywords: Runtime Verification, Embedded Software, Operating Sys-
tems, Real-Time Embedded Systems

1 Non-intrusive Runtime Verification

Due to their criticality, the software components executing in embedded sys-
tem platforms, the latter usually consisting of soft-processors deployed in Field
Programmable Gate Array (FPGA) devices, depend on constant correct opera-
tion. In order to ensure the system specification is strictly followed and that no
deviation takes place, runtime verification becomes crucial. However, existing ap-
proaches have been embracing techniques such as function call interception and
source code annotation to observe the desired points of interest, downgrading
performance and other timing characteristics, such as timeliness, by interfering
with the normal system functioning and possibly affecting safety along the way.

1.1 TSP Systems’ Safety and Security

The increasing systems’ complexity has lead to the definition of Time and Space
Partitioned (TSP) environments for the execution of applications, with the intent
of preserving their timeliness and safety requirements. This compartmentaliza-
tion implies function separation and that execution of an application in one
partition does not affect others with respect to provision of timing guarantees.

Generally, different Operating Systems are deployed in each partition, includ-
ing Real-Time Operating Systems (RTOSs), for critical functions and generic
OSs, for non-critical best-effort functions. Despite the many useful features



present in generic OSs, some timeliness and safety limitations come associated
with their use, along with with severe security related issues. Common vul-
nerabilities include buffer overflows, signedness errors, format strings and code
injection. Our purpose is to contribute to eliminate or at least attenuate the
impact of some of those vulnerabilities.

Making use of non-intrusive and self-contained techniques, it is the observer’s
duty to detect errors related to a relevant set of the vulnerabilities enumerated
above, as well as other possible violations to the system, namely in the timeliness
domain, and act accordingly.

1.2 Observer Implementation

The idea behind the observer is to check predetermined points of interest against
a relevant set of invariants in runtime, so that correct behavior can be ensured.
Some of these observation points can be extracted at design time, from the
binary code, by standard and/or using special-purpose tools, and configured in
the observer unit. For dynamically generated information, such as local variables,
other methods must be employed, such as non-intrusive monitoring of the stack,
where each variable’s position is characterized by its offset w.r.t. the stack frame
pointer. The observer configuration may be changed in runtime, allowing the
addition and/or removal of relevant points of interest, thus allowing its dynamic
tuning in terms of the nature and types of events to be monitored.

While the observer entity itself would be responsible for capturing events that
match its chosen configuration, an independent monitoring infrastructure should,
afterwards, analyze them in order to detect eventual specification violations and
issue an alarm signal to initiate a recovery response, if possible, or promote a
transition to a safe operating mode, otherwise.

Aiming to provide the stated non-intrusiveness and to be easily integrated in
reconfigurable processing cores, the observer will be designed in VHDL, a hard-
ware description language used to describe digital systems such as FPGAs, using
a Xilinx XUPV5-LX110T development board as a proof of concept prototype.

In sum, our purpose is, thus, to design a configurable non-intrusive observer
to perform runtime verification in cyber-physical systems, while taking into con-
sideration common OS vulnerabilities, aiming to ensure both safety and security
properties, while respecting timeliness guarantees.

References

1. Edwards, A., Jaeger, T., Zhang, X.: Runtime verification of authorization hook
placement for the Linux security modules framework. In: Proc. of the 9th Conf. on
Computer and Communications Security. ACM, Washington, DC, USA (Nov 2002)

2. Pinto, R.C., Rufino, J.: Towards non-invasive run-time verification of real-time sys-
tems. In: 26th Euromicro Conf. on Real-Time Systems - WIP Session. pp. 25–28.
Madrid, Spain (Jul 2014)

3. Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded
systems. Software, IET 1(5), 172–179 (October 2007)



Non-intrusive Runtime Verification of 
Embedded Software

Inês Gouveia and José Rufino

LaSIGE, Faculdade de Ciencias, Universidade de Lisboa, Portugal,
igouveia@lasige.di.fc.ul.pt, jmrufino@ciencias.ulisboa.pt

Software components executing in embedded system platforms (usually soft-

processors deployed in FPGA (Field-Programmable Gate Array) devices) depend

on constant correct operation, due to their criticality. In order to ensure no

deviations take place, runtime verification becomes crucial.

However, conventional runtime verification approaches tend to resort to code

instrumentation among other intrusive methodologies, affecting the CPS timing

characteristics, and possibly affecting safety along the way.

By taking advantage of reconfigurable logic technologies, we introduce a

hardware-based non-intrusive observer entity, configurable by means of

observation points of interest extracted directly from the CPS software

components’ binary code.

Summary

TSP Systems’ Safety and Security

Observer Implementation

References
1. Edwards, A., Jaeger, T., Zhang, X.: Runtime verification of authorization hook
placement for the Linux security modules framework. In: Proc. of the 9th Conf. on
Computer and Communications Security. ACM, Washington, DC, USA (Nov 2002)
2. Pinto, R.C., Rufino, J.: Towards non-invasive run-time verification of real-time systems. In: 26th Euromicro Conf. on Real-Time 
Systems - WIP Session. pp. 25–28.
Madrid, Spain (Jul 2014)
3. Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded
systems. Software, IET 1(5), 172–179 (October 2007)

The increasing systems’ complexity has lead to the definition of Time and Space

Partitioned (TSP) environments for the execution of applications, with the intent

of preserving their timeliness and safety requirements. This

compartmentalization implies function separation and that execution of an

application in one partition does not affect others with respect to provision of

timing guarantees.

Different Operating Systems are usually deployed in each partition, including

Real-Time Operating Systems (RTOSs), for critical functions and generic OSs, for

non-critical best-effort functions. While generic OSs’ features are useful, some

timeliness and safety limitations come associated with their use, along with

severe security related issues.

Common vulnerabilities include buffer overflows, signedness errors, format

strings and code injection. Our purpose is to contribute to eliminate or at least

attenuate the impact of some of those vulnerabilities.

It is the observer’s duty to detect errors related to a relevant set of the

vulnerabilities enumerated above, as well as other possible violations to the

system, namely in the timeliness domain, and act accordingly.

The idea behind the observer is to check predetermined points of interest

against a set of invariants in runtime. Some of these observation points can be

extracted at design time, from the binary code, by standard and/or special-

purpose tools. For dynamically generated information, such as local variables,

other methods must be employed, such as non-intrusive monitoring of the stack,

where each variable’s position is characterized by its offset w.r.t. the stack frame

pointer.

The observer configuration may be changed in runtime, allowing the addition

and/or removal of relevant points of interest, thus allowing its dynamic tuning.

While the observer entity itself would be responsible for capturing events that

match its chosen configuration, an independent infrastructure should,

afterwards, analyse them in order to detect eventual specification violations and

issue an alarm signal to initiate a recovery response or promote a transition to a

safe operating mode.

Aiming to provide the stated non-intrusiveness and to be easily integrated in

reconfigurable processing cores, the observer will be designed in VHDL, a

hardware description language used to describe digital systems such as FPGAs,

using a Xilinx XUPV5-LX110T development board as a proof of concept

prototype.

In sum, our purpose is, thus, to design a configurable non-intrusive observer to

perform runtime verification in cyber-physical systems, while taking into

consideration common OS vulnerabilities, aiming to ensure both safety and

security properties, while respecting timeliness guarantees.

Event Observer

B
u

s 
In

te
rf

ac
es

Observer 
Configuration

Ex
te

rn
al

 I/
O

System Clock

So
C

B
u

s

Ex
te

rn
al

 S
ys

te
m

Fig. 2 – Observation Points’ Location

Stack Frame 
Pointer

Stack 
Pointer

Stack

Input 
Parameters

Local Variables

…
…

Fig. 1 – Observer Entity Architecture

Binary 
File

Global and static 
variables

Fig. 3 – Xilinx XUPV5-LX110T board


