
A Tool for Real-Time Assessment of IEEE 802.15.4
Networks Through Fault Injection ?

Rui Pedro Caldeira, Jeferson L. R. Souza, Ricardo C. Pinto, and José Rufino

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
{rcaldeira, jsouza}@lasige.di.fc.ul.pt,

{ricardo.pinto, jmrufino}@ciencias.ulisboa.pt

Abstract. Advances in computer engineering and microelectronics have allowed
the use of tiny and powerful computing platforms (i.e., sensors and actuators)
everywhere, supporting the monitoring and control of, for example, process for
industrial automation and functions within aerospace vehicles. Many of these sys-
tems have the ability to host, in the same computing platform, applications with
different levels of criticality (or importance), i.e. mixed-critical systems. Wireless
sensor and actuator networks (WSANs) become the vivid example of computer
networks responsible for the monitoring and control activities of such systems.
The dependability and the real-time properties of such networks are crucial. How-
ever, one key point is that WSANs are extremely susceptible to communication
errors induced by electromagnetic interferences. Furthermore, there is a general
lack of knowledge of such error patterns as well as no open tools enabling its
capture. This paper presents a state of the art solution for one-hop assessment of
WSANs in the presence of errors based on the IEEE 802.15.4 standard. The so-
lution includes devices and functions to monitor the behaviour of the network as
well as methods to emulate accidental errors and to perform intentional attacks.
All these resources are managed and controlled by a customised version of the
well-known open-source Wireshark network protocol analyser. This allows the
generation of network error reports fundamental to the evaluation of the real-time
capabilities of current wireless network protocols and standards. These error re-
ports contribute to a better knowledge of the error characteristics of WSANs and
therefore enable the design of more robust and resilient solutions for WSANs
operation.

1 Introduction and Motivation

Wireless Sensor and Actuator Networks are one of the latest revolutions in network-
ing. The absence of cables stem a reduction of Size, Weight and Power Consumption
(SWaP) which combined with node mobility, lead to the adoption of these networks as
a fundamental communication platform of many different types of systems that may
host applications with different levels of criticality (or importance), which are usually

? This work was partially supported by FCT, through project PTDC/EEI-SCR/3200/2012
(READAPT) and through LaSIGE Strategic Project PEst-OE/EEI/UI0408/2014. This work
integrates the activities of COST Action IC1402 - Runtime Verification beyond Monitoring
(ARVI).

known as mixed-critical systems. Despite some advances in the support of real-time
communication in wireless networks, there are still open problems that need the ap-
propriate tools for their study and analysis. One key issue is that wireless networks
are subjected to electromagnetic interferences from the surrounding environment that
may impair ongoing communications. The presence of interferences can endanger the
real-time guarantees of the communications as well as of the overall system. This paper
discuses a highly flexible advanced open tool that allows the real-time assessment of
one-hop IEEE 802.15.4 networks through the combination of network monitoring (e.g.,
for the capture of error patterns) with the emulation of accidental faults or even the in-
jection of intentional attacks. The assessment of the network operation, and therefore
the contributions of this paper, includes the facets that we detail next.

Network monitoring, which is a technique aimed at analysing the network interac-
tions between its nodes and characteristics of operation such as reliability and time-
liness, assumes a passive and non-intrusive role at network assessment. In particular,
it allows to assess normal network operation and the disturbances in its behaviour in
the presence of errors. Since particular error patterns may be specially relevant for the
analysis of the network operation and their natural occurrence may be rare, there is the
need to re-enact such error patterns, through fault injection.

Our fault injection methodology is aimed at directly inject interferences in the wire-
less transmission medium with the objective to stress test the network. Fault injection
is split into two types: accidental faults and intentional attacks. The first type focuses
in reproducing conditions that can be found in reality. This is very helpful in the sense
that allows to test a network at will in a controlled environment, observe its behaviour,
and stress the operation of network related protocols. The second is focused in con-
trollably disturb a network, with a malicious objective. Objectives often revolve around
data extraction, network unavailability or other actions relevant to the party conducting
such disturbances. In this work we focus on accidental faults, and they can be achieved
in two ways. Firstly, through the transmission of particular symbol patterns without
obeying to the medium access control protocol in use. This translates to the injection of
unrecognised noise. Secondly, in situations where it may be useful to also inject sym-
bol patterns that are interpreted by the remaining nodes, we also support the injection
of properly formatted traffic. Furthermore, combining network monitoring with fault
injection allows to trigger a specific set of fault injection actions upon the occurrence
of particular network traffic patterns. This coordinated action allows an active role in
network assessment.

Network monitoring activities can be a very data-intensive task, specially when con-
ducted concurrently with fault injection activities. Analysing the harvested data is sim-
ply too difficult to do without assistance. Wireshark [7], being a reference network
protocol analyser, has the ability to create a graphical representation of network inter-
actions, thus assisting in the network analysis task by being an integrated Graphical
User Interface (GUI) for the whole suite.

The remainder of the paper is structured as follows. Section 2 reviews some related
work. Section 3 describes the real-time assessment suite and its components. Section 4
describes the implementation details for the suite. Section 5 walks through some simple
use cases and finally section 6 concludes the paper and describes the future work.

2 Related Work

Monitoring and fault injection are techniques often used in conjunction to perform de-
pendability evaluation of computer systems and networks.

In a more theoretical approach, KleeNet [16] is a verification framework much sim-
ilar to a simulation or model-checking. The framework acts as an Hardware Abstraction
Layer (HAL) where the software to be deployed can run and be tested against a series
of assertions that model the correct operation of the system. That said and reiterating
the initial remark, all results remain theoretical and the behaviours of individual nodes
as well as the medium are still based on models and to accurately model a complex
environment such a Wireless Transmission Medium (WTM) is near to impossible.

Another interesting development is a hybrid architecture that allows to transfer state
from test-bed nodes to simulation platform and vice-versa [14]. However, this approach
is much complex because requires physical access to the test-bed hardware as well as
access to a simulation platform that simulates both the computing hardware and the
wireless transmission medium. Additionally to these requirements, middleware has to
be developed in order to support the state transfer operations.

Due to WSANs growing popularity, researchers felt the need to create tools like the
ones described earlier to assist them in various research activities. Regarding network
monitors, popular use cases for this type of devices are, for instance, those described
in [12,15]. However, these works focus in network performance evaluation, paying little
to no attention to communication errors and to the stress of network operation via fault
injection campaigns. In a theoretical fault injection approach and with network security
in mind, strategies for the injection of attacks in wireless networks were devised. Xu
et al. [20] raised concerns about how insecure WSANs are. A wide range of attack
strategies were defined in [20] taking into account the scarcity of power resources in
wireless devices.

O’Flynn [13] developed a dual-transceiver device capable of very precise attack
injection techniques, but the control software has focused in approaches that maximize
the reaction time in order to jam the highest number of packets possible and not in
creating complex fault injection scenarios.

JamLab [6] is an addition to WSAN test-beds that allows to record and reproduce
real interference patterns (or signals) as well as emulate some real world devices such as
microwave ovens, IEEE 802.11 (Wi-Fi) and IEEE 802.15.1 (Bluetooth) devices. They
also recognize that network robustness against interferences and packet loss is crucial to
a correct functioning of the network and interferences can cause the timing constraints
not to hold. Their study is focused in measuring the Received Signal Strength Indi-
cation (RSSI), the Link Quality Indication (LQI) and its impact in the Clear Channel
Assessment (CCA). They proved that interferences have a great deal of impact in Packet
Reception Rate (PRR) and if packet retransmission is required, power consumption is
dramatically increased. JamLab, however, focuses in disturbing physical (PHY) layer
operation by re-generating signals in the same frequency and with the same intensity
as first detected. One major limitation of JamLab and of other studies that focus on
physical layer interference [4,5,8], is that there are no simple methods of mapping such
interferences into packet/frame losses. Our tool addresses this limitation by focusing on
a packet/frame level approach.

Wireless Transmission Medium

Wireshark Translator

Hardware
Integration
Interface

Fault
Injection

Unit

Fault Injector
Device

Fault Injection Controller
(Pattern and Timing)

Network
Monitoring

Unit

Monitoring
and Capture Filter

Network Monitoring
Probe

1 2 3

4 5

67

8

CSV File

Wireshark Network Protocol Analyser

Linux Host

HardwareHardware

Software Software

109

Fig. 1. Tool Architecture Design

3 A suite for Real-Time Assessment of IEEE 802.15.4 Networks

In this section we address in detail each component presented in our architecture and
how they all integrate following closely the diagram in Figure 1.

This tool for the real-time assessment of IEEE 802.15.4 networks is composed by
four components. Firstly, with the purpose of capturing and report network traffic, a
network monitoring unit, which assumes the role of an error-aware packet sniffer was
developed. All network monitors provide a very basic function of capturing network
traffic without interacting with it. However, such capture is usually restricted to cor-
rectly formatted packets. Existing network monitors, to the best of our knowledge, do
not capture and signal the occurrence of errors and this is one of the limitations we
overcome with our design.

In contrast, fault injection devices can be described as devices that are able to inter-
act with the underlying network but are not obliged to follow the medium access proto-

cols used in that particular network. In short, fault injection devices have the ability to
interact with the network without any restrictions in regards of timing and/or content.
And so, in order to provide the ability to emulate accidental faults and to perform in-
tentional attacks, a fault injection unit has been built to flexibly support the injection of
faults directly in the wireless transmission medium.

Thirdly, to provide interaction and cooperation between the network monitoring unit
and the fault injection unit, as well to support advanced network analysis and filtering
functions, a special purpose hardware integration interface was introduced.

Finally, Wireshark, a reference network protocol analyser with IEEE 802.15.4 packet
visualization capabilities, was extended to manage all aspects of the network assess-
ment, including control and data collection from the previously mentioned components.

3.1 Network Monitoring Unit

The Network Monitoring Unit includes a Commercial-Of-The-Shelf (COTS) hardware
network interface device, acting as network monitoring probe (a.k.a. sniffer) with the
purpose of capturing all traffic transmitted through a specific wireless radio channel.
This is useful for testing networks and protocol implementations. The network moni-
toring probe is not an active member of the network, and is instead a passive listener.
This is compliant with the IEEE 802.15.4 standard when using the so called Promiscu-
ous Mode with the integrity check disabled: the network monitoring probe is allowed
to capture and report all traffic following the IEEE 802.15.4 frame format specification.
However, this is insufficient to assess the network error pattern since frames sensed with
errors would not be specifically signalled and therefore would be handled as any other
frame. Both correct and erroneous frames would be equally reported.

Wireless networks, due to the open nature of the transmission medium are extremely
susceptible to electromagnetic interference (EMI) and therefore to frame errors. In order
to capture and signal frames corrupted by errors, the operation of the network monitor-
ing probe needs to be enhanced.

Type Security
Enabled

Frame

Pending
Acknowledgment

Requested
Intra

Network
Destination

Addressing Mode
Frame
Version

Sequence Number Network
Identifier Payload

Destination
Frame Check

Sequence
Network
Identifier

Source
Address

Reserved

AddressFrame
Control

Source
Addressing Mode

Fig. 2. IEEE 802.15.4 General Frame Format

The IEEE 802.15.4 traffic is constituted by frames following the general format rep-
resented in Figure 2. The Frame Check Sequence (FCS) field is a 16-bit frame integrity
number used to evaluate the correctness of each captured frame. Deviations from the
original content, e.g. resulting from corruption, can be detected through FCS checking
mechanisms. The probability of undetected frame errors is negligible [9].

A simple, yet fundamental, extension of this FCS integrity check mechanism [18],
enabled by modern network interface controllers such as the Atmel AT86RF232 [1],

allows to detect and signal erroneous frames. By taking advantage of the FCS extension,
that allows us to signal corrupted traffic, and of the previously mentioned promiscuous
mode, that allows us to capture all traffic, we are able to capture all network traffic that
flows though the wireless transmission medium and to distinguish correct frames from
those affected by errors.

This ability is fundamental to evaluate the error characteristics of a given network
and can be used to estimate the impact of such error characteristics in the normal net-
work operation.

To enable a precise evaluation of network operation timing characteristics, a times-
tamp is generated at the network monitoring unit at the arrival of each frame, including
erroneous frames. This timestamp is attached to the frame and both are delivered at the
Hardware Integration Interface, via the interaction 6 of Figure 1, and at the Wireshark
translator, via the interaction 8 of Figure 1.

Concluding, the network monitoring unit offers to the surrounding components an
extended promiscuous network traffic capture service that includes both correct and
erroneous frames as well as the specific signalling of the latter.

3.2 Fault Injection Unit

The Fault Injection Unit is constituted by a hardware network interface, the fault injec-
tion device, controlled by a software component that runs on the fault injection con-
troller, as illustrated in the left uppermost part of the Figure 1.

The fault injector device is a perfectly common Commercial-Of-The-Shelf (COTS)
network interface with the exception that the network interface is configured to by-
pass the medium access control protocol thus allowing a direct access to the wireless
transmission medium. Traditional IEEE 802.15.4 nodes use the Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) mechanism to sense the medium before
transmitting, which is therefore disabled.

Disabling the medium access protocol allows effective fault injection actions. This
way, the fault injector device supports the injection of user-defined:

– Pure noise patterns;
– Selected data patterns, always preceded by the standard preamble1;
– Selected data patterns encapsulated in a correctly formatted frame, thus injecting a

standard compliant transmission.

The Fault Injection Controller is a software component executing on top of the hard-
ware fault injection device with the responsibility to control the patterns and timings to
be utilized in a fault injection campaign.

The fault injection unit has two modes of operation: user-defined configurations or
pre-configured fault injection profiles.

Both modes originate the fault injection sequence illustrated in Figure 3 accordingly
with the parameters that are now explained further.

1 The preamble is a pre-defined sequence of symbols for synchronization of the receiver’s cir-
cuitry with the incoming sequence of symbols.

"%#"!$"$#"%#"!$"$# "%#"!$"$#"%#"!$"$# "%#"!$"$#"%#"!$"$#

Injection Pattern

 Minimum
Inter-Injection
 Time

Duration =
[min_duration, max_duration] Injection Jitter

"%#"!$"$#

Total Duration

Injection Jitter

...

 Minimum
Inter-Injection
 Time

Fig. 3. Graphical representation of some fault injection parameters

Fault injection parameters User-defined configuration requires the specification of
some parameters in order to build a particular fault injection profile. Some of the pa-
rameters are illustrated in Figure 3 and explained further. For future reference, and for
the particular case of the IEEE 802.15.4, all time units are to be considered as being in
microseconds.

– Injection Mode - The injection mode parameter determines how the potentially
interfering data is sent to the wireless transmission medium. Firstly, when the noise
mode is selected, the device simply sends a given sequence of symbols (injection
pattern) to the wireless transmission medium until the injection event duration fin-
ishes. Secondly, in the preamble preceded mode, the user selected data is attached
to the standard preamble and sent to the wireless transmission medium. Finally,
in the encapsulated frame mode the user can configure all the fields of a correctly
formatted frame;

– Injection Pattern - (see Figure 3) the format of the user-defined data, in hexadec-
imal, to be injected to the wireless transmission medium. Should a preamble be
used (preamble preceded and encapsulated frame modes), it is attached before the
injection pattern; otherwise (noise mode), only the injection pattern is sent. If the
defined duration is lower than the time necessary to transmit the pattern this should
be trimmed and periodically re-transmitted otherwise;

– Minimum Duration - the minimum duration of a single fault injection event. It
can be expressed in time units or in bytes;

– Maximum Duration - the maximum duration of a single fault injection event. It
can be expressed in time units or in bytes. If the minimum and maximum durations
are equal, the duration of the fault injection event is equal to the previously stated
values. Otherwise, it is equal to a value dictated by a given statistical distribution
between the minimum and maximum durations;

– Number of Events - number of total fault injection events in the fault injection
campaign, after which the campaign shall terminate;

– Minimum Inter-Injection Time - (see Figure 3) the minimum time interval be-
tween consecutive fault injection events;

– Maximum Injection Jitter - (see Figure 3) maximum value of a positive random
time to be added to the Minimum Inter-Injection time, dictated by a given statistical
distribution;

– Total Duration - (see Figure 3) the total duration of a fault injection campaign. If
the number of events is specified, the user no longer is able to set its value, since it
is confined to a lower as well as an upper bound dependent on the specific number
of events, its (real) durations, its minimum inter-injection time and its (real) injec-
tion jitter durations. Conversely, if the total duration is specified, the fault injection
campaign lasts until the specified duration is reached. The Total Duration is an al-
ternative to Number of Events parameter described earlier, and for that reason, both
parameters cannot be specified for the same fault injection campaign;

– Trigger - the condition to start the fault injection campaign using the previously
described parameters. The trigger can be defined to operate according two modes:
one-shot mode, where only one instantiation of the fault injection campaign is per-
formed; and the cyclical mode, where the fault injection campaign is repeated cycli-
cally until the stop command is explicitly issued.

Pre-configured fault injection profiles Some combinations of these parameters are so
relevant that we have decided to include the capability to chose between a set of specific
instantiations of the previously described parameters, thus defining pre-configured fault
injection profiles. These profiles are useful both for the emulation of accidental faults
and for the injection of intentional attacks.

– Constant - this profile continuously injects constant noise in the wireless trans-
mission medium. This profile is meant for inducing communication blackouts such
as jamming attacks [20];

– Random - this profile injects random noise on the wireless transmission medium.
This profile is better suited for campaigns where it is only required the occasional
corruption of transmissions [20];

– Adaptive - This profile tries to synchronize the fault injection timing with the traf-
fic pattern of the underlying network. Thus the fault injection campaign is triggered
by network monitoring unit after a specific type of traffic pattern has been detected
by the monitoring and capture filter (see Figure 1);

– Frame-type Adaptive - specialisation of the Adaptive fault injection profile,
where faults are injected to destroy the frames matching the specification(s) in-
dicated to the network monitoring unit. This profile is specially useful when, for
example, aiming to corrupt only beacon frames causing one-hop wide network
blackouts [17].

A summary of the relevant fault injection parameters for each of the profiles is
represented in Table 1.

One of the key features of this Fault Injection Unit is its flexibility when defin-
ing fault injection scenarios. The Fault Injection Unit is already equipped with several
easy-to-use pre-defined scenarios while at the same time allowing a user to use config-
uration parameters if customisation is required. The presented fault injection profiles
are suitable in the sense that they are practical implementations of well-known wireless
network attacks which are also useful to emulate some accidental fault scenarios [20].

Injection
Mode

Minimum
Duration

Maximum
Duration

Total
Duration

Number
of

Events

Minimum
Inter-

Injection
Time

Injection
Jitter

Trigger

Constant Noise ∞ ∞ ∞ - 0 0 One-Shot
Random Noise Random - - Random 0 One-Shot
Adaptive Noise 19 bytes 133 bytes - 1 - 0 Cyclical
Frame-
Type

Adaptive
Noise 19 bytes 133 bytes - 1 - 0 Cyclical

Table 1. Fault Injection Profiles expressed as Fault Injection Parameters

3.3 Hardware Integration Interface

The hardware integration interface is a component that enables interaction and coop-
eration between the network monitoring unit and the fault injection unit, as shown in
Figure 1.

The first aspect of this interaction concerns the analysis and filtering of captured
frames. In essence any frame field, such as frame-type, addresses and some contents of
the payload, can be subjected to analysis. Selected configurations of the Fault Injector
Unit such as pre-configured adaptive and the frame-type adaptive fault injection pro-
files requires analysis of the captured traffic and in these occasions cooperation between
both units is required to trigger a fault injection campaign, as shown by interaction 6
of Figure 1, where the network monitoring tool hands frames for analysis to the hard-
ware integration interface, and interaction 7 of Figure 1 where the hardware integration
interface decides to start a fault injection campaign.

The analysis of the captured traffic allows to detect relevant pre-configured traffic
patterns to be used to trigger fault injection campaigns. An effective and highly flexi-
ble analysis and filtering of network traffic can be directly mapped into special-purpose
hardware components, such as Content Addressable Memories (CAMs), integrated into
Field Programmable Gate Arrays (FPGAs) [19]. The possibility of integrating these
types of special-purpose hardware components with the tool greatly enhance the reac-
tion capabilities of the tool in the sense that these components enables parallel compar-
ison and matching of the captured traffic, against several specified frame patterns.

On the other hand, the start and the end of each fault injection event needs to be
issued to the network monitoring unit to be timestamped, ordered, and inserted into
the traffic flow to be delivered at the Wireshark Translator, represented by interaction
4 of Figure 1 where the notification is sent to the hardware integration interface and
interaction 5 of Figure 1 where the notification is forwarded to the network monitoring
unit.

3.4 Integration with Wireshark

Wireshark is a very flexible reference network analyser. It is extremely general in the
sense that it can be extended by the means of plugins to analyse networks and protocols

that were not initially considered in its design and engineering. Wireshark can monitor
traffic both from real and virtual devices such as networking hardware, regular files
and even inter-process communication channels. Beyond that, the captured data can be
saved for later analysis. Based on these reasons, Wireshark was chosen to be extended
in order to incorporate the control functionalities of the network monitoring and fault
injection units.

Fig. 4. Integrated Control Panel

Firstly, Wireshark communicates directly with the units in order to perform initiali-
sation and command functions. The Fault Injection and the Network Monitoring Units
are configured with the channel to be used in their respective activities, represented
by the interactions 1 and 3 of Figure 1. In addition, the hardware integration interface
is configured with all network monitoring and fault injection variables, represented by
the interaction 2 of Figure 1, in order to correctly coordinate the interaction between
the Network Monitoring and Fault Injection Units. In this sense, an extension to the
Graphical User Interface was introduced to create a user-frendly interface to ensure that
users can configure the units in an easy way. The result of this extension is presented in
Figure 4. The figure presents the most complex case of the configuration of a fault in-
jection campaign, accompanied with a network monitoring activity (Fault Injector with
NM, in the top-right corner of Figure 4) with manual parameter specification (see sec-
tion 3.2), including the path to the Network Monitoring Unit (below the Device label
in Figure 4), and the path to the Fault Injection Unit which is derived as the device im-
mediately following the Network Monitoring Unit. This establishes the communication
paths between Linux/Wireshark Software Components and the underlying hardware
units, as required for interactions 2, 3 and 8 (Network Monitoring Unit) and interaction
1 (Fault Injection Unit), depicted in the diagram of Figure 1.

After initialization, the network monitoring unit delivers captured frames to Wire-
shark indirectly. First, the captured frame arrives the Wireshark Translator (represented
by interaction 8 in Figure 1) which is then adapted to the Wireshark format and promptly
forwarded to Wireshark, as shown by interaction 9 of Figure 1.

The Wireshark Translator is a piece of software which has the responsibility to trans-
late the raw frames collected from the network monitoring unit into data understandable
by Wireshark. This process requires that a PCAP header [11], the format used by Wire-
shark, is attached to the raw frame so that Wireshark is aware of, among other aspects,
the network type of the frame and its length.

Fig. 5. Atmel REB232ED-EK

3.5 Statistics File

The Wireshark Translator application also creates a statistics file in the form of Comma-
Separated Values (CSV), represented by interaction 10 of Figure 1, which is recognized
by most statistical data applications. The file includes a timestamp, signalling when the
frame starts and its duration, as well as the length of the frame, if the frame passed the
checksum verification, and the frame itself. To simplify statistics file post-processing
(e.g., inter-frame time and jitter calculation), a second timestamp signalling when the
frame ends is also included. In this way, all relevant information regarding the frame
is included in the same place. This file is useful in providing a base for additional
processing that may not be achieved using Wireshark.

4 Implementation

Built using Commercial Off-The-Shelf (COTS) hardware, our implementation currently
supports the Atmel REB232ED-EK (Figure 5) Evaluation Kit [3]. The hardware pro-
vides serial interface in order to connect to a computer host and exchange data.

Both units were implemented so they could be easily configured by Wireshark. In
Figure 4, it is shown the integrated control panel. To configure a network monitoring
session, it is required to select the path of the hardware, as well as the wireless ra-
dio channel to be monitored and the function in the top right corner of Figure 4 (e.g.,
standalone network monitoring or fault injection with network monitoring).

The monitoring starts by signalling the Network Monitoring Unit (via interaction 3
of Figure 1) and starting up the Wireshark translator. After a frame capture is successful,
elements including the frame length and timestamps are attached to the frame and sent
out via the serial connection (via interaction 8 of Figure 1).

In this work we choose to output the raw data and not commit to any specific data
output format (e.g., the PCAP format) in order to save the scarce input/output resources
of the Atmel hardware supporting both the Network Monitoring and the Fault Injection
units and to allow any application to read the traffic and perform any kind of process-
ing and analysis. The Wireshark translator has the function to conform the Network
Monitoring Unit output to the PCAP format and forward it to Wireshark.

Fault Injection Start

Fault Injection End

Fig. 6. Wireshark capture screen

With this control panel is also possible to define fault injection campaigns making
use of the parameters or modes described in section 3.2. A fault injection campaign is
constituted by a series of fault injection events. In the Wireshark screen (see Figure 6),
additional elements (represented as black shaded highlighted frames) were introduced
to Wireshark to delimit fault injection events. These elements, represented in Figure 6,
notify the users when a fault injection event begins and when it ends, representing be-
tween them the frames that arrived during the fault injection. In the particular case of
the example in Figure 6, the Constant fault injection profile (Section 3.2/Table 1) was
selected. Since pure noise is constantly injected in the wireless transmission medium;
no frame is received by any node, and therefore no frame is captured during the fault
injection campaign. It is worth noting that the IEEE 802.15.4 interpretation capabilities
of Wireshark were extended in order to make sure that these new elements were recog-
nized and all functionalities of Wireshark, such as filtering and colouring, also apply to
these new elements.

5 Use Cases

This section discusses two simple, yet illustrative use cases: firstly, an example empha-
sising the network monitoring functions while the second focuses in a fault injection
campaign.

5.1 Standalone Network Monitoring

Fig. 7. Standalone Network Monitoring

Fig. 8. Chart representing the Packet Error Rate (PER) and the Packet Delivery Rate (PDR)
of a IEEE 802.15.4 network under heavy interference, as generated by the interpretation of the
statistics file

The first use case, illustrates the functionality of our tool in the traffic monitoring of
a IEEE 802.15.4 network. However, this network is operating in a ”dirty environment”
where a heavy electromagnetic interference is expected from ”alien” wireless nodes.

One of the main sources of interference on the IEEE 802.15.4 channels from wire-
less ”alien” nodes results from the coexistence with IEEE 802.11 nodes. Since both
standards operate in the same 2.4 Ghz Industrial, Scientific and Medical (ISM) bands
the probability, in some cases, of both protocols interfere is high [10].

Remaining captured frames and fault-injection events deliberately omitted

Fig. 9. Network monitoring with Fault Injection

To increase the likelihood of interference, we have set the IEEE 802.15.4 coordina-
tor to channel 17 (2.435 Ghz) which is the closest channel to an ”alien” IEEE 802.11
access point operating in channel 6 (2.437 Ghz). The IEEE 802.15.4 network operates
under very lightweighted load conditions, with the network coordinator transmitting
mostly beacon frames.

The results from our analysis, inscribed in Figure 7, show a high number of cor-
rupted frames, some of them grouped in bursts of interference. However, these error
bursts do not violate (at least in this experiment) the upper bound of three consecutive
frame errors defined in the IEEE 802.15.4 standard specification [2].

Furthermore, the statistics file generated was used to be interpreted in a LibreOffice
Calc Spreadsheet equipped with functions to automatically parse the data and gener-
ate charts, like the one represented in Figure 8. This chart represents the Packet Error
Rate (PER), calculated by dividing the number of corrupt frames by the total of cap-
tured frames, and the Packet Delivery Rate (PDR), calculated by dividing the number
of correct frames by the total of captured frames, based on data shown in Figure 7.

5.2 Network monitoring with Fault Injection

In this experiment, intended to demonstrate the functionality and effectiveness of the
fault injection methodology, the same IEEE 802.15.4 network operates in a ”clean envi-
ronment” where only some occasional frame errors, due to the natural electromagnetic
interference from the environment, are expected. However, a fault injection campaign
was conducted, with the following parameters:

– Injection Mode: Preamble Preceded Symbols
– Injection Pattern: AABBCC
– Minimum Duration: 28000 microseconds
– Maximum Duration: 28000 microseconds
– Number of Events: 100
– Minimum Inter-Injection Time: 1000000 microseconds
– Maximum Injection Jitter: 0 microseconds
– Total Duration: Not Defined
– Trigger: Cyclic

After this parametrisation, the Fault Injection Unit transmitted the pattern AABBCC
preceded by the IEEE 802.15.4 preamble in a loop during 28000 microseconds, then

waited 1000000 microseconds. This sequence happened 99 more times as stated in the
Number of Events parameter. Simultaneously, the network monitoring unit listened to
all these interactions then were passed on to Wireshark following the interactions 8 and
9 of Figure 1. An excerpt of the results of this fault injection campaign is illustrated in
Figure 9, where the black backgrounded rows signal the begin and the end of a fault
injection event. The beacon frame transmitted by the network coordinator and signalled
by the red arrow at the right of Figure 9 has been corrupted by the fault injection event.
Other captured frames and fault injection events have been deliberated suppressed from
the screen of Figure 9, using the wireshark own filtering facilities. It is worth noting
that in this context the frames designated as ”Ack” in the Wireshark packet list window
actually represents the fault injection. The AABBCC pattern when analysed by the
Wireshark internal components (in particular, by the Wireshark dissector) is considered
an Acknowledgement frame (see Figure 2).

6 Conclusion and Future Work

In this work we have presented a real-time assessment suite for IEEE 802.15.4 net-
works. This suite provides two services, namely network monitoring and fault injection.

Network monitoring allows the capture and analysis of network traffic under normal
operating conditions and in the presence of errors. Each captured frame is timestamped
with the arrival instant thus supporting the analysis of the real-time characteristics of
the network and with an indication of correctness, thus supporting the analysis of the
network error characteristics.

With this suite effective fault injection campaigns can be easily defined and instan-
tiated while providing means to visualize and record its effects. Such fault injection
campaigns are relevant, to test and validate models describing the operation of network
related protocols and strategies to verify and/or improve it.

In particular, both services provided by the suite are useful to study and validate
innovative research approaches aiming to bring hard real-time guarantees to WSANs.
This has been one of the main motivations for designing and developing this tool.

Future work will include the sophistication of the hardware integration interface.
The sophistication of the fault injection controller will allow more and better ways to
specify a fault injection campaign. Finally, future work will also include improvements
in the tools reading the statistics file, processing it, and outputting fault injection param-
eters that, when inserted in the fault injection tool, will emulate a scenario approximated
to the one represented in the statistics file.

References

[1] AT86RF232 - Low Power, Transceiver for Zigbee, IEEE 802.15.4, 6LoWPAN, RF4CE and
ISM Applications, 2011.

[2] IEEE standard for local and metropolitan area networks–part 15.4: Low-rate wireless
personal area networks (LR-WPANs). IEEE Std 802.15.4-2011 (Revision of IEEE Std
802.15.4-2006), pages 1–314, Sept 2011.

[3] REB232ED-EK - Low Power, Evaluation Kit for Zigbee, IEEE 802.15.4, 6LoWPAN,
RF4CE and ISM Applications, 2011.

[4] P. Bartolomeu and J. Fonseca. An assessment of the IEEE 802.15.4 PHY immunity to WiFi
interference. In Emerging Technologies and Factory Automation (ETFA), 2010, Sept 2010.

[5] C.A. Boano, Zhitao He, Yafei Li, T. Voigt, M. Zuniga, and A. Willig. Controllable radio
interference for experimental and testing purposes in wireless sensor networks. In Local
Computer Networks, 2009., Oct 2009.

[6] C.A. Boano, T. Voigt, C. Noda, K. Romer, and M. Zúñiga. JamLab: Augmenting sensornet
testbeds with realistic and controlled interference generation. In 10th Int. Conference on
Information Processing in Sensor Networks (IPSN), pages 175–186, April 2011.

[7] Gerald Combs. The Wireshark network protocol analyzer. Available at: http://www.
wireshark.org/. Accessed in June 5, 2013.

[8] D. Eckhardt and P. Steenkiste. Measurement and analysis of the error characteristics of
an in-building wireless network. In Annual Conference of Special Interest Group on Data
Communication (SIGCOMM), 1996.

[9] T. Fujiwara, T. Kasami, A. Kitai, and S. Lin. On the undetected error probability for short-
ened hamming codes. IEEE Transactions on Communications, 33(6), June 1985.

[10] I Howitt and J.A Gutierrez. IEEE 802.15.4 low rate - wireless personal area network co-
existence issues. In Wireless Communications and Networking, 2003. WCNC 2003. 2003
IEEE, volume 3, pages 1481–1486 vol.3, March 2003.

[11] Van Jacobson and S McCanne. libpcap: Packet capture library. Lawrence Berkeley Labo-
ratory, Berkeley, CA, 2009.

[12] A Koubaa, S. Chaudhry, O. Gaddour, R. Chaari, N. Al-Elaiwi, H. Al-Soli, and H. Boujel-
ben. Z-monitor: Monitoring and analyzing IEEE 802.15.4-based wireless sensor networks.
In IEEE 36th Conf. on Local Computer Networks (LCN), pages 939–947, Oct 2011.

[13] C.P. O’Flynn. Message denial and alteration on IEEE 802.15.4 low-power radio networks.
In New Technologies, Mobility and Security (NTMS), 2011 4th IFIP International Confer-
ence on, pages 1–5, Feb. 2011.

[14] F. Österlind, A. Dunkels, T. Voigt, N. Tsiftes, J. Eriksson, and N. Finne. Sensornet check-
pointing: Enabling repeatability in testbeds and realism in simulations. In Utz Roedig and
CormacJ. Sreenan, editors, Wireless Sensor Networks, volume 5432 of Lecture Notes in
Computer Science, pages 343–357. Springer Berlin Heidelberg, 2009.

[15] W.-B. Pöttner and L. Wolf. IEEE 802.15. 4 packet analysis with wireshark and off-the-shelf
hardware. In Proceedings of the Seventh International Conference on Networked Sensing
Systems (INSS2010). Kassel, Germany. Citeseer, 2010.

[16] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski, and K. Wehrle.
KleeNet: Discovering Insidious Interaction Bugs in Wireless Sensor Networks Before De-
ployment. In Proceedings of the 9th ACM/IEEE Int. Conference on Information Processing
in Sensor Networks, IPSN ’10, pages 186–196, New York, NY, USA, 2010. ACM.

[17] J. L. R. Souza and J. Rufino. Characterization of inaccessibility in wireless networks - a
case study on IEEE 802.15.4 standard. In Analysis, Architectures and Modelling of Em-
bedded Systems. Proceedings of the Third IFIP TC 10 International Embedded Systems
Symposium (IESS 2009), Langenargen, Germany, September, 2009., September 2009.

[18] J. L. R. Souza and J. Rufino. Analysing and reducing network inaccessibility in IEEE
802.15.4 wireless communications. In 38th IEEE Conference on Local Computer Networks
(LCN), Sydney, Australia, October 2013.

[19] Spartan-3E FPGA family data sheet, August 2009.
[20] W. Xu, Ke Ma, W. Trappe, and Y. Zhang. Jamming sensor networks: attack and defense

strategies. Network, IEEE, 20(3):41–47, 2006.

http://www.wireshark.org/
http://www.wireshark.org/

	A Tool for Real-Time Assessment of IEEE 802.15.4 Networks Through Fault Injection

