
Cassowary: Middleware Platform for Context-Aware
Smart Buildings with Software-Defined Sensor Networks

Pradeeban Kathiravelu
INESC-ID Lisboa

Instituto Superior Técnico,
Universidade de Lisboa

Lisbon, Portugal
pradeeban.kathiravelu@tecnico.ulisboa.pt

Leila Sharifi
INESC-ID Lisboa

Instituto Superior Técnico,
Universidade de Lisboa

Lisbon, Portugal
leila.sharifi@tecnico.ulisboa.pt

Luís Veiga
INESC-ID Lisboa

Instituto Superior Técnico,
Universidade de Lisboa

Lisbon, Portugal
luis.veiga@inesc-id.pt

Abstract
Smart devices sense the environment through their sensors and lever-
age the contextual information derived from the sensor readings to
satisfy system requirements such as energy and carbon efficiency
and user preferences. Smart buildings compose of smart devices,
and local sensors of the devices and device controllers in a coordi-
nated network. Software-Defined Networking (SDN) offers a cen-
tralized view of the entire networking data plane elements to a log-
ically centralized controller. While smart buildings and ubiquitous
computing are heavily researched, later advancements in network-
ing are not exploited in achieving tenant-aware smart buildings.

This paper describes the research for the design, prototype imple-
mentation, and preliminary assessments of Cassowary, a middle-
ware platform for Context-Aware Smart Buildings with Software-
Defined Sensor Networks. By extending SDN paradigm and lever-
aging the message oriented middleware protocols to seamlessly
connect the smart devices of the buildings to the centralized SDN
controller, Cassowary enables context-aware Software-Defined
Smart Buildings.

Keywords
Smart Buildings, Context-Aware Applications, Software-Defined
Networking (SDN), Internet of Things (IoT), Message Oriented
Middleware (MOM), Ubiquitous computing, In-Memory Data Grid
(IMDG), Software-Defined Sensor Networks (SDSN)

1. INTRODUCTION
The word ubiquitous is derived from a Latin root and means exist-
ing everywhere. Aligned with this meaning ubiquitous society en-
visions a society in which services are accessible from anywhere,
at anytime, by anyone and anything. It is beyond person to per-
son or person to object computing. Nowadays, by the advent of
Internet of Things(IoT), which unites everyday things in a huge,
pervasive platform [1]. Smart buildings are a major use case sce-
nario of ubiquitous computing, integrating IoT elements including
sensors, computing elements, and controlling algorithms into the
buildings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org. M4IoT 2015, December
07-11, 2015, Vancouver, BC, Canada c© 2015 ACM. ISBN 978-1-4503-
3731-1/15/12. $15.00 DOI: http://dx.doi.org/10.1145/2836127.2836132

IoT applications compose a highly condensed network of devices
within a small enclosed area, with an exponential growth in the
connected devices. More and more devices are connected to the
network, which traditionally used to be independent dumb devices.
SDN has been proposed as an efficient approach in building IoT
applications and enabling a seamless execution of them [38]. With
the clear separation, and a global view of the entire network readily
available, SDN enables composition of complex networks in a scale
that was previously harder to achieve.

Initially developed targeting the networking domain, the SDN paradigm
of the separation of control from execution of the logic has been
generalized and extended to computing systems, by implement-
ing them as Software-Defined Systems (SDS), including Software-
Defined Storage [37], Software-Defined Data Centers (SDDC) [13],
and Software-Defined Infrastructure [17]. Consisting of a programmable
interface, control plane of software-defined systems provides the
logic for the data plane to execute.

While there are researches and preliminary developments on smart
and energy efficient smart buildings [35] with IoT applications, the
existing approaches fail short in addressing the requirements at sys-
tem level as well as providing control to the tenants of the building.
They are either generic solutions that are agnostic to the dynamic
nature and location of tenants, or too specific and focused to a given
problem. Hence they lack of configurability for the building spaces
shared by multiple tenants with varying preferences. An extensive
and complete approach in managing building complexes with dif-
ferent user or tenant preferences should be researched and imple-
mented. Moreover, SDN should be extended and exploited for the
sensor network in the smart buildings, in a loosely coupled manner.

In order to construct a context-aware smart building, it is essential
that the devices of the building should be equipped with a local
sensor and controller. Exploiting SDN, a Software-Defined Sen-
sor Network can be built to centrally coordinate and orchestrate
the devices attached to the sensors. While sensors and local con-
trollers are used in pervasive computing for smart devices, efficient
software-defined smart buildings are yet to be researched. While
there are research efforts on smart buildings and energy efficiency,
there is a gap in the research space that can be addressed by ex-
tending and deploying a centralized controller to orchestrate the
devices in the buildings, which themselves are extended to operate
in a sensor network.

In this paper we present Cassowary, a middleware platform for
smart buildings, leveraging SDN to connect the IoT devices to a
logically centralized controller and messaging broker. Cassowary

extends the SDN paradigm for smart buildings, while leveraging
message oriented middleware (MOM) to propagate the environ-
ment details sensed by the sensors of the heterogeneous devices. It
designs and builds a sensor network, connecting each of the devices
in the smart building. As major use cases, Cassowary first func-
tions as a tenant-aware energy provisioning framework for smart
building complexes, leveraging the software-defined building con-
cepts. It also satisfies user requirements partially, in multi-tenanted
buildings.

In the upcoming sections, we further analyze the proposed Cassowary
middleware architecture for smart buildings. We continue to dis-
cuss the preliminary background information on the Internet of
Things and smart buildings, in Section 2. Section 3 discusses the
design and architecture of the proposed Cassowary middleware
framework, while discussing how SDN can be leveraged to cen-
trally coordinate the sensor network of the smart devices in the
building complex. Section 4 elaborates the preliminary implemen-
tation details of Cassowary with a feasibility assessment. Finally,
Section 5 drives us to the conclusion of this research discussing its
current state and the possible future enhancements.

2. BACKGROUND AND RELATED WORK
In this section we outline the concepts that we need to explain the
details of Cassowary in the rest of this paper.

Internet of things (IoT). IoT is realized as loosely coupled smart
objects, connected to be composed into a network [20]. Inspired by
the success of radio-frequency identification (RFID) [40] to offer
a representation of the objects in an interconnected network, fur-
ther developments exploit RFID to implement IoT or Internet of
Objects [42]. Loose coupling among the multiple heterogeneous
devices is essential for a successful installation or deployment of
an IoT scenario. Fog computing is a paradigm introduced by Cisco
Systems [5] to support wireless data transfer via IoT.

MOSDEN is an IoT middleware, specifically targeting the mobile
devices that generally have limited availability of resources [27].
People centric sensing, which defines how the system is perceived
by the occupants of the building, offers a cost effective solution for
a multi-tenanted building [14]. An IoT middleware platform should
be scalable and capable of effectively propagating the contextual
information and policies.

In-Memory Data Grids (IMDGs) in Ubiquitous Computing. [28]
IMDGs such as Hazelcast [16], Infinispan [23], and GridGain [36]
offer a larger resource pool with a unified view of computing re-
sources, while executing on top of a physically distributed com-
puter cluster. Infinispan has also been extended to execute on top
of the Android mobile devices in addition to the desktop comput-
ers. Computers and smart devices can create an in-memory data
grid cluster to share computing resources among themselves, while
distributing the execution and data uniformly. Hence smaller de-
vices can initiate larger execution, while being connected to the
cluster, as the computing resources of all the contributing nodes
will be contributed to the execution cluster. MEDIator [18] is a
data sharing synchronization platform built on top of an Infinispan
cluster to offer access to data stored in heterogeneous devices and
data stores, adhering to the principles of pervasive computing.

Message Oriented Middleware. Message Oriented Middleware [9]
platforms can be leveraged for connecting sensors and controllers
of the smart devices through messaging. By publishing the contex-

tual information as certain topics to a logically centralized broker,
while listening to relevant messages from the other devices by sub-
scribing to the respective topics, a device can communicate with
other devices to form a loosely coupled sensor network without
actually forming a static link [31]. Hence such a virtual network
formed by messaging protocols remain fault-tolerant as devices can
join and leave the network in a seamless manner, without propagat-
ing failures upstream.

Many message oriented middleware protocols such as the Advanced
Message Queuing Protocol (AMQP) [39], MQTT [21], Simple /
Streaming Text Oriented Message Protocol (STOMP), OpenWire,
or XMPP [29] exists, along with broker implementations that lis-
tens to the messaging publishers while letting the subscribers to
subscribe and listen to their interested sub set of information, shared
originally by the publishers. There have been research efforts on
implementing communication across the IPv6-enabled pervasive
devices through message oriented middleware [33]. Simple/Streaming
Text Oriented Message Protocol (STOMP) has been used for en-
abling pervasive communication across the devices [33]. Many
messaging brokers such as Apache ActiveMQ [30] and Apache
QPid provide open source implementation of the messaging pro-
tocols.

Software-Defined Sensor Networks (SDSN). Software-defined
wireless sensor networks have been built in research [22, 43, 15],
by leveraging the OpenFlow [24] SDN controller. However, they
do not leverage the sensor networks in developing an extensible
tenant-aware smart building. Sensor OpenFlow [22] discusses the
challenges in adopting SDN into Wireless Sensor Networks (WSN)
and elaborates how the SDSN architecture would make the wireless
networks more generic and less application-specific.

Software-Defined Buildings (SDB). Software-Defined Buildings
is a term coined by the University of California at Berkeley [10],
which intends to increase the programmability and reusability of
the buildings’ devices, with improved energy efficiency. Software-
defined buildings define a software platform that increases the pro-
grammability and compatibility of variable appliances inside a build-
ing or a multi-building campus, which function as a building oper-
ating system (BOS) atop which the other firmware applications of
the other appliances execute [10].

Building Application Stack (BAS) provides an API for the building
applications to build on top of a modular architecture enabled by
the building controller software platform, increasing the reusability
of the building applications [34]. By introducing a building oper-
ating system and an API to build atop, Software-Defined Buildings
operate as an effective development paradigm for smart buildings.
Message oriented middleware platforms can be exploited to build
generic SDSN systems for smart buildings, which can be extended
by receiving user intents and system policies as input, and consider
them in decision making.

Context-Aware Applications. Context-aware applications sense
the environmental changes and act accordingly, such as provid-
ing heating, ventilating, and air-conditioning (HVAC) [12] in a
power-efficient manner. In addition to such system-wide parame-
ters, ubiquitous computing requires the buildings to respond to the
user preferences in a seamless manner, to ensure user comfort with
less power wastage [6]. Buildings are developed to be more power
efficient, consisting of context-aware [4] smart devices.

Related Work. Aware Home [19] deploys a smart floor with a few
tiles that are strategically located to collect footstep information of
the occupants. The footstep information is further used in many
use cases such as finding lost objects and supporting the elderly.
Deploying autonomous intelligent agents for pervasive computing
and smart buildings has been researched for its technical and social
challenges [8]. When a building is occupied by multiple tenants, all
the constraints and preferences of every tenant may not be satisfied.
However, an efficient partial utility based approach will offer higher
overall quality of service (QoS) to the tenants. There have been
research efforts in reducing energy wastage in buildings shared by
multiple tenants [3].

While In-Memory Data Grids are often used in research for dis-
tributed execution, their contribution for smart buildings needs fur-
ther research. SDN and distributed shared memory frameworks
such as Infinispan should be exploited to build a comprehensive
platform for tenant-aware smart buildings. Leveraging message
oriented middleware as the northbound user-facing API of SDN
controllers is expected to offer more use cases for SDN, along
with more loose coupling. Extending them to provide a Software-
Defined Sensor Network for smart buildings is an interesting re-
search question.

3. SOLUTION ARCHITECTURE
Cassowary has been designed with a layered architecture con-
sisting of two core layers. In the bottom is, network layer, which
consists of the SDN controller and data plane. Above the network
layer is, appliance layer, which is responsible for the integration
and execution of the smart appliances. These layers are mostly
logical views, than physical, as a device can often be represented
in both layers. For example, a sensor, as a part of the device, is
physically part of the appliance layer. However, it also is part of
the sensor network that is composed through messaging, and hence
can logically be considered a part of the network layer.

3.1 Deployment Architecture
The deployment consists of computing devices that contribute to
a Cassowary IMDG cluster. Cassowary configurations such as
profiles and policies are stored in Configuration Data Store, an in-
memory data store. The cluster executes instances of a Parser
and a Builder. The Parser parses the building/system profile,
user/tenant profiles, and policies. The building/system profile is
a single configuration file containing the properties specific to the
building or the system, such as power consumption, HVAC, and
lighting policies. User/tenant profiles are specific to each user/tenant
in the building, mostly defining the personal preferences of the oc-
cupants of the building. Policies define how the Builder computes
the values of the different parameters of the deployment based on
the profiles.

The computing devices are hosts that are connected to the SDN
switches in the data plane. The SDN switches are coordinated by
the SDN controller deployment. Control plane further consists of
the message broker cluster and Event Listener cluster. SDN con-
troller and Event Listener are loosely connected to the message bro-
ker through publish-subscribe (pub/sub) pattern [11] based on the
messaging protocols such as AMQP. Event Listener further sub-
scribes to the information published by the sensors of each of the
smart appliance. Similarly, the controller in each of the devices
subscribes to the relevant topics through the Event Listener. This
indirectly lets the SDN controller to orchestrate the sensors and
smart appliances in a network. Here, each sensor usually has a

limited functionality, where the information sensed by each of the
sensor is propagated to the other devices through the Event Listener
to the appliances subscribing to the relevant topic. The topic can be
anything ranging from temperature, noise level, visible light, wind
speed, and relative humidity.

Figure 1: Cassowary Deployment Architecture

3.2 Appliance Layer
Sharing data and execution flows across multiple smart devices, as
proposed in our previous work [18] has been extended and used for
the devices confined in a building. Multiple nodes including desk-
tops, laptops, and smart Android devices running Infinispan [23]
are leveraged and configured to create a smart cluster, known as a
Cassowary cluster. The Cassowary cluster consists of the pro-
files and policies. It further executes the computations required to
dynamically alter the system based on the context data, as well as
the occupants in the building at any time.

A device controller of a smart equipment is a small firmware at-
tached to the equipment that can control the equipment with limited
storage and processing capacity. The equipments are connected to
the computer cluster via their controllers as thin clients of the clus-
ter. The cluster is made of computers and smart mobile devices
such as mobile phones and tabs, which execute an in-memory data
grid to provide a resource pool to the control panel. The comput-
ers in the cluster also function as surrogates to the devices in the
proximity, while the cluster further provides processing and storage
capacity to the controllers. The cluster is composed of computers
and android devices, which are running Infinispan.

Features available to a few devices such as motion, temperature,
or humidity detection can be shared across the cluster, which can
be used by the other devices. For example, a motion detector con-
nected to the lighting system of the building can be leveraged by
the heating of the building, by utilizing the shared information in
the cluster. Extending the software-defined sensor network, even
the devices that do not have a sensor on their own can leverage the
context information received from the other tenants and shared with
the other interested devices by subscribing.

The cluster is configured across multiple buildings in the building
complex. Named cache instances are used to represent each build-
ing and building profiles. These cache instances are independent

from other cache instances, and hence provide a multi-tenanted
cluster to represent the multiple buildings. Moreover, data related
to the appliances in each building is stored in the instances located
inside each building, leveraging the near caching provided by the
underlying in-memory data grid platforms. This further reduces the
communication overhead that may occur due to unnecessary com-
munication between the buildings.

The buildings are occupied by tenants, which may also freely roam
across different buildings. Tenant profiles are also represented, and
building profiles as well as the profiles of the tenants occupying the
building are considered in controlling the appliances in the build-
ing, or an enclosure in a smaller granularity, such as a room. Execu-
tions are passed on to the larger computing devices, as the compu-
tational resources are limited in the smart appliances. They merely
operate as the sender and receiver of the context information.

Estimating the location of the occupants in a smart building has
been previously researched, and there are many solutions based on
ubiquitous computing. For the sake of simplicity, proximity of the
tenants is estimated by their mobile devices (mostly mobile phones)
in Cassowary, assuming a mobile device in most cases remain
close to their owner. That means, the relevant RFID of the mobile
devices can be used to identify those who are in the building, with
a considerably lower rate of error, which may occur when the mo-
bile devices are misplaced or kept away from the owner. Based on
the policies, ideal values will be calculated in a distributed man-
ner in the Cassowary cluster. In many cases, the ideal value will
be a compromise among the tenant profiles. The tenant proximity
plays a significant role in deciding the impact of the specific ten-
ant in an enclosed area such as a room. For example, the expected
temperature in a room may be calculated as a weighted average of
the preferred temperatures of the occupants, based on their location
and distance from the air conditioner. A time average is considered
to avoid jitter effect caused by walking tenants. Hence the tenants
who remain in a single place will influence the estimates for the
closest devices.

Figure 2: Appliance Layer Higher Level View

3.3 Network Layer
Figure 3 shows the network layer of a Cassowary deployment.
The core of the deployment is an SDN controller. While any SDN
controller can work with the architecture, OpenDaylight has been
chosen as it offers a modular architecture based on Apache Karaf [26]
OSGi run time. The Model-Driven Service Abstraction Layer (MD-
SAL) of OpenDaylight [25] further enables easy extension of the
controller with more bindings. OpenDaylight controller by default
consists of REST northbound bindings, through which the data

tree, remote procedure calls (RPCs) [32], and notifications are ex-
posed. Messaging4Transport is an OpenDaylight bundle that ex-
poses the OpenDaylight data tree as messages in a messaging pro-
tocol. While AMQP has been used as the default messaging proto-
col, other messaging protocols can be implemented following the
same design.

Figure 3: Network Layer Higher Level View
The data tree of OpenDaylight MD-SAL is leveraged to store the
dynamic context data sensed by the sensors of the heterogeneous
appliances. Each of the appliances subscribes to the relevant topics,
while publishing the relevant information sensed by their sensor, to
be written to the data tree. The controller is deployed physically
distributed in a cluster, to avoid single point of failure.

The logical separation of appliance layer from network layer also
enables a less complicate execution of Cassowary. The compu-
tations to decide the ideal values for the device parameters from
the context information is executed inside the data grid which is
deployed on top of the computing nodes. Each device is mapped
as an agent in the calculations inside the data grid, where an agent
executes independently as a cloudlet. Hence, each virtual agent
represents a physical device in the building.

Integrating the device controller and sensors to the SDN controller
enables quicker response to the dynamic changes in the context
information. The SDN controller is often a super-computer or a
cluster of high-end servers, where the in-memory data grid is com-
posed of the resources contributed by utility computers. Hence,
context-awareness is ensured by storing the dynamic data inside
the data tree of the controller, instead of storing it along side the
profile and policy information inside the data grid. On the other
hand, more static information such as the tenant and system pro-
files, and policies are stored in the data grid, as they are mostly
static information.
4. IMPLEMENTATION
A prototype of Cassowary has been implemented as a middle-
ware platform for software-defined smart buildings. OpenDaylight
Beryllium development branch has been chosen as the SDN con-
troller, which is the core of the Cassowary deployment. AMQP
is used as the messaging protocol, with Apache ActiveMQ-5.12.0
used as the broker. The messaging oriented middleware bindings
for SDN has been developed 1 as an AMQP northbound binding for
OpenDaylight controller.

Clustered deployments of ActiveMQ and OpenDaylight are used,
in order to minimize the single point of failures while ensuring
fault-tolerance. Infinispan-7.2.4.Final has been used as the in-memory
data grid, deployed on top of multiple computing nodes. As a
1https://wiki.opendaylight.org/view/
Messaging4Transport:Main

https://wiki.opendaylight.org/view/Messaging4Transport:Main
https://wiki.opendaylight.org/view/Messaging4Transport:Main

prototype implementation for early assessments, the smart build-
ings were simulated by extending CloudSim [7] cloud simulator
by depicting the appliances by extending Cloudlets. Oracle Java
1.7.0_55 has been used as the development language of Cassowary.
4.1 Cassowary Minimalized Approach
Adopting household appliances as smart devices is a major chal-
lenge faced by ubiquitous computing attempts and approaches. There
have been efforts on formalizing the calculation of the potential
values for different parameters in a multi-tenanted building. Er-
gonomics of the thermal environment - Analytical determination
and interpretation of thermal comfort using calculation of the Pre-
dicted Mean Vote (PMV) and Predicted Percentage Dissatisfied
(PPD) indices and local thermal comfort criteria [2] looks into the
HVAC aspects. Cassowary simplifies, generalizes, and applies
the formulae for different environmental properties.

Cassowary deployment is intentionally kept minimal to ensure
that the system can be deployed with the commonly available com-
ponents and utility devices. The environment sensors in day to day
life such as the ones in the air conditioners are exploited as the
sensors. Sensors are in fact made optional in Cassowary as the
devices without sensors leverage the context information from the
other sensors. The device controller alters the state of the appliance
based on the context information. This can be achieved by extend-
ing or modifying the existing controllers/switches of the devices.
An overlay network of the sensors from the devices is composed as
a software-defined sensor network, which is further exploited for
context-aware smart buildings.

Tenant Proximity. Distance of the tenant is an important measure
in ensuring quality of service to the individual tenant. The distance
is estimated by publishing messages to the controller, which will
be propagated to the subscribed Event Listener instance connected
to the devices. The distance of the tenants also is used to find the
number of tenants in any enclosure, as the tenants farther than a
specified distance can be ignored or neglected in the calculations
for the specific device, as the device’s impact will be negligible
for the tenant, and the tenant preferences will be negligible to the
device controller.

dmin is defined as the distance to the nearest tenant for the given
enclosure. dmin is used to find whether the area can be considered
to be empty or occupied. Pervasive displays [41] in the building
can be dimmed or even hibernated when there is no tenant in the
close proximity, to save power while avoiding unnecessary light
and acoustic pollution.

Temperature Control. The temperature control of any room is
associated with the occupied tenants in proximity to the heating
or air conditioning (HVAC) system and their preferred or comfort
level in temperature, as shown by Equation 1. This simplified equa-
tion is set as temperature policy in the policy configurations. More
intuitive equations can be set, replacing the default policies.

T =

n∑
i=1

(Ti
xi
)

n∑
i=1

(1
xi
)

(1)

Here,
T - Temperature chosen by the air conditioning system.
n - Number of tenants considered to be in close proximity.
Ti - Preferred temperature from the tenant profile of tenant i.
xi - Distance of tenant i to the HVAC system.

Illumination Control. Light sensors may be attached to a few
light sources, while other light sources such as regular light bulbs
may just consume the information sensed and shared by the other
light sensors. When the natural light is greater than a specific value,
the light sources are turned off. Similarly when there is no tenants
in a specific enclosed area, the area is dimmed. The brightness of
the light sources in the building is defined by a function of the dis-
tance to the nearest tenant and the natural light such as the day light
inside the enclosure, as shown by Equation 2.

L = F (dmin, Ls) (2)

Here,
L - Light intensity to ensure.
Ls - Sensed external or natural light.

If the light source does not have a local light sensor, it will use an
estimate from the nearest light sources, with the statistical infor-
mation. Both the distance to the occupants and sensed external il-
lumination are inversely popular to the illumination expected from
the building’s light sources. Hence, the Equation 2 can further be
elaborated by Equation 3.

L = k ∗ 1

dmin
∗ 1

Ls
(3)

Here k is often a constant value defined by the system policies or
derived from the historical or statistical information.

4.2 Feasibility Assessment
We evaluated Cassowary for its functionalities, while estimating
its performance using the middleware framework along with sim-
ulations for the building and sensor networks. Multiple scenarios
have been modeled and verified for a simplified scenario. Here we
will discuss a few simplified application scenarios of Cassowary,
elaborating how quality of service (QoS) is guaranteed.

Table 1: Quality of Service Assessment of Cassowary
Feature HVAC Light Sources TV/Displays

Energy Efficiency X X X
Tenant Comfort X X N/A

Acoustic/Light Pollution N/A X X

Table 1 indicates the overall quality of service achievements for
each of the devices considered and properties. As assessed for
HVAC, light sources, and TV or displays, Cassowary covers the
energy efficiency, tenant comfort, and prevention of acoustic and
light pollution, wherever applicable.

Cassowary ensures energy efficiency by automating the HVAC
and light sources in an attempt to minimize the energy wastage,
while also not compromising the tenant preferences as much as
possible. Here, properties such as acoustic pollution are not ap-
plicable for HVAC, where tenant comfort is usually not associated
with the displays. However, these properties can be changed from
the properties files, or based on the statistical information derived
from the Cassowary cluster.

5. CONCLUSION AND FUTURE WORK
Cassowary leverages OpenDaylight SDN controller and integrates
the controller with message oriented middleware, in order to pub-
lish the sensed environment changes and subscribe to the relevant
topics. By having a sensor and controller local to each device,
Cassowary offers a context-aware sensor network for smart build-
ings. By storing the user preferences in a tenant-aware manner in a

distributed cache, Cassowary functions as a middleware platform
for multi-tenanted energy provisioning in the buildings.

Preliminary assessments on the Cassowary prototype implemen-
tations and models indicate a potential for achieving software-defined
smart buildings by leveraging the Cassowary solution architec-
ture. A full-fledged deployment over a real building complex is
a future work. Upon building on a building with a sensor net-
work, Cassowary is expected to offer energy and carbon effi-
ciency, while adhering to the principles of ubiquitous computing.
Currently Cassowary focuses on mostly a single building, where
it can further be extended to coordinate building complexes com-
posed of multiple buildings, to enable energy efficient building
complexes and cities. This will also enable sharing of computing
and energy resources across the buildings efficiently.

Acknowledgements: Special thanks to Ed Warnicke, Principal Engineer at Cisco and
TSC Member of OpenDaylight for his continuous guidance in working with Open-
Daylight MD-SAL. This work was supported by national funds through Fundação
para a Ciência e a Tecnologia with references UID/CEC/50021/2013, PTDC/EEI-
SCR/6945/2014.

6. REFERENCES
[1] Ubiquitous network society(itu),

http://www.itu.int/world2006/forum/ubiquitous_network_society.html.
[2] Anonymus AC08024865. Ergonomics of the thermal environment-Analytical

determination and interpretation of thermal comfort using calculation of the
PMV and PPD indices and local thermal comfort criteria. ISO, 2005.

[3] CJ Axon, SJ Bright, Tim J Dixon, KB Janda, and M Kolokotroni. Building
communities: reducing energy use in tenanted commercial property. Building
Research & Information, 40(4):461–472, 2012.

[4] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on
context-aware systems. International Journal of Ad Hoc and Ubiquitous
Computing, 2(4):263–277, 2007.

[5] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pages 13–16. ACM,
2012.

[6] Bill Bordass, Ken Bromley, and Adrian Leaman. User and occupant controls in
office buildings. In International conference on building design, technology and
occupant well-being in temperate climates, Brussels, Belgium, pages 12–5,
1993.

[7] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23–50, 2011.

[8] Vic Callaghan, Graham Clarke, and Jeannette Chin. Some socio-technical
aspects of intelligent buildings and pervasive computing research. Intelligent
Buildings International, 1(1):56–74, 2009.

[9] Edward Curry. Message-oriented middleware. Middleware for communications,
pages 1–28, 2004.

[10] Stephen Dawson-Haggerty, Jorge Ortiz, Jason Trager, David Culler, and
Randy H Katz. Energy savings and the “software-defined” building. Design &
Test of Computers, IEEE, 29(4):56–57, 2012.

[11] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys
(CSUR), 35(2):114–131, 2003.

[12] Kwong Fai Fong, Victor Ian Hanby, and Tin-Tai Chow. Hvac system
optimization for energy management by evolutionary programming. Energy
and Buildings, 38(3):220–231, 2006.

[13] Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella.
Toward software-defined middlebox networking. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, pages 7–12. ACM, 2012.

[14] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and
future directions. Future Generation Computer Systems, 29(7):1645–1660,
2013.

[15] Zhi-jie Han and Wanli Ren. A novel wireless sensor networks structure based
on the sdn. International Journal of Distributed Sensor Networks, 2014, 2014.

[16] Mat Johns. Getting Started with Hazelcast. Packt Publishing Ltd, 2013.
[17] G Kandiraju, Hubertus Franke, MD Williams, Malgorzata Steinder, and

SM Black. Software defined infrastructures. IBM Journal of Research and
Development, 58(2/3):2–1, 2014.

[18] Pradeeban Kathiravelu and Ashish Sharma. Mediator: A data sharing
synchronization platform for heterogeneous medical image archives. In

Workshop on Connected Health at Big Data Era (BigCHat’15) , co-located
with 21 st ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD 2015). ACM, 2015.

[19] Cory D Kidd, Robert Orr, Gregory D Abowd, Christopher G Atkeson, Irfan A
Essa, Blair MacIntyre, Elizabeth Mynatt, Thad E Starner, and Wendy
Newstetter. The aware home: A living laboratory for ubiquitous computing
research. In Cooperative buildings. Integrating information, organizations, and
architecture, pages 191–198. Springer, 1999.

[20] Gerd Kortuem, Fahim Kawsar, Daniel Fitton, and Vasughi Sundramoorthy.
Smart objects as building blocks for the internet of things. Internet Computing,
IEEE, 14(1):44–51, 2010.

[21] Dave Locke. Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM
developerWorks Technical Library], available at http://www.ibm.
com/developerworks/webservices/library/ws-mqtt/index. html, 2010.

[22] Tie Luo, Hwee-Pink Tan, and Tony QS Quek. Sensor openflow: Enabling
software-defined wireless sensor networks. Communications Letters, IEEE,
16(11):1896–1899, 2012.

[23] Francesco Marchioni. Infinispan Data Grid Platform. Packt Publishing Ltd,
2012.

[24] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:
enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, 2008.

[25] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight:
Towards a model-driven sdn controller architecture. In 2014 IEEE 15th
International Symposium on, pages 1–6. IEEE, 2014.

[26] Achim Nierbeck, Jamie Goodyear, Johan Edstrom, and Heath Kesler. Apache
Karaf Cookbook. Packt Publishing Ltd, 2014.

[27] Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Dimitrios
Georgakopoulos, and Peter Christen. Mosden: An internet of things middleware
for resource constrained mobile devices. In System Sciences (HICSS), 2014
47th Hawaii International Conference on, pages 1053–1062. IEEE, 2014.

[28] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and survey of
cloud computing systems. In INC, IMS and IDC, 2009. NCM’09. Fifth
International Joint Conference on, pages 44–51. Ieee, 2009.

[29] Peter Saint-Andre. Extensible messaging and presence protocol (xmpp): Core.
2011.

[30] Bruce Snyder, Dejan Bosnanac, and Rob Davies. ActiveMQ in action. Manning,
2011.

[31] Eduardo Souto, Germano Guimarães, Glauco Vasconcelos, Mardoqueu Vieira,
Nelson Rosa, and Carlos Ferraz. A message-oriented middleware for sensor
networks. In Proceedings of the 2nd workshop on Middleware for pervasive
and ad-hoc computing, pages 127–134. ACM, 2004.

[32] Raj Srinivasan. Rpc: Remote procedure call protocol specification version 2.
1995.

[33] Tomasz Szydło, Paweł Suder, and Jakub Bibro. Message-oriented
communication for ipv6-enabled pervasive devices. Computer Science,
14(4)):667–667, 2013.

[34] Jay Taneja, Andrew Krioukov, Stephen Dawson-Haggerty, and David Culler.
Enabling advanced environmental conditioning with a building application
stack. In Green Computing Conference (IGCC), 2013 International, pages
1–10. IEEE, 2013.

[35] Paulo Filipe de Almeida Ferreira Tavares and António Manuel de
Oliveira Gomes Martins. Energy efficient building design using sensitivity
analysis—a case study. Energy and Buildings, 39(1):23–31, 2007.

[36] GridGain Team. Gridgain: In-memory computing platform. 2007.
[37] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony

Rowstron, Tom Talpey, Richard Black, and Timothy Zhu. Ioflow: A
software-defined storage architecture. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 182–196. ACM,
2013.

[38] Angel Leonardo Valdivieso Caraguay, Alberto Benito Peral, Lorena Isabel
Barona Lopez, and Luis Javier García Villalba. Sdn: Evolution and
opportunities in the development iot applications. International Journal of
Distributed Sensor Networks, 2014, 2014.

[39] Steve Vinoski. Advanced message queuing protocol. IEEE Internet Computing,
(6):87–89, 2006.

[40] Roy Want. An introduction to rfid technology. Pervasive Computing, IEEE,
5(1):25–33, 2006.

[41] Mark Weiser. The computer for the 21st century. Scientific american,
265(3):94–104, 1991.

[42] Evan Welbourne, Leilani Battle, Gregory Cole, Kyle Gould, Kyle Rector,
Samuel Raymer, Magdalena Balazinska, and Gaetano Borriello. Building the
internet of things using rfid: the rfid ecosystem experience. Internet Computing,
IEEE, 13(3):48–55, 2009.

[43] Deze Zeng, Toshimasa Miyazaki, Song Guo, Tsuneo Tsukahara, Junji
Kitamichi, and Teruaki Hayashi. Evolution of software-defined sensor
networks. In Mobile Ad-hoc and Sensor Networks (MSN), 2013 IEEE Ninth
International Conference on, pages 410–413. IEEE, 2013.

	1 Introduction
	2 Background and Related Work
	3 Solution Architecture
	3.1 Deployment Architecture
	3.2 Appliance Layer
	3.3 Network Layer

	4 Implementation
	4.1 Cassowary Minimalized Approach
	4.2 Feasibility Assessment

	5 Conclusion and Future Work
	6 References

