Chapter 9
Extra Performance Architecture (XPA)

The OSA architecture offers a wide range of solutions for distributed fault tolerance. However,
the conjunction of the anributes offered, especially the complexity inherent in its generality and
openness, precludes its successful use in certain niche applications.

Indeed, for a number of critical applications, where high-performance, real-time and fault-
tolerance are simultaneous goals, those major attributes of OSA become a constraint. The
difficulty arises in the time domain, i.e., on the ability of offering assurances of timeliness, and
on the user-perceived responsiveness and throughput of the system.

The Delta-4 Extra Performance Architecture (XPA) introduces mechanisms that support
explicitly the requirements of real-time systems, with the introduction of priorities and
deadlines, and the requirements of high-performance, with respect to both throughput and
response, However, XPA will inherit as much of the OSA architecture as is possible within the
constraints imposed by these requirements, and XPA and OSA will retain compatible interfaces
as far as possible, see annexe H,

To meet performance and timeliness targets, XPA will inevitably lose in openness and
generality. The functionality of the communication system is limited to that required to support
XPA applications running under XPA-Deltase, Standards that cannot address real-time needs
will not be used. There will be layer and service elimination in the communication protocols,
and fail-silent hardware will be used ro avoid the need for validation of computation results.
Only homogeneous hosts will be accommodated, to avoid the performance overhead of
conversion of data representation,

The XPA workpackage began much more recently than other work in Delta-4. This chapter
therefore contains a synthesis of concepts and ideas that are less mature than those presented
elsewhere. Since the present project is nearly completed at the time of writing; it is likely thata
complete implementation of the concepts described will require further work.

9.1. Objectives and Definitions

The strategic objective of XPA is to give a Delta-4 solution to specialized application scenarios,
where the OSA architecture proves to be inadequate. In Delta-4, these scenarios are found in the
fields of real-time and high-performance systems. Since Delta-4 is aimed at providing
distributed fault tlerance, technically, the XPA architecture has the difficult goal of combining:

» distribution;

= real-time:

+ dependability;

« high performance,

212 9. Extra Performance Architecture (XPA)

Thus, XPA is required to provide timeliness assurances, by performing actions within
bounded and known time intervals. The start and end of such an interval are called Jiveline and
deadline in this chapter and chapter 5. All system support mechanisms, including
communications, must have controlled latency and synchronism.

XPA is decoupled as far as possible from any particular approach to the issue of real-time
scheduling mechanisms. The architecture is therefore open 1o whatever scheduling strategy a
particular application requires, and can make use of whatever scheduling primitives are offered
by the underlying LEX.

Each service of an XPA system is therefore assigned a precedence that provides a generic
measure of both its importance and urgency. The precedence is an abstract data type that is
interpreted by a system-dependent “Precedence Manager” into a set of scheduling parameters
suitable for presentation 1o the underlying LEX scheduling mechanism,

The same precedence manager is used to interpret the precedence throughout a single XPA
system, and schedulers of different resources, such as processor time and network bandwidth,
use compatible strategies, in the following sense:

+ XPA permits deterministic preemption of computation at predefined points a
bounded execution distance apart (see section 9.4.3.2). Similarly, message
transmission can be preempted in bounded time berween individual frames. Whereas
the LEX machinery for deciding between the instantancous precedences of two
computations might be complex and vary with time (e.g., [Jensen et al. 1983]), in
the communication system precedence comparison can be simple, since the time
granularity of communication is normally much shorter than that of computation.
Indeed, a message carrying a typical RPC is normally contained in a single
communication frame.

Thus the precedence manager exports an operation to tell an XPA resource allocator which
of two precedences should be preferred. Precedences are inherited by all componenits on which
a distributed computation depends, and the “inherit” operation is also exported by the
precedence manager, since it is closely associated with the scheduling strategy.

In the XPA protatype, the LEX is the Real- Time UNIX developed in phase 1 of the Delta-4
project [Bond 1987, SYC200], and the precedence manager interprets the precedence as a
“priority”, or measure of importance, and a “targetline”, or measure of urgency. In the context
of this LEX, a service A is said to have higher precedence than a service B, if:

« either A has higher priority than B;

* or A has the same priority as B, and A has an carlicr targetline.

In another implementation, the XPA precedence may be interpreted in a radically different
way. For example, section 9.6.2.3.1 describes how a fixed cyclic schedule calculated at
design-time can be encoded into an XPA precedence and reproduced at run-time by a suitable
precedence manager and LEX.

The differing imporance and urgency of services are recognised by assigning precedences
to actions, and allowing high precedence actions to preempt low precedence ones. In a
distributed system, the precedence concept should of course be propagated throughout the
information path. In consequence, high-precedence messages in the communication system
should also be allowed to overtake low-precedence ones.

Distributed fault tolerance in Delta-4 relies on message passing. The order and agreement
attributes needed to preserve consistency of replicas should be guaranteed by the distribution
support (group management and communications).

A distributed real-time system requires the maintenance of a distributed time service, which
provides an abstraction of global time. This is required 1o ensure participant and replica
agreement on time, for example: to trigger actions at pre-determined instants; to recognise when

9.1. Objectives and Delinitions 213

events occurred; or to provide replicas of a component with a common knowledge about time, 2
general condition for replica group determinism in real-time. Both an internal and an external
time reference may need to be provided. The internal time is provided through a global clock
approximation, maintained by a distributed time server. The external time consists of one of the
standards of time, whichever is necessary for the pardcular use of a given XPA gystem.

A Delta-4 XPA sub-system is able to coexist and inter-work with Delta-4 OSA sub-
systems. Application objects are portable between XPA and OSA systems; in both cases the
application objects are supported in Deltase envelopes or capsules. XPA Deltase supplies the
same services as OSA Dellase, with some variations to support real-time and high-performance
applications (see scction §9.4).

Disclaimers: XPA is aimed at providing support for application in which the cost of
failure — including the failure to meet real-time constraints — is measured in financial terms
rather than in terms of potential loss of human lives, i.e., XPA is nor aimed at safety-critical
applications although, like OSA, it may be usefully applied 1o safety-relaied applications (see
annexe A).

Fault-tolerant sensing and actuating are not directly addressed within the present phase of
the Delta-4 project. Input/output implications and requirements are however discussed in a
Delta-4 context in chapeer 12.

9.2. Overview

This section surveys the issues treated in the present chapter.

9.2.1. Real-Time and Performance

One major objective of XPA is 1o support real-time applications, which are defined as
applications that are able to offer an assurance concerning the timeliness of service provision.

XPA in fact aims to support both hard real-time applications, which are deemed to have
failed if they miss their deadlines, and soft real-time applications, which may miss their
deadlines in some circumstances. An XPA system may also support non-real-time applications,
which have no timing constraints,

XPA is also addressing applications where high performance is required, not only locally
to hosts, but in the distributed environment. Special attention is thus given to the
responsiveness of the system to distributed actions, optimization of the distributed user-to-user
data paths, and development of efficient group communication protocols.

9.2.2. Dependability and Computational Models

The fact that distributed fault-tolerance is associated with real-time, also has implications in the
dependability techniques o be used in XPA.

In XPA, fail-silent hosts provide the basis for error detection and replication provides the
basis for emor recovery,

Consequently, backup replicas can either be active or passive. The possible models differ
in the role and degree of activity they assign to each replica. The requirements of XPA were in
the origin of a new dependability model in Delta-4: the leader-follower, or semi-aciive
replication model. The rationale and advantages of this model for real-time fault tolerance are
discussed in chapter 6.

Computation in XPA relies on the XPA version of the Delta-4 applications support
environment, XPA Deltase, which differs from OSA Deltase in two main ways:

214 9. Extra Performance Archiecture (XPA)

= Performance enhancements: XPA Deltase and the communication manager are
combined in one library, which copies data directly berween the application and the
LAN message buffers, bypassing the LEX.

* Support for real-time: XPA Deltase includes a real-time local execution environment,
and interprets the precedence of each computation in terms of suitable LEX
scheduling parameters.

9.2.3. Support for Distribution

The original design of XPA envisaged the simplification of the interface between Deltase and
the communication support, for performance. Deltase was collapsed onto the group
communication layer, implying the introduction of new communication services that led to the
extended AMp (xAMp), and of an intermediate harmonising layer — the group management
layer {GM). The architecture is shown in figure 1.

The Group Manager (GM) is a distributed object, represented locally on every node of an
XPA system. In fact, the group management entities are pseudo-objects, since they present an
ohject interface o the Deltase world, but interaet with the group communication layer as another
layer above, The group manager is concerned with the management of groups of objects, and
with the support of the distribution of such groups. The group manager incorporates
knowledge of the different modes of replication (active, passive, semi-active, etc.), and based
on that view, it is able to provide, transparently to the objects themselves, the appropriate level
of support, using the xAMp.

DELTASE

CIORAE MANAGER LIBERARY

GROUP MANAGEMENT LAYER
(GM)

OPrZ

GROUP COMMUBICATIONS LAYER
[AMp)

ABESTRACT NETWORK LATER
(FDONn

Fig. 1- XPA System Architecture

The communication sub-system comprises the abseract nerwork layerl, and the group
commnication layer. As dewiled in chapter 10, the implememation of the abstract network over
different LANs allows the communication sub-system o be LAN-independent. The local arca
network used in the current XPA prototype is an 1SO 8802/5 wken-ring, featuring 4 Mbit/s,
Taking into account the needs of XPA, both from the reliability and performance viewpoints,
FDDI — a 100 Mbit/s high-speed, high-throughput fibre-optic LAN — is an envisaged
alternative, whose advantages are discussed Luer in this chapter.

The group communication services of XPA are based on an extended version of AMp,
*AMp (see chaprer 1)), which provides a ser of primitives, offering exiended group

I We recall that “network™ iz not taken in the sense of layer 3 of OSI: it refers generically w the several
communication infrastructures for xAMp.

9.2, Overview 18

management facilities and different tradeoffs between quality of service and efficiency. The
services range from an aromic service to simpler and more efficient aliernatives, down 1o
multicast datagrams. The communication protocols will generally be executed on a special-
purpose Network Attachment Controller (NAC) board, However, given that both host and
MAC arc fail-silent in XPA, it is also possible that the NAC be combined with the host itself.

The time service is provided at the xAMP layer, in order to improve precision,

9.2.4. XPA as an Integrated Machine

The previous sections have deseribed the options available to the system designer in XPA. This
section shows how the bricks just described interact, in one of the possible combinations to
fulfil the real-time, dependability and performance objectives stated in the beginning, in the
XPA protolype built.

9.2.5, System Administration

System Adminisiration (SA) is concerned with monitoring and managing changes in the
operational status and degree of replication of objects, and changes in the system configuration.

This does not have to be implemented by a central “system administrator”, or distinet
system adminisirarion subsystem: system administration functions can sometimes be delegated
to ordinary application objecis and the support environments of the objects 1 be managed.

In Delia-4 XPA, beeause of its emphasis on high performance, there is an overall bias in
favour of the local management of objects, and on delegated rather than centralized system
administration, Objects are encouraged wherever possible to perform administrative operations
themselves, when invoked by the appropriate manager, exploiting their self-knowledge to
optimize performance.

9.3. Real-time and Performance

9.3.1. Introduction

One of the major objectives of Delta-4 is 10 support real-time applications. The techniques used
to support real-time were developed first for XPA and in some cases depend on its restrictions,
such as the assumption that hosts are fail-silent and have real-time local schedulers,

Feal-time systems require predictably bounded performanee. This is distinet from the other
main objective of XPA, which is to support the highest achievable performance for all aspects
of distributed computation.

Chapter 5 defines many of the concepts used in this chapter and explains the Delta-4
approach to real-time. In this chapter, section §9.3.3 discusses the requirements and
computational philosophy of XPA real-time. The main techniques used to support real-time and
high performance are described in sections §9.4, $9.5 and §9.6.

9.3.2. Markels Addressed

The market arcas addressed by XPA were described in chapter 1, but & brief reminder at thiz
point will assist understanding for readers who are more familiar with other real-time or high-
performance market arcas.

XPA is designed 1o address large dynamic systems in the process control and command
and control arcas. These systems are notable for the large, complex sets of assumptions that
have to be made before it is possible to predict their behaviour during the design process.

216 9. Extra Performance Archileomre (XPA)

For example, state-of-the-an process control systems typically contain hundreds of
analogee loop controllers, cach with analogue input sampling, control calculation and analogue
outputs, and possibly thousands of digital inputs and outputs. Scan and response times may be
of the order of milliseconds, and plant integrity may depend critically on reliable and regular
execution of the scanning and control logic.

Such systems must support concurrent interaction with many operators. The operator
interface has its own response time requirements in various conditions of use, and its quality
can exert disproportionate influence on the commercial acceptability of an architecture.

Most process control events are periodie, but some aperiodic, and some “sporadic”, the
term used in [Burns 1990a] for events that are aperiodic, but have a minimum specifiable
duration berween their arrival times. We reserve the werm “aperiodic” for cases where no such
minimum duration can be specified.

Command and control systems contain large numbers of real-time events, periodic,
sporadic and aperiodic. There are typically several modes of operation and several different
priority levels. However generously the system is sized, peak activity levels depend on an
uncontrollable environment, and may still cause a system overload.

9.3.3. XPA Real-Time

Chapter 5 contains a generic discussion of real-time concepts and requirements and defines
many of the terms used in this chapter. This section is concerned with the more specific real-
time requirements of the XPA prototype, nevertheless, for the sake of self-containment there
may be some repetition of the material in chapter 5.

The priority of an activity is a measure of its criticality, i.e., the cost of not meeting its
timeliness constraints, The highest priority is given to hard real-time components.

The rargerline is the time at which the system designer aims to deliver the service; it lies
between the liveline and deadline, which define a window within which service must be
delivered. See chapter 5 for a generic discussion of these terms.

9.3.3.1. Hard Real-Time. A hard real-time deadline is one that must be met in order to
avoid a costly timing failure. Such deadlines, the operational envelope in which they must be
met, and any defensive behaviour must be captured in an adequate requirements specification,
which must be unambiguous. This involves:

= Determining that there is sufficlent system power. Worst-case component execution
requirements and other resource usage must be determined. In particular, the system
must have sufficient power, or “execution resource”, and a means of allocating this
power must be provided which has properties useable during the design process,

* Knowledge of execution times. Whatever evenls can occur, their worst-case
timeliness consequences must be accounted for during system design. It follows that
primitives that do not themselves give assurances of time bounds are unuseable as a
basis from which hard real-time components can be built

= Control over system component location. For example, [Burns 1990a] argues that
migration of hard-real-time components cannot be permited.

» Avolding all deadlocks and bounding delays due to temporary resource conflicts (see
section 9.3.3.4).

For example, the consequences of internal hardware faulis must be bounded in time.
Component failures will occur — they cannot be ignored in the design process. The
consequence must be accounted for in specification, as a (specified worst-case) rale of
occurrence, and perhaps in design, through the use of fault wlerance or recovery mechanisms,

9.3, Real-time and Performance 217

If the time overhead for some such mechanism is not compatible with some computation®s
deadline requiremenis, then that computation cannot use the mechanism.

As another example, human operators are sometimes placed “in the loop™ as a final resort to
cover a possible emergency. Whereas it is obviously not possible to specify bounds to operator
reaction imes in such an open-ended situation, the information displayed and any commands
issued must be processed by the system within specified time bounds so that it is not open to
indictment as the cause of late response to the emergency.

9.3.3.1. Soft Real-Time. A soft real-time service has an identified timeliness requirement
but no high cost is anached to a failure to meet it. An example is the updating of a display
monitor that is intended to show the progress or present state of some production process. The
majority of such information does not come into the category examined in the previous section,
in that an operator will only be inconvenienced by an occasional delayed update. The quality of
the interface is then measured in terms of its normal rather than its worst-case behaviour,

This is a very different world to that of hard real-time. Here, deadlines are regarded as
desirable targets that it is not essential to meet on all occasions. The requirements specification
must capture such possibilities. A consequence is that the system power can be less than
implied by worst-case analysis. A system whose peak loads are many times normal loads, or
only statistically predictable, might therefore be rendered economically viable,

Although this is distinct from hard real-time, it must be stressed that it is also quite distinct
from the principles of “fair time sharing” employed elsewhere in the industry — notably in
traditional mainframes and in communication systems, or the FIFO ordering used in batch
control systems. In a “fair” system, when a new requirement arises, the execution resource is
redivided; the new requirement gains a “fair” allocation of resources and every other
requirement loses to a small extent. The effect is that if requirements arise arbitrarily, no
assertions can be made about timeliness for any of them.

It is therefore necessary to be unfair, 10 give some requirements more importance than
others. There may exist a spectrum of urgency to the different activities that arise. If not all
outstanding activity can be fulfilled, that which is least important is postponed, but timeliness
assertions can still be made about what is most important. This is one basis for controlled, or
“graceful”, degradation of behaviour.

9.3.3.3. Best-Effort. For soft real-time components such as the operator screen server,
there are costs attached to each timing failure. The objective of a best-effort system is to
minimize the probable cost function by achieving the lowest probability for the most costly
failures.

The means of calculating the probable cost function for each proposed strategy must exist.
This involves, as before:

+ Determining that there is sufficient system power, this time as a factor directly
determining the probability of meeting imeliness criteria.

* Knowledge of execution times, this time in terms of probability distributions rather
than worst-cases. As discussed in chapter 5, we are usually obliged to build systems
from microprocessors for which execution times are probabilistic due to internal
pipelining and cacheing and the use of contention busses. Even were this not so, the
complexity of operating systems, language compilers and realistic applications
effectively prevents the construction of any rigorous timeliness proof, much less one
short enough to be subjected to a meaningful peer review. Banning the use of
unbounded constructs ([Puscher and Koza 1989] gives the example of unbounded
loops) does not overcome these obstacles.

118 9, Extra Performance Architectuns (XFPA)

= Control over component location. If the pattern of external demands becomes such
that certain nodes perform more than their share of high-urgency computation, some
of this might not be completed whilst less urgent computation is completed
elsewhere. This sitvation, if it persists, represents an unbalanced system.

Components may be migrated to balance the urgency of processing achieved across
nodes, providing care is taken to avoid migration-“thrashing"”.

s Avoiding all deadlocks (e.g., by always acquiring resources in the same order), and
determining both the probability and the duration of any temporary resource conflicts
(see section 9.3.3.4).

The method of devising schedules is important:

» Off-line schedulers (see chapter 5) do not provide direct support for the idea of
preferring one computation to another.

» For on-line schedulers, there is a shift in emphasis. Some methods, like earliest
deadline scheduling, can find a feasible schedule, in which all deadlines are met, if
such a schedule exists. In a best-effort system, there may be no feasible schedule:
such methods are then generally badly behaved.

» When not all deadlines can be met, the method must explicitly take account of which
activities are preferred. For this, scheduling computations according o their priority
is appropriate. It might be that under different modes of system operation, different
pricritics apply.

Note here the essential difference between use of priority and use of deadline. For feasible
schedules, highest priority scheduling is not as well behaved as earliest deadline scheduling,
which on one processor will find a feasible schedule if one exists. On the other hand, for
unfeasible schedules, deadline scheduling is not as well-behaved as priority scheduling, which
establishes a desipn preference over what is allowed to execute when not everything can be
executed.

It follows that a best-effort system should rely primarily on highest priority scheduling, so
that only lowest priority deadlines will be missed in a marginal overload. Only components of
the same priority should be scheduled in the order of their deadlines or targetlines, For most
priorities this will normally find a feasible schedule, but in a marginal overload some
components of lowest priority start missing their deadlines. Since they are of lowest priority,
the cost of missing their deadlines is minimal, and may be less than the cost of the extra system
size needed to avoid such overloads.

9.3.3.4. Resource Conflicts. Resource conflicts do not cause unpredictable delays in
simple static schedules, since the times when resources are required are known during design;
the points of reservation and release are embexdded in the static schedule.

However, in complex dynamic sysiems, where resources other than those for execution are
being contended for and mwtual exclusion must be practiced, there is no known generic
mechanism that permits absolute (as opposed 1o probabilistic) assurances of timeliness to be
made during the design process, In commercial systems, partial solutions have made use of
application-specific knowledge, as discussed below,

If & highest precedence computation requires a resource, the curmrent holder of the resource
should start running with maximum precedence. The maximum delay is then the dedicated
execution time before the holder releases the resource. This is a generic mechanism in thar it is
applicable 1o all types of resource. However, it works well only for the highest precedence
computation, Furthermore, it does not resolve deadlocks; these must be avoided by application-
lewel methods such as:

9.3, Real-time and Performance 219

() declaring at the start of each transaction which resources may be acquired during the
rransaction [Eich 1988, Habermann 1969];

(b} restricting the order in which resources may be acquired [Kopetz and Schwabl
19%9].

An alternative policy is to use a transactional model of computation and abort the holder of
a resource required by a higher-precedence computation in much the same way as is proposed
for deadlock recovery in [Moss 1981], through a sequence of messages from resource claimers
to resource holders. The operation exported by the precedence manager 10 compare precedences
is used to compare the precedence of a remote resource claimer with the local resource holder.
This enables a shorter bound to be set for the highest precedence computation but leads to
expensive re-execution of the aborted transaction; the timing properties are difficult to analyse,
even probabilistically.

However, this mechanism will resolve eycles of deadlock, provided that precedence is
always unique. To ensure this, one of the precedences must always be preferred, in a
deterministic manner across replicas. For example, when impornance and urgency are identical,
precedence order may be resolved deterministically using unique computation identifiers.

The timing properties of these sirategies are only calculable if applications hold resources
fior bounded periods, and only acceprable if these are short. This seems 1o be general; there is a
similar requirement in static scheduling schemes?, where components hold resources during
pre-arranged parts of a static scheduling cycle (see section 5.2.4),

9.3.4. Performance

Homogeneity plays an important role in XPA performance: the communication system requires
no presentation layer, and the use of nodes with similar power simplifies the synchronization of
replicas. From an engineering viewpoint, the existence of only one hardware configuration
optimizes performance enhancements.

The XPA communication sub-system is LAN-independent. LAN choice may then be
conditioned, when possible, by performance improvement. Taking into account the needs of
XPA, both from the reliability and performance viewpoints, FDDI — a 100 Mbit/s high-
speed, high-throughput fibre-optic LAN — i5 an interesting alternative, in comparison with
slower LANs, such as 4 or 16 Mbit's token-rings or 5 or 10 Mbit/s token-busses.

The group communication service of XPA, xAMp, provides a set of primitives from an
atomic service down to multicast datagrams. With this range of successively less cosily
services, the user incurs the minimum cost neaded to provide a given functionality.

The communication protocols will generally be executed on a special-purpose Network
Antachment Controller (NAC) board. However, given that both host and NAC are fail-silent in
XPA, it is also possible that the NAC be combined with the host itself, vielding a simpler
hardware configuration where data is moved around faster.

In fact, minimizing user-to-user wransfer latencies also implies efficiency of the local
exccutive and support services like buffer management. Mapping of user buffers into (and
from) communication space (without copy) and seatter-gather DMA are desirable features.

The Remote Procedure Call (RPC) is one of several support mechanisms for distributed
computation. This paradigm is one we wish to encourage designers to use. It underpins the

2 A resource required by more than one component can only be held by each component for part of the static
scheduling cycle. There is a wradeodT between the time for which resources need to be held and the need for
such cycles o be shor enough o meet the laiency bounds of response o mre bl important events. Unless
such events have the overhead of several sdequate processing “slots™ reserved (but nommally unused) in every
cycle, such response must be achieved through insialling a new schedule at a predefined point in the current
cycle. Al this point the current cycle mist not hold resources required by the new cycle.

20 9, Extra Performance Anchitecture (XPA)

supporn environment, and its performance in supporn of replicated interactions continues to be
the subject of intensive optimizafion effort within the project. The end point of this effort is not

yet in sight®,

9.3.5. Timeliness

Timeliness, i.e., the correciness of the system in the time domain, is the distinctive issue in a
real-time system. XPA is concerned with assuring the timeliness properties of the support
environment, by bounding all system latencies and queueing times. To construct a system with
timeliness attributes, other factors are also essential; system sizing, knowledge of component
execution uimes, and control of component location (see sectdon 9.4).

However, as explained in chapter 5, timeliness can only be guaranteed where
circumnstances and events fall within a predefined “operational envelope™. If they ever fall
outside that envelope, timing constraints may sometimes be violated, but the designer still has a
responsibility to detect such violations and limit their consequences. A time service is thus
mandatory. The timing requirements of XPA are discussed in section 9.5,

In XPA, a loss of timeliness is normally detected as a missed targedine, so it is the
consequences of not meeting a targetline that need management. If the targetling is set before the
deadling, then action taken at the targetline may yet avert a missed deadline. If the targetline is
set equal to the deadline, then a missed targetline is a timing failure, but there may still be ways
of minimising the resultant cost.

There is considerable variation in the types of response that it is possible to design into
different computations:

= For some computations, a missed targetline may have no consequence; execulion
simply continues after the targetline has passed and the service is provided when
possible. Even here, the missed targetline should be reported to a sysiem
administration module, which might log the event or increment a count of missed
targetlines that could be used for assessing system performance of to support a load-
balancing algorithm,

+ For other computations, some local action by the component concemed might be
appropriate. This might take the form of a change in the nature of the computation
performed, or a change in the circumstances of execution:

+ In some cases, such as that of figure 1 in chaprer 5, the benefiv/delivery-time graph
shows that it is less costly never o deliver the service than o deliver it after the
deadline. In this case the component should abandon its computation, but report the
exceptional condition to its invoking client (which may be able to fulfil the required
service in some other way).

= If it is a periodic process, it might cause the start of its next period to be omitted or
delayed. This, whilst harmless in terms of its effect on other components competing
for the same resources, must be assured not to lead to other sorts of instability, for
instance if the component is in the control loop of an external process. Any replica of
the component must act in a consistent way, so inter-replica negotiation may be
needed.

« It might limit its own functionality in some application-specific way, such as
rejecting rather than deferring outstanding requests. The global ability 1o tolerate

3 On the prototype, limitations are imposed by ceniain generations of VLS medium access control chips,
whwhm:mhmbmupmnmdfwﬂ:mﬂmlrﬂnﬂm{umdmnﬂﬂddu Thus, figures of 3-
4 ms for each network access have been measured on a panicular Token Ring netwaork interface chip. Such
figures impose artificial limils that may not apply o the next generation chip or another medium.

9.3, Real-time and Performance 221

such cavalier behaviour must exist. For example, a command and control system
may reject older input data, but process newer input data that gives the recent
position of an eneny aircrafl.

» It might reduce the precision of some computation; indeed, it is quite reasonable to
construct a certain class of components o refine a calculation until the rgetline
elapses (interpreted as “the deadline is about to clapse™), and then to deliver
immediately the current “best estimate™. An example is a chess-playing program.
Such components exhibit hard behaviour,

There is such wide variation in possible responses that it is inappropriate to confine
applications to a set of standard responses. When required, therefore, the suppornt environment
can inform the component of an elapsed targetline and allow it to interpret this as suits the

A system should normally be sized so that all hard real-time components can have worst-
case execution time, and run right up 1o their targetlines, on every execution. So if a hard real-
time component happens to terminate before its targetline, it may suspend untl the targetine
before starting its next task, without jeopardising the timeliness of its next task, By so doing, it
releases resources to lower precedence components whose timeliness may be at risk in the
current operating mode.

9.4. Dependability and Computational Models

9.4.1. Homogeneity

Chapter 7 discusses the use of heterogeneous hosts, languages and implementation conventions
on Delta-4 O5A. The restriction to homogencous hosts on XPA has the following advantages,
from the computational and dependability viewpoints:
= Performance. the communication sysiem requires no presentation layer, and
performance enhancements need be developed for only one hardware configuration,
= Synchronization: it is imponant to bound the desynchronization between replicas,
€.§., 10 maintain the accuracy of replica time (see section 9.6.6). This is easier if all
nodes have the same power (see section 9.6.5.5).

= Fail-silence: XPA also requires fail-silent hosts, and it is easier to develop an
acceptable degree of fail-silence for only one hardware configuration,

9.4.2. Replication Requirements

XPA requires a model of replication that supports real-time requirements such as bounded
preemption and synchronization of replicas, and also the high-performance objectives of XPA,
without compromising replica group determinism.

Several different models of replication are supported on Delta-4 (see chapter 6). They have
different properties, and are not equally suitable for XPA. The differences are summarised
below,

94.2.1. Active Replication. Active replication is only used with deterministic software
components, e.g., those structured according to the state machine model [Schneider 19901, so
that the replicas pass through identical states without any extemal support apart from identically
ordered inputs.

Active replication carries the minimum overhead in terms of inter-replica messages, but an
active replica’s input messages need to use the atamic service of xAMp, which is not as fast as

i) 9, Exira Performance Architecturs (XPA)

its refiable service. Computation can proceed at the speed of the fastest replica, but if the fastest
replica fails, there is a delay depending on the desynchronization of the replicas, (sée section
§9.6.5.5).

Active replication does not at present allow high precedence input messages to preempt low
precedence messages or low precedence computation within bounded times. Because of these
unbounded delays, it is unsuitable for supporting real-time computations of more than one
precedence level. However, the slorred service of the extended AMp (xAMp, see chapter 10)
could support negotiating active replicas, so that bounded preemption could then be achieved, if
not as efficiently as with semi-active replicas.

9.4.2.2. Semi-Active Replication, Semi-active replication supports non-deterministic
software components, or components whose environments make opportunistic decisions about
the preemption of messages or processes, in order to achieve bounded latencies for high
precedence computation.

Messages to semi-active replicas can use the faster relighle service rather than the aromic
service of xAMp (see chapter 10). The inter-replica messages cost less than those of passive
replication, and can also be used to detect replica desynchronization and leader failure,

Semi-active replication can support preemption with bounded latencies. This is because a
maximum precedence input message will raise the scheduling precedence of the destination
leader to the maximum as soon as it enters the leader's environment, The leader must then run
until the next preemption point, where the maximum precedence message preempts. The
preemption latency is therefore bounded by the maximum execution time between consecutive
preemption points, unless the leader fails.

If the leader fails, there is a longer but still boundable latency before a follower wkes over.
This depends on two other latencies:

= A follower can detect leader failure in a bounded time (see §9.6.5.6).

= The desynchronization berween leader and follower can be bounded (see §9.6.5.5).
Because of this ability to bound latencies, semi-active replication can support hard real-time
computation, as well as soft real-time and non-real-time components,

9.4.2.3. Passive Replication. Passive replication, like semi-active replication, can
suppart non-deterministic capsules, and opportunistic mechanisms such as re-ordering of input
messages or preemption of processing. Messages to passive replicas are also able to use the
faster reliable xAMp protocol,

Because only one of the replicas is running, passive replication may require less processing
power than active or semi-active replication. However, this has to be set against the extra
processing power used in the generation and storage of checkpoints, which also consume extra
network bandwidth. The generation of checkpoints also tends to reduce the response time of the
primary replica.

When failure of the primary is detected, a backup has to repeat processing from the last
checkpoint. The delays associated with primary failure, namely replica takeover, are therefore
larger than with the other models. However, they can still be bounded, provided the frequency
of “I"'m alive” messages and maximum reprocessing times are known.

Since preemption and replica takeover latencies can be bounded, passive replication can
support hard real-time computation, provided the delays associated with checkpoint peneration
and backup reprocessing are acceptable.

2.4, Dependability and Computaional Models 3

9.4.2.4. Replica Determinism. Active replication unsupported by inter-replica negotiation
iz unable to support preemption, needed to bound the execution times of hard real-time
components. The first XPA prototype will therefore make no use of active replication.

The choice between semi-active and passive replication depends on whether the extra
processing power and network bandwidth required by checkpointing, and the extra delays
when a primary passive replica fails, outweigh the costs of extra active replicas. This is most
likely to happen with components whose checkpoints are large, frequent, or time-consuming to
generate, ¢.g., some real-time databases. Since the XPA prototype may be required to suppon
such components, it concentrates on semi-active replication,

On OSA, applications may be implemented on fail-silent or fail-uncontrolled hosts. If fail-
uncontrolled hosts are used, the applications can only be made dependable by active models of
replication, with validation of network messages. These models require replicas to behave
deterministically, which means they must be structured as state machines.

On XPA, applications are always implemented on fail-silent hosts, and can therefore use
semi-active and passive models of replication. Some of these models support non-deterministic
applications by enabling the non-deterministic decisions of one fail-silent replica 1o be imposed
on the other replicas. Consequently, XPA applications need not be structured as state machines.

9.4.3. Scheduling Principles

To summarise the main requirements of XPA, we wish to allow both hard and soft types of
behaviour o coexist. That is:

* We wish to provide support mechanisms that allow a system designer to asseri that a
defined subset of required activity is assured to meet deadlines.

* We wish to offer the designer the possibility of another subser exhibiting “best-
effort™ behaviour, but this must not compromise the deadline assurance of the first
subset.

« Finally, we wish to offer the opportunity for any spare resource to be occupied with
non-real-time activity, as long as this does not compromise the other behaviour,
In consequence, a notion of precedence was introduced, with the possibility for higher

precedence computations to preempt lower precedence ones. The next two sections discuss
these issues.

9.4.3.1. Precedence. Since the XPA prototype is intended to support best-effort systems,
it uses the Real-Time UNIX LEX, which takes the on-line approach to local scheduling, using
the instantaneous “precedence” of computation. In this LEX, XPA precedence is interpreted as
a combination of the priority and targetline. The coarse precedence of groups of components is
established through their levels of priority, and within a priority level, the precedence of
individual components is established by the component targetlines.

Precedence does not just apply to individual components, but is made to apply to the whole
of a distributed computation. When a requirement for some real-time action arises, all
components supporting the action must be conducted with an appropriate precedence. The
precedence of the action is therefore propagated with the request for service from component to
component. Some such mechanism is needed since it would be impossible to predict timing
behaviour if a high-precedence client raised a request for service on a server that ran at low
precedence. The arguments for precedence inheritance are discussed in [Bond et al. 1987, Sha
et al. 1987].

I4 9, Extra Performance Architecture (XPA)

A capsule may therefore receive different requesis for service with different precedences.
The XPA environment must support this in such a manner that the system designer can assert
timeliness properties of the components concerned.

Thus, in an input quene of requests o a component, higher precedence requests must
overtake lower precedence requests, or preempt their processing, otherwise the hard
characteristics required for the highest precedence activity will be compromised. The ability to
ignore the effect of queued low precedence computation in calculating the requirements for
higher precedence computation is essental.

To support Delta-4 dependability models, the overtaking and preemption must be
performed deterministically, since replicas must be certain to receive requests in the same order.
To achieve this, some form of asgotiation technique must be used. In XPA, the replication
maxlels supported are limited to those where such negotiation is inexpensive,

This question of precedence ordering of inputs has an interesting analogue in the form of a
current debate in the Ada world. The language creates problems for designers of exactly this
sort in the ordering of entry queues. When several rendezvous are possible, the Ada
programmer may make no assumption about which will be selected first. This destroys the
possibility of bounding the time it takes for the server to rendezvous with the highest-
precedence waiting client. The Ada 9X committee are examining such shortcomings in the
present language definition.

On Delta-4, we have experimented with a distributed Deltase/Ada system in which standard
Ada programs are mapped onto Deliase capsules (see chapter 7). The communication between
these programs is validated syntactically by standard Ada compilers, and semantically it is
similar to Ada; however, at run-time these communications are managed in precedence-ordered
gueues.

9.4.3.2. Preemption. Preemption of independent processes running in separate address
spaces can take place as soon as the higher precedence process is runnable and the lower
precedence process has finished the current machine instruction. I the processes sometimes
share address space, e.g., sometimes run in the Real-Time UNIX kernel, preemption cannot
occur in the middle of logically atomic operations, so that the maximuem preemption latency is
longer than a machine instruction.

Preemption between threads in the same capsule, which share the same address space and
global data, is also supported on XPA, because some concurrent activities do need to share
global data, However, the thread preemption must take place at the same point in all replicas so
that the their states do not diverge,

Thread preemption mechanisms for semi-active replicas are briefly described below. Leader
replicas may be preempted at the next point in processing that can be identified in a notification
(or mini-checkpoint) to their followers, which will then be preempted at the same point. Such
points are either receive poinis, at which the capsule requests the next input, or preemprion
points, at which the thread declares its willingness either to be preempted or to continue
processing,

As 5000 as a high precedence input is waiting to cause precmption, the destination process
can be executed at the same high precedence. An input of highest precedence therefore waits no
longer than the maximum dedicated processing interval berween two preemption points.

The code executed at each preemplion point is essentially as follows:

Preempt polint mo ;= Preempt point_no + 1;

IF Preempt soon flag = TRUE

THEN (Determine whether preemption to occeour here, etec.)
(A follower may be instructed to suspend here)

ELSE (Continue execution of current thread)

9.4, Dependability and Computational Models 25

This code could be invoked as a procedure in any procedural language. With some high-
level languages, notably “C”, a more efficient solution is available: the preemption point can
take the form of in-line assembler code (see annexe I). The details of the preemption protocol
are described in section 9.6.5.3.

9.4.4. Timeliness Enforcement

XPA requires a group of generation-time tools to support the following functions:
+ Measurement of execution times and preemption latencies.
= [nsertion of preemprion points in applications.
* Design-time proving of timeliness properties.

Maximum task execution times can be calculated by source code analysis [Puscher and
Koza 1989], provided the application obeys certain restrictions such as bounded loops. The
PDCS project is developing a tool to do this [PDCS 1990]. Real-time applications that do not
obey the required restrictions must be modified, either by the application programmer or
perhaps automatically by a sophisticated tool.

Maximum execution times can also be measured by test execution on a dedicated processor
with “worst case” input parameters. To determine the execution time of a section of code, calls
to read a real-time clock have to be inserted at the beginning and end of it. This could be the
first stage in the insertion of preemption points that are to be separated by a specified maximum
exccution time, 5o as to achieve a known and bounded preemption latency.

The insertion of preemption points should ideally be transparent to the applications
programmer. To see why this may not always be possible, consider an application containing
the following code:

A: X:= Global Variable;
B:
C: Global variable := X + 1;

where X is a variable local to the current thread, but Global_Variable is accessible to all threads
in the software component. If the tool inserts a preemption point at B, one thread can preempt
another at this point, causing a double vpdating of Global_Variable, which may have
undesirable effects. If the tool cannot place a preemption point at B, the required maximum
preemption latency may be exceeded.

All accesses to global variables could be protected by mutual exclusion mechanisms such as
Delrase semaphores. (Here the programmer is advised to use a standard mechanism that will be
recognised by the tool.) At first, the ool could ask the programmer to insert the semaphore
operations; in the future, they could be inserted transparently by a more sophisticated tool.

However, even if the programmer acquires a semaphore before line A and releases it after
line C, a preemption point at B may still cause embarrassment, because the thread that preempts
at 8 cannot acquire the semaphore if it needs to; so the effective maximum preemption latency
may still be too great. The tool should thus plant preemption points before A and/or after C. If
the processing between A and C exceeds the required maximum preemption latency, the
programmer should be asked to recode it

Another problem is that a single statement of high-level language code, ¢.g., a for-loop,
may take longer to execute than the required maximum execution time between preemption
points. Such a statement must be recoded, either by the programmer, or transparently by a more
sophisticated version of the tool. For example, a long for-loop could be made into two for-
loops, one “nested” in the other, with one preemption point in each iteration of the outer for-
loop.

226 8. Extra Performance Archiecre (XPA)

To prove at design time that a whole system, or hard real-time subsystem, will meet its
timing constraints, it is necessary to measure the worsl-case execution time of each component
on each computing element and the maximum latency of each system operation. Also required
is the following information:

+ livelines and deadlines, or the means of calculating them, for each distributed
computation;
= adefimtion of the operational envelope in which timeliness must be achieved.

A static allocation of the componenis to the available computing elements can then be
determined, with redundancy sufficient to support the fault tolerance specified in the operational
envelope, (Dynamic allocation of components 1o computing elements makes it more difficult 1o
prove tmeliness and is therefore confined to lower priority components whose timeliness need
nol be assured.)

Targetlines that will meet the timing constraints are then set for each component on each
computing element and the (on-line or off-line) scheduling algorithm 1o be used is selected. To
prove that an off-line scheduler can achieve the targetlines, the actual fixed schedules to be used
for every possible task set are constructed. To prove that an on-line scheduler will find 2
feasible schedule, it may be sufficient to prove that a feasible schedule exists, or that the
processor load will never exceed a certain level [Sha et al. 1988].

If the required timeliness cannot be proved, it is normally necessary to re-size the system
and repeat the above calculations. Only in marginal cases will a change of scheduler render
timeliness provable. On-line schedulers are more able to take advantage of the fact that worst
cases do not normally coincide, but cannot assure timeliness more easily in the exmeme
sitwation when all worst cases do coincide.

9.5. Support for Distributed Real-Time Computing

A distributed system is formed by processors with no shared memory, no centralized control or
clock, hosting participants in dismibuted activities, communicating only by exchanging
MICS5aECS.

In designing the diswributed real-time computing suppon of an architecture like XPA,
several fundamental issues deserve discussion. One of them is order: what is the role of order?
The relative ordering of events and/or actions (which may be distributed) must be preserved,
for the system to progress correctly. A range of design alternatives are available, from a freely
interacting concurrent system, to a highly sequential and blocking one. Another issue is time:
what is time needed for in a distributed real-time system? It is required 1o ensure participants
and replicas agree on the iime the environment changed, or on the 1ime 1o acr wpon ir. The last
issue discussed in this section are the requirements put on the communication service, to
support distributed real-time computing.

9.5.1. Order Requirements

Given that participants communicate by exchanging messages whose ransmission delays are
not negligible, the cause-effect relations between events lead o partial orderings [Lamport
1978].

One type of ordering defined in section 10.1.2, is the one established when one message
departs from a site, and arrives at another site, before another message is sent; the two
messages are then said to be in a logical order. Preservation of such an order is normally
adequate for non-real-time systems [Rirman and Joseph 1987].

9.5, Suppoet for Distributed Real-Time Computing m

If a component is actively replicated — e.g., for fault tolerance — another requirement,
established in chaprer 6, is that the group of replicas receive the same information in the same
order. This should happen, regardless of the fact that the group of replicas, as a whole, is still
subjected to the cause-effect relationships just described. We have seen that some replication
techniques may relax these order and agreement requirements, but let us focus on the general
case.

In real-time systems, there are circumstances where the logical order does not correctly
represent causality. In those cases, implementations based on it produce anomalows behaviouwr,
Le., participants may observe an ordering that is not consistent with their perception of system
state. These situations occur when there is information flowing between participants, which is
not controlled by the ordering discipline. Examples:

+ when participants exchange messages without using the ordering protocol;

= when the system Is expected to interact with the real world, in terms of real time.

This latter case, typical of real-time systems, can be reduced to the first, the interactions
between participants and the environment becoming the outside “messages”,

Clearly, the logical order is not causal, for these cases. For example, when a participant
sends a broadcast ml, then issues an RPC 1o another participant, which in turn sends a
broadcast m2. If the RPC is made outside the ordering discipline, there may be no way of
knowing that mJ A m2, and the resulting order may conflict with the view of the participants,
The same may happen without using explicit messages. Physical feedback in a control and
automation setting between two participants which otherwise communicate using a reliable
broadcast protocol in a LAN, may produce similar effects. For example, suppose that a
participant A performs an action, which generates a message m/f and an output that physically
affects participant B. As a result, B generates a message m2 that, if only logically ordered,
could be delivered at destinations before m! — thus violating the real causal relationship
cstablished between them by the physical process. This may disturb distributed control
algorithms programmed concurrently.

The solution for these situations consists in implementing temporal order of messages. In
section §5.3, we saw it is possible to enforce temporal order with any synchronous
communication system. Loose synchrony is the minimal condition for a reliable broadcast, so
that correct behaviour be definable, in terms of real-time and ordering of events. This condition
is relevant, since the basic communication protocols used in XPA are loosely-synchronous,

‘We have just discussed the ordering requirements of a general system. It may however be
possible to reduce the generality of the distribution support, because certain assumptions about
system ordering can be made. This is, of course, of particular interest in a highly optimized
system such as XPA. Such assumptions, aimed at relaxing the default ordering and
synchronism requirements of the system, may arise from:

= a particular knowledge of the applications, ¢.g., that concurrent senders are
independent. A very immediate consequence is 1o reduce causality o individual
senders, which yields the very well known FIFO order — in fact, a temporal FIFO
order. Total order (see section 10.1.2) should still be provided when needed, to
support replicas.

* & particular computational model semantics, e.g., that participant interactions are
synchronous (RPC-like), and computations are single-threaded. This significantly
reduces concurrency of the system; however, rendering it sequential simplifies the
ordering requirements; as a matter of fact, causality follows quite simply the thread
of control, as it moves from site to site.

* a particular replication model, e.g.. the leader-follower. In this model, interactions
are directed to a privileged replica (the leader). This replica represents the participant,

o] 4, Exira Performance Architecmre (XPA)

in the system, and is in charge of ensuring the consistency of its replica group. Total
order at system level can therefore be relaxed in this example, since it is ensured by a
private protocol inside the replica group. Causal order, incidentally, resiricted o
FIFOQ in the computational model used, must still be respected.

The xAMp communication service ensures a variety of ordering properties, seeing to it that
the system designer can use a variety of compurtational and replication models.

To ensure replica group determinism, a message multicast to a group of replicas must be
received in a total order by all recipients. This is ensured by the atomic service of xAMp, or by
the reliable service in conjunction with the semi-active or passive replication protocols.

Causal ordering (see seetion 10.1.2) of logically related interactions may be assumed by
the application and is therefore supported by some xAMp services, e.g., the atomic service. It
can also be ensured by the use of blocking RPCs, since the events in each logical activity are
forced into a known sequence. Blocking RPCs are compatible with parallelism if the blocking
is suffered by only one thread in a multi-threaded capsule.

Casts, i.e., messages without reply, are often used to represent external events within the
system. Such casts may be generated in the order of event occurrence and the destination may
be written to expect them in this order. If so, they should be given the same precedence (or the
same priority plus targetlines in the order of generation), so that their relative order will not be
changed by message presmption.

The leader-follower semantics is such that some interactions can do without any order:
notifications contain enough information to ensure that they need not be delivered in FIFO
order. For example, if the follower is waiting at preemption point N+1, the notification
“Continue from N+K to N+L" cannot be obeyed until receipt of the one or more logically-
earlier notifications that bridge the execution from N+1 to N+K (see section 9.6.5.3). One or
more of these may contain decisions, e.g., “"Continue from N to N+K, and then process input
HIGH_PREC™. Such earlier notifications must evenmually be delivered, but not necessarily in
FIFO order.

Section 9.6 describes the interaction model of then current XPA prototype, and gives
examples of how ordering is relaxed, thus requiring more efficient communication primitives.

9.5.2, Timing Reguirements

If we look at the temporal order issue under the general perspective of participant agreement on
time, we will find rwo facets:
1) agreememt on the time o rigger actions: synchronization of the concurrent progress
of a syster;
2} agreement on the time at which evenits occurred: distributed recording (logging) of
events.

These requirements will depend on the anticipated range of applications. For example, in
the computational part of a real-time system, the synchronism requirements of (1) — ie.,
steadiness (bounded variation in the transmission times of different messages), and tightness
{bounded variation in the tmes of delivery of one message at several recipients) — apply only
indirectly to computation (see chapter 12}, whereas they apply directly to interactions with the
environment. Whereas we might say that the synchronism requirements of (1) depend on
applicarion granulariny®, those of (2) depend on the “environment granularity™s, more
accurately, the granularity with which we wish to perceive its evolution.

4 Granularity of an application is the minimum interval between any input cvent, and the subsequent respons:
evenl

9.5, Support for Distributed Real-Time Computing 39

Finally, replication for fault tolerance introduces the issue of replica agreement on time.
This issue is a delicate one in real-time systems. The computation par is less demanding:
whether for (1) or (2), solutions where agreement is slightly deferred, e.g., achieved by
consensus, are acceptable. For example, a leader may notify its follower(s) that “the time of
event E was T" to ensure replica agreement. Simplifying, there is not much difference between
“the time is 7™ or “the time was T, provided that all replicas take the same “T™. Fault-tolerant
(i.e., replicated) /O, however, requires a higher degree of synchronism. Non-replicated /O
already requires a certain accuracy towards real time; replicated 1O additionally requires
precision among replicas. De-synchronism and loss of precision may lead 1o replica group non-
determinism,

In conclusion, opportunities arise for relaxing the ordering requirements discussed above,
and in consequence, the synchronism of communication and precision of the distributed time
base. Those opportunities will be conditioned by the granularity and the real-action
requirements of the envisaged applications.

An analysis of the various application domains for XPA, to discover relevant timing
requirements, gives the following results:

Typical existing systems have required the time of the external world to be known only to
the nearest second. This has conveniently been met through the use of radio broadcast time,
received using compact specialized equipment at a single node and disseminated without any
critical synchronization. If this service is temporarily lost, it has proved satisfactory to use
internal dead-reckoning until the service is restored. As for internal time, most systems have
relied on a centralized global time server (eventually derived from the source of external time),
In normal conditions, such a system can yield low accuracy of the time read, due to delays. It is
open to the unpleasant effects of arbiwrary failure or unbounded dissemination time, unless a
continuous check on the believability of the various time values is provided.

In XPA, it is expected to improve this situation. Within the system, there is a finer
granularity called for, to distinguish the order of arrival of external and internal events such as
alarm conditions. A typical current requirement is for about 10-50 ms granularity, for general
events (local or remote). We hope in XPA to be able to determine event ordering to a finer
granularity, even for distributed events. Internal clock synchronization is provided by the
communication system, in onder to achieve a time service of high precision (see section
§9.6.6). This means bounding mutual deviations of the local clocks forming the global time
approximation, (o a close interval,

The clock synchronization protocol can in addition trigger actions at different sites within a
defined time granularity, i.e., requirement (1) at the stan of this section. Reganding requirement
(2). the code that generates an XPA event when something happens in the external world (e.g.,
a LEX kernel interrupt routine) can be constructed to assign it a timestamp of the approximate
global time of arrival.

Availahility of good quality external time references (international time standards) will be
considered (e.g., radio broadcast), when necessary for the relationship of the system with the
external world. Given that this is not a general requirement, the time service will be independent
of the approach to get external time. The latter may be injected in the system by one or more
servers (fault-tolerant if necessary), having the required quality. Then, the extemal source may
be used to improve accuracy of the approximate global time, e, keep the internal time as close
as required o real time (typically 1 second).

3 Granularity of an cavironment is the minimum interval between any two physical events that must be
perceived a8 being ondened (e, non-concumrent),

230 9. Exira Performance Architectune (XPA)

9.5.3. Communication Service Requiremenis

Basic concepts of real-time reliable multicasting have been discussed in chapter 5.
Communication affects the timing of all distributed real-time activity, so the communication
subsystemn must respect the real-time constraints imposed by applications.

Previous material in this chapier has raised a number of requirements on communication,
discussed below: bounded delivery latency; precedence (Le., urgency) in the delivery of
messages; synchronism.

A detailed description of the XPA communication system can be found in section 9.6.4.

9.5.3.1. Bounded Latency. Bounded delivery latency implies guaranteeing timeliness:

+ of the underlying network, in the presence of disurbing factors such as overload or
faudes,

+ of the communication prolocols, whose executions must have a bounded and known
termination time under specified fault scenarios; message delivery instants at several
multicast recipients may differ, but only by a bounded and known amount.

To control frame delivery latency, the lower layers of the communication systern should be
engineered so that it is possible to parameterize the network size and load o the desired
performance goals, if any guarantee is to be given on their achievement. Additionally, the
operating conditions should be monitored so that error conditions can be detected and corrected.
This includes both unsuitable loading situations and fault condidons, such as partitions, token
loss, etc.

9.5,3.2., Urgency and Precedence of Messages. The requirement of precedence
propagation implies that messages with different degrees of precedence receive privileged
treatment, i.e., be delivered ahead of others. Despite such re-ordering, the following essential
ordering properties are still assured by the replication and computational models used:
= total order of inputs to replicas (see chapter 6);
« sending order of messages with the same precedence and from the same source,
e.g., checkpoints or notifications, and of causally-related blocking RPCs, whenever
Tequired,

Different urgencies imply disdnguishing latency classes. In practice, there is a many-to-few
mapping from (system-level) message precedence values to (communication-level) latency
classes,

The urgency of a message should allow it to overtake other, less urgent messages, in the
input queue of each destination access point. The overtaking time can be bounded for highest
precedence messages at any particular destination. There could be similar overtaking in the
output queue of a source access point, although this is not yet implemented.

In practice, high precedence messages often cannot overtake less urgent ones immediately,
but they can do so after a bounded delay. If a low-precedence message is currently being
transmitted when the high-precedence transmission is requested, the bounded delay will depend
on the characteristics of the networks in use. For example, unless there is bandwidth sharing
between latency classes, it will include the bounded time to complete the low-precedence
transmission.

It is recommended that the lowest latency class on the network be reserved for hard real-
time messages. These will then suffer enly 2 bounded delay because of less critical messages.
The delay which hard real-time messapes cause each other must be bounded by system sizing
and analysis at design time.

9.5, Support for Distributed Real-Time Computing 231

9.5.3.3. Synchronism. Real-time protocols must display synchronism, i.e., the duration
of successive executions, as well as the skew of a protocol action at different sites, must be
bounded (see chapter 5).

Tight synchrony, as implemented, for example, by protocols using approximately
synchronized local clocks [Cristian et al. 1985], has the systematic performance overhead of
having to take worst case communication delays into account. This would not be an extra
overhead when proving the timing properties of a hard real-time subsystem, but is undesirable
for best-effort or high-performance subsystems.

In a LAN, execution and inconsistency times may deviate considerably from their normal
values, although the probability of these deviations occurring is normally very low. We plan o
take advantage of this fact, for probabilistically tightening a loosely-synchronous protocol,
since it behaves tightly most of the time. This would maintain recipients in synchrony in a best-
effort manner, but of course, ordering could not be reliably ensured. In those cases where total
order is needed (see section 10.1.2), another possibility is to build a higher-level tightly-
synchronous clock-driven protocol on top of the clock-less one, to serve that part of the
information flow requiring both wtal order and high synchronism, We believe both approaches
cover the range of applications requiring performance and a high degree of synchronism.

9.6. XPA as an Integrated Machine

We now discuss how the computation and communication aspects of XPA are integrated to
support real-time, high performance and dependability.

9.6.1. Prototype Archilecture

In a bottom-up description (see figure 2), the XPA architecture is composed of the underlying
LAN, on top of which the xAMp service is built. The group manager uses xAMp to supply the
necessary distribution and replication management support to Deltase,

GROUP MANAGEMENT LAYER
(GM)

GROUP COMMUNICATIONS LAYER
{xAMg)

ABSTRACT NETWORK LAYER
{physical + MAG layar + firmwars)

Fig. 2 - XPA Communication Stack

9.6.1.1. Choice of LANs for XPA. The LAN used in the current XPA prototype is a
4 Mbit/s token-ring, whose adapters were the ones available the earliest in the project. Note
that thanks to the abstract network, XPA is virtually LAN independent. Still, its real-time
guarantee and high performance aims, may condition the choice of LAN,

As an example, FDDI, which provides around 10 times the data rates of the other standard
LANs used on the project to date (token-ring and token-bus), is under consideration, for future
prototypes. It provides support for the implementation of urgent traffic classes (like token-bus),

232 9. Exira Performance Architecture (XPA)

and has built-in medium fault tolerance, so that expected availability is very high (see saction
§15.4).

Although the sustained user-network data rate in FDDI is much higher, the objective in
XPA, from a performance viewpoint, is achieving responsiveness not only to periodic but also
bursty sends or receives. However, it has been shown, in section 10.7.2, that FDDI can
enable increased responsiveness, reducing the end-to-end delay, and thence, the AMp
primitives” execution times.

Compared with 8802/5 token-ring, FDDI has some speed enhancement measures like early
token release and frame length limitation. A comparison with 8802/4 oken-bug is more
difficult, but these two LANs do have one thing in common: both access methods have a
message priority mechanism based on bandwidth sharing by timed token priority classes.
Although cable propagation velocity is basically the same, the transmission time of a frame in
FDDI is about 30 times less that of slower LANs, For the same global load, medium length and
number of stations, FDDI is capable of passing a much greater number of frames of the same
octel length, per unit of time, than for example token-ring with which it has the most direct
comparison. Added 1o the much larger number of nodes and distance allowed, FDDI also
displays a better scaling capability. In the situations where frame dimension is not negligible,
the throughput of FDDI becomes an important factor in the end-to-end delay.

9.6.1.2. Group Communication: xAMp. In the current OSA Delia-4 implementation the
xAMp is part of an OSI-type protocol stack, with an inter-replica protocol implemented at the
session layer, which also provides multipoint communication. In XPA, the application support
environment (Deltase) is collapsed onto a group communication laver. A consequence of this is
that the remaining layers must retain pans of the functionality of the removed layers. This is the
reason for the inroduction of new services in xAMp, and of the group manager as a
harmonising layer.

As figure 2 shows, the XPA communication stack is based in a collapsed layering design
where, to improve the efficiency of the whole stack, some of the layers present in the OSA
architecture were removed. This means that the remaining layers must retain some of the
functionality of the removed layers, to keep the system powerful and versatile. However, the
increment of functionality cannot compromise the efficiency of the system, otherwise the result
would be reversed.

The new services have emerged as variants of the original AMp primitive in order to profit
from the previous design, development and wvalidation work. Since the original AMp
implementation was a starting point for the development of a multi-fold primitive, software is
extensively re-used. The group communication layer is architecturally more elegant as a set of
variants of the same protocol than as a bag of completely different protocols. For details about
the extended service, dubbed xAMp, see section 10.4.

The group management services offered by the original AMp primitive were designed for
the integration with an OSl-like stack, in the OSA architecture, where a single logical entity was
the user of a gate group. With the original approach, where properties are only assured within a
group, several high-level groups of entities were mapped on to a single AMp gate group. The
mapping and multiplexing are done by some high-level entity, the session layer, with the
original AMp. Evolution both in XPA and OSA has come to show that addressing support
performed at low level can render those multiplexing and mapping functions more efficient. So
xAMp should offer efficient primitives to ease the addressing of subgroups within one gare
group and become the common communication support for both XPA and OSA. Selective
multicasting is a key issue for this objective. With it, one can manage o address subsets of
participants, ¢.g., separate betwoen sender and receiver participants, in a dynamic, but user-

9.6. XPA a5 an Integrated Machine AL

friendly way. High performance address resolution is also obtained. These new features are
extensively used in the XPA prototype.

Communication quality of service in XPA assumes a range from atomic to datagram,
through variations of the same protocol, the xAMp, interpreted by a set of primitives, which we
briefly recall: bestEffortN, bestEfforiTo, reliable, atomic and tight. For details, the reader is
referred 1o chapter 10.

96,13, Group Management. Turning the xAMp into a super primitive would be a
negation of the end-to-end argument [Saltzer et al. 1984], as much as just providing datagram
quality would be a bad use of it. In fact, the argument is against providing more functionality
than needed at a given level of & system, because this goes against optimizing efficiency.
Nevertheless, if a class of applications requires a certain functionality (or quality of service),
however complex it may be, the lower level should provide it, since it frees the user from
programming it, and will probably have been optimized and widely tested. Going back 10
xAMp, since it has to support a diversity of applications, both in OSA and XPA, it provides a
range of qualities of service, rather than a single one. The upper layer user will select the one
that best suits its request.

The xAMp provides a comprehensive set of communication primitives and low-level group
management Lools, o support interactions between groups of components in a distributed
environment. However, these interactions may assume a certain complexity, as is the case if
components are replicated for fault-tolerance, making it worthwhile for them to be managed by
a dedicated entity between XPA Deliase and the xAMp layer. To take advantage of the facilitics
provided by xAMp, in such operations as message reordering, overtaking, or reuse, it should
share structures with xAMp. The group management layer is thus introduced as a harmonising
layer between the xAMp layer and the communication manager of XPA Deltase, sharing
structures with both of them.

9.6.1.4. Deltase for XPA. XPA and OSA versions of Deltase (see chapter 7) present the
same interface to application objects, except for the following extensions and restrictions for
XPA:

* XPA applications can read and reset their precedence parameters, i.e., their priority
and targetline (called “deadline” in the Real-Time UNIX documentation [Bond 1987,
SVC200]), and the period of a periodic real-time task. However, only top-level
client applications are expected to make use of these facilities; servers will normally
inherit these parameters transparently.

* As explained in chapter 12, the management of real acrions varies according to the
model and degree of replication in use; yet it is an established ODP principle that
replication should be transparent to the application. One way to achicve this is to
perform the real actions in a transformer separate from the application.

However, it may be that the application programmer himself wishes to supply a
procedure that would perform the real action correctly in the simple non-replicated
case. It may therefore be necessary to extend XPA Deltase so that it can call a real
action procedure supplied by the application in a manner consistent with the actual
replication details. For example, if the real action has already been performed by a
leader replica, the Deltase environment of the follower would refrain from repeating
it.

+ XPA Deltase does not permit the recursive impart of interfaces: i.e., a client may not
import services from a server that also invokes the client. In the absence of this
restriction, it would be more difficult to give timeliness assurances. Recursive

34 9, Extra Performance Archisecure (XPA)

impont is also disallowed by some languages (e.g., Ada) but is permitted by OSA
Deltase for reasons of openness.
However, the implementation of XPA Deltase differs quite radically from that of OSA
Deltase in the following ways:
= Support for high performance: XPA Deltase copies network messages directly
between the application address space and the message buffers in the network
attachment controller, doing a minimum number of data copies, system calls and
context switches. Details of these mechanisms are included in the Delra-4
Implementation Guide [Delta-4 1991]

« Support for real-time: XPA Deltase interfaces to a real-time local execution
environment, which in the prototype is the Real-Time UNIX developed in the first
phase of Delta-4, and to the Collapsed-Layered Communicarion System (CLCS, sce
section §9.6.4). XPA Deltase also propagates the XPA precedence from client to
server, ensuring that both are scheduled accordingly. It supports the semi-active
replication model, including its thread preemption mechanism (see section
§9.4.3.2).

Good system generation tools are required to ensure that compatible versions of both
application and system level objects are included in the same system build. This problem will
arise more frequently during the development of the XPA prototype because the continuous
effort o improve performance is likely to lead to several successive versions of important
system interfaces, e.g., the interface between a capsule and the communication system.

Existing Deltase trading mechanisms and system generation practices will therefore be
reviewed. If further mechanisms are required for XPA, consideration will be given to run-time
checks in which the client presents the version number of the interface specification in its first
invocation of the server. This is a marginal overhead that will detect any errors during system
commissioning.

9.6.2, Scheduling

9.6.2.1. Scheduling Algorithms. As explained in section 9.1, XPA makes the minimum
of assumptions about the scheduling strategy used by the underlying LEX. The consequences
of using each of several common strategies in an XPA context are nevertheless of interest and
are now examined.

Highest priority scheduling preemptively schedules components in the order of priority.
Components that interact with the environment derive their priority from the cost of their
potential timing failures, and other components inherit their priority from dependencies.

All XPA on-line schedulers use highest priority scheduling, because it is stable, ie.,
during overload conditions, where the underlying LEX makes use of highest priority
scheduling, the most eritical components are still likely to meet their timing constraints although
the least critical components may stop doing so. Refinements such as the ceiling protocol [Sha
ct al. 1987] prevent deadlocks and reduce delays 1o high-priority components, at the cost of
blocking other components more often.

An cach priority level, a scheduling algorithm can be used which discriminates between
components of the same priority on the basis of their arrival time, targetline, deadline, slack
time, period or some other principle. Different algorithms may be used at different priority
levels, as recommended by the draft IEEE standard on real-time operating systems [IEEE
P1003]. Only the most important algorithms are described below.

Earliest deadline (Tarpetling) scheduling preemptively schedules components in the order of
their deadlines (argedines).

9.6, XPA as an Integrated Machine 35

Targetline inheritance is the policy of assigning a component’s targetline to any component
on which it depends, e.g.. assigning to a server the targetline of its client. Inherited rargetiine
scheduding is earliest targetline scheduling with such targetlines.

Targenline calculation is the policy of calculating a targetline for each execution on each
computing element, by subtracting (estimated) subsequent execution times from the targetline of
the whole distributed computation. For example, a server’s targetline is equated to the targetline
of its client minus the expected execution time in the client after the server replies. Calculared
targetline scheduling is earliest targetline scheduling with such targetlines.

Inherited targetline scheduling meets all targetlines on a mono-processor system, if any
schedule can achieve this [Halang 1986]. On a mult-processor system, this can only be
achieved by NP-hard calculations (e.g., [Zhao et al. 1987]) and inherited targetline scheduling
becomes non-optimal. Nevertheless, it perfforms well in multi-processor experiments [Sha et al,
1985] and is intuitively sensible, favouring those components that are part of the most urgent
computations. Also it is simple and does not require accurate foreknowledge of execution
times. [t is therefore being prototyped in XPA.

Inwitively, calculated argedine scheduling derives component targetlines in 2 more realistic
way and should therefore meet more targetlines in a distributed system. It also performs well in
experiments [Sha et al. 1988]. It requires a knowledge of execution times, but this is needed
anyway in a provable real-time system.

Several other scheduling algorithms could be used on XPA, but are not included in the
prototype because of limited resources. Two examples are:

Rate-monotonic scheduling preemptively schedules independent periodic components in the
order of increasing period [Liv and Layland 1973]. On a single processor, rate-monotonic
scheduling completes every penodic activation within the peniod if the worst-case load is kept
within cenain bounds, It is stable if the more critical components are given the shoner periods.

Least slack time scheduling preemptively schedules components in the order of increasing
slack time, (i.e., time till inherited targetline - remaining execution time). Intuitively, it is likely
1o have similar propenies wo calculated argedine scheduling.

9.6.2.2. The Protolype LEX

9.6.2.2.1, The Precedence Parameter, A precedence is assigned 1w every distributed
computation and communicated to every component of the computation. The precedence
encodes the following information:
= The priority of the computation, i.¢., whether it is hard or soft real-time or non-real-
time computation, and how costly are the consequences of a timing fault.
+ The targetline of the compatation, which is normally derived from the deadline (and
liveline, if any), or period for a periodic computation,
* A parameter whose interpretation depends on the scheduling algorithm used at this
priority level, e.g., an estimate of the remaining execution time in the computation.

Every component of the computation (i.e., every message or process that can delay the
computation for any reason) inherits the precedence and may not change the priority field, e.g.,
a component of & non-real-time computation may not claim that 4 hard real-time computation
depends on it.

Each local scheduler preemptively schedules components in the order of their priorities and
components of the same priority in an order that may vary from one priority level to another
{see §9.6.2). The default is inherited targetline scheduling, i.c., components of the same
priority are scheduled in the order of their targetlines. If two targetlines are equal or differ by

236 9. Exira Performance Architeciure (XPA)

less than the context switching time, the scheduler refrains from switching between the two
components, which would increase the risk of missing targetlines.

9.6.2.2.2, Interpretation of the Targetline. If a deadline has been specified for a
component, the targetline should normally be set at or before the deadline. If no deadline is
specified, but the frequency of component activation is specified, targetlines should be setin a
way that reflects this frequency, i.e.

« Each periodic activation of a periodic process can be assipned a targetline equal to
the swn of the next period. If the periodic processing finishes before this mrgetline,
the process suspends until the targetling — the targetline event unsuspends it and
starts the next period. If the periodic activation finishes after the targetline, thisisa
waming of potential overload.

= A sporadic process, .g., a process with a known minimum inter-arrival time, can
be assigned a wrgedine equal 1o the earliest possible arrival of the next activation of
the process. Again a missed targetine is a waming of potental overload.

9.6.2.2.3. Prototype Implementation. In practice the precedence parameters have to be
converted into scheduling parameter(s) that are meaningful in each local execotion environment.
In the XPA prototype, this is done as follows:

+ In the Real-Time UNIX developed in phase 1 of Delta-4, processes are scheduled in
the order of their priority and processes of the same priority in the order of their
“deadlines”, which are ser equal o their inherited targetlines.

+ In VRTX32, which will be used in the prototype NACs, processes are scheduled in
the order of a VRTX priority in the range 0 1o 255, which encodes the priority and
the most significant bits of the targetline.

« On a bus or LAN, messages typically belong to one of a few priority levels or
latency classes. For example, only two latency classes may be used on the LAN,
with only the hard real-time messages being assigned 1o the higher class.

The communication protocol software in the NAC will be organized on the basis of one
thread per message to be ransmired. In the first prototype these threads are not prioritized, but
it is intended that each thread should later derive its precedence from the message it manages, so
that a high precedence output message overtakes concurrent low precedence outpul messages.
{The group manager threads allow preemption only at certain points in processing to ensure
protocol correctness,)

In the destination NAC, high precedence input messages may again overtake other
messages; they may also preempt preemptible software components, provided the semi-active
and passive replication models are used (see section 9.6.4).

9.6.2.3. Alternative LEX Mappings

9.6.2.3.1. Mapping of Off-Line onto On-Line Schedulers. If there iz a static set of
processes at one or more priority levels, an off-line scheduler might calculate a fixed cyelic
schedule for them. [t may be possible to communicate this schedule to an on-line scheduler by
setting the precedence parameters to specify the times at which components are o run and the
order in which components ane to be preferred if they ever conflict for resources.

For example, if the static cyclic schedule is in fact the same as that which would be
produced by a rate-monotonic scheduler (see above), the targetline can be set equal o the
period, the third parameter of the precedence vector can encode the start time of the first

9.6. XPA & an Inlegrated Maching 37

periodic activation and a rate-monotonic scheduler can then reproduce the cyclic schedule
planned at design-time by the off-line scheduler.

To reproduce a more complex static schedule, in which long-period processes sometimes
preempt short-period ones, it would also be necessary to assign different priorities to the
components. However, most static cyclic schedules can be encoded into a priority, period, start
time vector for each component. (An exception would be any schedule that contains mutual
preemption: A preempts B, which then preempts A.)

We can therefore envisage an XPA system in which the hard real-time components at the
highest priority levels are executing according to a static schedule calculated at design time. The
remaining system resources could be allocated to lower precedence components by a “real” on-
line scheduler, calculating its schedules at run-time in the normal way.

9.6.2.3.2. Other Scheduling Strategies. The third parameter in the precedence vector is
included so that XPA can remain open to other on-line scheduling strategies such as rate-
monotonic and least slack time scheduling (see above). The detailed format and interpretation of
the precedence are therefore hidden in a “precedence manager” object, which exports a fixed
interface, e.g., will tell the caller which of two precedences is the higher, but which can be
implemented in a number of different ways,

Various other scheduling strategies are described in the literature (e.g., [Johnson and
Madison 1974, Minet and Sedillot 1987, Xu and Pamas 1990, Zhao ct al. 1987]). Where
possible, it is desirable to permit their use in XPA, although they will not be prototyped. The
necessary restrictions ane:

* All computations at the same priority level must compete using the same scheduling
algorithm at each local scheduler.

= All local schedulers of the same resource, e.g., CPU time, should be identical on
XPA. This makes it easier to predict timing properties, e.g., bound the
desynchronization of replicas.

¢ Schedulers that perform extensive or NP-hard calculations are discouraged, as they
tend to add to the problem they are trying to solve.

One reason for allowing the later introduction of other scheduling strategies is the wide
variability of real-time system requirements. For example, a voice management system
implemented by Ferranti has the following requirements:

= the start of service provision can be delayed if necessary, i, this is a “soft”
requirement;

* but as s0on as service commences, a fixed proportion of the processing power is
required between the start and completion of each service, i.e., this is a “hard”
requirement,

In this case there is no definable targetline, but the third parameter in the precedence vecior
could be used 1o hold the required proportion of processing power.

Non-real-time processes running at the lowest priority level may also have no “natural”
targetline and may be given “fair shares” of any remaining resource, Alternatively, they may be
assigned a targetline a fixed period afier their activation times, leading to FIFO scheduling.

Figure 3 shows an example local scheduler that is using some of the above options. The
arrows indicate the order in which the scheduler examines the tasks; it executes the first which
is found to be immediately executable (i.c., not suspended waiting for any resources) and
reexamines the list whenever a new task appears or becomes executable. There are four priority
levels: one for the hard real-time tasks, two for soft real-time tasks of different criticality and
ong for non-real-time tasks. The hard real-time tasks are a static set, so they can be scheduled
sccording to targedines worked out by an off-line scheduler. The targetlines of the soft real-time

238 9, Extra Performance Architeciure (XPA)

tasks are equal to their deadlines; and the targetlines of the non-real-time tasks are derived from
their activation times, so that they are scheduled like batch jobs.

PRIORITY EARLY ~—— TARGETLINE ——= LATE

{.HARD Real-Time: [Task1 | ———=
2. SOFT Real-Time (1) : [Taska | —= [Tass |

3. SOFT Real-Time (2) :

4. NON-Fieal-Time: —_—

Fig. 3 - Scheduling Taskz of 4 Different Priorities

9.6.3. Relationship te System Administration

XPA system administration is described in section 9.5 and summarised in figure 7. System
administration “events”, such as missed targetlines, exhaustion of buffer space and changes in
the replication status of the object are reported by the group manager to the Deltase
communication manager. They are then handled by standard Deltase routines, unless the
application code has substituted its own application-dependent handling routine.

Other “events” may take the form of UNIX signals, e.g, from asynchronous device
drivers, but these 100 are handled transparently by Deltase unless the application explicitly
substituies some special handling routine,

All event handlers should preserve replica determinism (see section 9.7.6). A handler
need not perform any local processing, but may simply report the event to the invoking client,
as in the Ada exception model.

Application requests to read the time, or to be signalled at a particular time, are passed 10
the group manager and thence to the synchronized local clock, maintaining approximate global
time, i.e., the local approximation of the common system time base (see [Kopetz and
Ochsenreiter 1987]). For increased precision, clock synchronization is implemented within the
communication system. Here the group manager is responsible for replica group determinism;
e.g., having given a particular clock reading to a leader replica, it passes the same reading to the
follower replicas.

9.6.4. Communication Issues

9.6.4.1. Communication System Design Aspeets. XPA uses a communication service
(xAMp, see chapter 10) which provides group communication, i.e., which permits and
encourages communication using addresses that can refer to more than one end-point or entity.
Such communication capabilities are inherently useful in distributed systems and especially so
where the use of component replication means that sorme kind of replicated communication must
be provided either in the communication system itself or at the application level.

We chose to hide the complexities of using a particular group communication service (with
all its various options and subtly differing QOSs) in a Growp Manager (GM). This is a different
entity from the layer in the communication service provider that implements group

9.6. XPA as an Integrated Machine 39

communication (xAMp). The group manager provides all the services that a user requires to use
the x AMp.

This has turmed out o be good decision, because the GM can encompass much of the
implementation-dependent detail that is necessary for efficient communication within a node and
between host and NAC. Tt also implements most of the leader-follower protocol, the rest being
taken care of by a host-NAC interface library that straddles the gap between Deltase and the
group manager and is responsible for hiding the complexities of the interface from everything
else.

The xAMp was specified to be versatile, offering an easy way to address subgroups of
participants and a multi-fold communication primitive offering different qualities of service.

The xAMp service is based on the gate group concept. We briefly review the concepts
relevant for this discussion (detailed in chapter 10). Each gate group, or gare, possesses a
logical identifier that is implicitly an address. A message sent 1o 2 given gate group will be
delivered to all group members. Only a group can be addressed at send time. A message 1o be
sent to two different groups must be sent twice. However, selective addressing allows the
selection of a subgroup of a given group as the recipients of a message. In the xAMp, these
subgroups are identified by lists of station names, but logical subgroup identifiers are
constructed for higher-level references.

Within a gate group, a receive queue is associated with the gate ar every group member.
Messages sent using aiomic or righr qualities of service are ordered in the receive queve such
that total delivery order is provided to all members, Messages of the same precedence are
inserted with FIFO order on the receive queue. However, the position of high precedence
messages within the queue can be negotiated when the righr quality of service (QOS) is used.

Potential causal order is preserved for messages exchanged in the system, within the same
domain of causality, which is identified by a label (clabel) independemtly of group membership.
This service is provided by atomic or tight QOS. Messages of different precedence must use
different clabels.

9.6.4.1.1. Mapping between Components and Gate Groups. We now discuss how
high level components can be mapped on to pate groups. The discussion is needed since a
designer using xAMp has several options that can be expressed by the following questions:
(1) May a component belong to several gate groups, or should the membership be
restricted o a single group?
{2) May several components belong to the same gate group or should the group
membership be confined to several replicas of the same component?

The way each question is solved by the designer has consequences in terms of the degree
of parallelism, concurrency and order relations offered within the communication layer.

Question (2) concerns the visibility of mullicast, also discussed in section 8.1, In the
following discussion we assume that a component possesses a logical identification. A
component can be replicated, having several replicas in different stations, but it is still the same
logical component, since all replicas have the same identity, Communication with a group of
these replicas is such that their existence is hidden from the higher MCS layers, thus it is termed
invisible multicast. On the other hand, different components can be seen as forming a group of
different cooperating entities. The leader-follower model is an example of such a component
since each participant can be addressed individually (the leader, the first-follower, etc.). In this
case, we have visible multicast. Participant visibility can go all the way up to the top system
layers, if so wished.

To emphasise that components do not directly call xAMp, we will give different names 1o
the primitives called by the high level components; when a component desires to receive the

0 9, Extra Performance Architectune (XPA)

messages addressed to a logical name Iname it will call an OpenRec (Iname) primitive. To send
messages addressed to a logical name Iname, it will call an OpenSend (lname).

9.6.4.1.2. Managing Concurrency. With xAMp communication primitives there are two
different ways of achieving concurrency in the communication:

* The first is to associate different receive queues to the same component, letting the
component open more than one gate. In this procedure, no causality relations can be
assured between messages received through different pates.

+ The second is 10 use clabels to establish causality paths while communicating
through the same gate. This approach obliges the use of a single group, but it allows
the users to incur the expense of achieving causal delivery only when required,
without compromising efficiency.

The first option is appropriate for the model of causality based on RPC and leader-follower
replication that has been described. The second option is made use of when other interaction
constructs must be used; for instance where Casts must be received in potential causal order.
These observations clarify the designer options to solve question (1),

9.6.4.1.3. Interactions between Single Components, Let us consider the case where
components are only addressed individually and no identification is given to groups of
components. If a message needs to be sent to several components, one copy is sent to each
companent, Components can still be replicated and replicas are still addressed mransparently.

In such a case, a component can receive messages through a single gate and there is no
need for several components to be mapped onto the same gate. There is a one-to-one relation
between components and gates. Logical order of all messages exchanged (through the
appropriate QOS) is preserved in the system. Since there is a direct mapping between
components and gate groups, there is no need for any extra translation protocol.

With this configuration there is a direct mapping between an Iname and gare address. The
rranslation between OpenRec and GateOpen primitives and between OpenSend and AttachGare
is also trivial.

0.6.4.1.4. Interactions between Groups of Components. Let us now consider the
case where cooperating components need to be addressed both individually and as a group.
Components will then be grouped and an identification will be given to each group.

If total order relations need to be verified among the messages exchanged by a set of
components — and this includes both the ones directly addressed to a component and those
addressed to one of the groups to which it belongs — all the messages must be received by
each component through the same receive queue. This answers question (2) put earlier: group
membership cannot be confined to several replicas of the same component since, when total
arder relations need to be preserved, cooperating components must be mapped onio the same
group.

It will then be impossible to map directly component and group identifiers into gate group
addresses since several logical names will be sharing the same gate address. So, some protocol
must be added on top of the xAMp layer, executing the necessary mapping.

With this configuration, there are still two different strategies to disseminate the messages
to the appropriate components. The first is similar 1o the one used in OSA before xAMp was
available, where frames were addressed to all gate group members. At the upper layers the local
existence of the logical name addressed was checked and the frame discarded or delivered to the
addressed component. The major advantage of this method was that there was no need to run
agreement protocols to open or close a logical name at a given station: as long as the gate group

9.6. XPA as an Integrated Machine 241

already existed the operation was purely local. The disadvantage was obvious: at the AMp layer
the agreement was run among all the group members even when only a small subset needed w0
receive the frame, This was a severe performance penalty, 50 a second alternative was devised,
as explained below.

Since xAMp provides a selective multicast service, which allows the frame to be addressed
only to the relevant stations, we explored it 1o achieve better performance, If the sender is able
to know, at ransmission time, the identification of those stations where a given logical name
exists, it can use the appropriate selective multicast field in any xAMp primitive to send the
frame just to the relevant stations. There an extra lateral cost, since now an agreement protocol
must be run to disseminate the information about open and close actions. However, since the
environment changes are supposed to be relatively few in relation to the twtal number of
messages exchanged, this can represent a substantdal performance improvement.

9.6.4.1.5. The Use of Selective Multicast, We now summarise a simple protocol to
support the use of selective multicast, when several components share the same group. An
elaborated form of this mechanism was developed for the OSA architecture after the adoption of
xAMDp as a common component of the architeciure.

On top of the x AMp layer the protocol keeps a table with two fields: Iname, lstOfStations,
The table is just a conversion table, mapping logical names into the lists of stations where that
logical name exists.

When a new siation enters & group, and also to support the cloning protocol deseribed in
gection 9.7.9, consistency must be maintained. All group members must have the same view
of the mble and a new station entering the group must obiain this view. The agreement protocol
for consistent subgroup management depends on the aromic service of xAMp. Each time a
componént issues an OpeénRée request, the protocol will broadeast o all the group members an
enter message carrying the station identifier and the logical name to which the component
becomes associated. When this message is received, a new entry in the wble is created or, if the
eniry already exists, the station is added to the list. Each time a component closes the receive
queue a leave message is propagated in a similar way, throughout all the group members.

When a message must be sent to a given component, the protocol just feiches the
appropriate xAMp selective multicast list and requests the ransmission to the xAMp layer,

9.6.4.2. Flow Control. Flow control is the problem of coping with limited buffer space.
For hard real-time components, this can be achieved by sizing the system so that buffer space
will never be exhausted. For other components, flow control can be achieved by blocking
producers of messages when it threatens 1o be exhausted. Three types of component can be
distinguished: hard real-time, soft real-time and non-real-time. In the XPA prototype, they are
mapped onto different priority levels,

Note that the proposed mechanisms for flow control management have not yet been
implemented in the first (1990) XPA prototype.

9.6.4.2.1. The Hard Real-Time Priority Group. Hard real-time components are
assigned to the highest priority level. If we are to prove they meet their timing constraints, they
must not be blocked for lack of buffer space.

The maximum buffer requirements of these components must be determined al design time
and these buffers must be reserved for components in the hard real-time priority level,
Components with a lower priority must never be allowed 10 use the reserved buffer space.

242 9. Extra Performance Architecture (XPA)

So a hard real-time component cannot be blocked for lack of buffer space, provided
conditions remain within the operational envelope (see chapter 5). Outside this envelope, two
things may happen:

* A hard real-time component may seize free space normally used by lower priority
COMpPONents.

« If all else fails, the producer component receives an event indication that offersita
chance to limit the damage in some application-dependent way. This is analogous to
the missed targetline event and might be serviced by a similar event handler (see
section 9.3.5).

Since hard real-time components are supposed always to have buffer space, inaccessibility
for those components is not defined. In other words, it equals failure. In consequence, an
xAMp message is never rejected due o inaccessibility,

9.6.4.2.2, The Soft Real-Time Priority Group. Soft real-time components that are not
part of the hard real-time subsystem may be denied buffer space even when conditions are
within the normal operational envelope. However, it is iImportant to make this an unusual event
and therefore buffer space is reserved for the soft real-time priority levels, in the sense that non-
real-time components may never use the reserved space.

When a soft real-time component cannot be given a buffer in its reserved space, two things
may happen:

« A soft real-time component may seize free space normally used by non-real-time
BDI"HPI:!I'IEI‘IIS.

= If all else fails, the producer component receives an event indicarion that offers it a
chance 1o limit the damage in some application-dependent way. This is analogous w0
the missed targetline event and might be serviced by a similar event handler (sce
section 9.3.5).

When an xAMp message for a soft real-time component cannot be received in the
destination NAC because of a shortage of soft real-time buffer space, the destination component
is said 10 be inaccessible. The ransmission may be retried later, but if this condition persists
beyond pre-defined limits (duration, rate), it must be considered failed, either by itself, or
through an action of system administration. When using the reliable QOS, that happens upon
the first occurrence of inaccessibility, by definiton, (In normal cases, the system administration
module in the group manager is informed of the buffer shortage before it leads to such failure
and may be able 1o avert failure by denying buffers to non-real-time components.)

9.6.4.2.3. The Non-Real-Time Prierity Group. Non-real-time components may not
use the reserved buffer space of real-time components and the buffer space that they normally
use may be seized by these higher priority components in exceptional conditions. It follows that
all nop-real-time components on an XPA system must expect 1o be blocked for lack of buffer
space, or lack of other resources, and it may be difficult to predict their timing properties.

Although non-real-time producers may be blocked, it is not proposed that non-real-time
messages should ever be discarded to release buffer space. This would lead to incorrect
operation or abandoning of non-real-time components, which may in fact be as costly as a loss
of imeliness in real-time components,

If there is no non-real-time buffer space for a non-real-time message to be received at a
destination node, the destination component is said to be inaccessible. If the message was
transmitted by aromic multicast, the multicast fails and may be retried after an interval. If the
message was a refigfle multicasy, the destination component is deemed to have failed,

9.6. XPA as an Iniegrated Machine 3

Non-real-time applications may, if required, be alerted by the missed-targetline or no-
buffer-space events. An application might handle these events by explaining to a terminal user
why itis delayed.

9.6.5. Computation Issues

9.6.5.1. Causality in Component Interactions. Deltase supports the Remote Procedure
Call abstraction, in which object interactions are synchronous RPCs involving the passage of a
global thread of control. Global threads are represented within the single address-space of a
component replica by lightweight threads, which are scheduled deterministically, at well-
defined points in the code. In figure 4, objects A, B, C, E and F are shown supporting multiple
computations in this way.

Figure 4 also illustrates the facility that is provided to objects for a “family” of threads 1o
come into being on behalf of the single global computational requirement (labelled iii in the
diagram). Within object C, a “parent” thread has created “child” threads of control that
subsequently die within that object, but in the interim are despatched through RPC to objects E
and F. If the components supporting these are located on distinct hosts, simultaneous
computational progress may be achieved; local “pseudo” parallelism can therefore give rise 1o
distributed “rue” parallelism.

Fig. 4 - Distributed Compuiations

Apart from the purely within-component issue of birth and death, global threads that are
“related” in this manner are causally-independent of each other during their life, In figure 4, this
applies to those arriving at object F, which are just as independent of each other as those
arriving at objects A, B and E. Causality follows each individual thread of control, as it
animates different objects. Therefore, upon arrival at any one component, the messages that

244 9, Extra Performance Architecture (XPA)

represent these threads, even from the same sending component, are necessarily independent if
they are concurrent. They are viewed as “competing” and may be freely re-ordered by the
component according to precedence. The machinery is described below,

9.6.5.2. Causality and Replica Determinism. XPA inherits the Delta-4 Open System
Architecture lightweight thread scheduling. This is inherently replica-deterministic; it always
takes place at well-defined points in code and the same dara is used 10 take the same scheduling
decision.

However, the group of replicas must reorder messages identically, and must permit these to
sometimes cause preemption identically. The State-Machine approach to replica-determinism
|Schneider 1990] used by the Delta-4 Open System Architecture cannot be used, since in effect
it bans preemption. To overcome this, XPA has introduced the leader-follower, or semi-active
replication model [Barrett et al. 1990],

Since stations are fail-silent, it is possible 10 permit all decisions on potentially non-
deterministic behaviour to be taken by a privileged replica, the leader, Until it fails, this replica
is in charge of ensuring the consistency of its replica group, both with respect to the order of
receipt of messages that represent RPCs and with respect to any other potential causes of non-
determinism.

9.6.5.3. Message Handling. The group manager takes messages from the network that
are intended for recipients on its node, interprets their addresses and passes them on o the
addressees. It ensures that messages with the same precedence and from the same source are
delivered in FIFO order o the queue of messages passed up 1o Delase. The processing of
higher precedence messages is allowed 1o proceed at the expense of lower precedence
messages, but FIFO order is maintained within a “precedence class”, so that a series of reliable
casts from the same source at the same precedence are delivered in the order of generation.
Thus, for example, the various messages of the XPA cloning protocol can be sent by cast rather
than RPC, without having 1o ensure that their order can be deduced from their internal content.
This allows precedence of a thread of computation to migrate across the communication system
from one object to another, within the limitations of the number of precedence classes provided
by the underlying network hardware and the order-preserving properties of the reliable
communication service provided by xAMp.

The group manager takes messages from local senders and sends them on via the
communication service. The communication service is used even o send purely local messages
50 5 10 obiain the precedence properties that it provides.

The group manager consults a precedence management function to translate and compare
the precedence classes associated with a message: the various precedence classes that it has
available for its own computations (from the underlying execution environment of the group
manager); and the various precedence classes of execution that are provided to the user
application (i.e., Deltase). The precedence management function allows, for example, fuzzy
comparisons between a message precedence that consists of a (priority, deadline) pair and the
precedence with which the currently executing Deltase thread is running on the host. This
comparison is then used to decide whether or not to interrupt the current Deliase processing in
order 1o pass the (possibly more important) message to another thread or object. The
comparison is not straightforwand because it may, for example, use a cost-function which takes
account of the time required 1o interrupt and schedule another thread. This may “cost™ more to
do, perhaps increasing the likelihood that one or both threads of computation may miss their
deadlines, than simply letting the first thread run to completion, even though the new message
hias a slightly higher precedence when measured in the absolute sense.

96, XPA s an Integraied Machine 245

As well as handling application messages, the group manager must also produce and
process messages that are generated as part of the leader-follower protocol and admindistration
messages controlling the creation, destruction and management of communication resources.

Concerning precedence management, it is mandatory for an RPC of highest precedence o
cause bounded-latency preemption of lower precedence computation. The message must not
only “jump the queue™ on arrival; processing must begin at the same point in all replicas so that
they do not diverge in state. Figure § illustrates the following solution to this problem:

Preemption points are small units of code, pre-installed in the object code a bounded
execution distance apart (shown in figure 5 as small lines crossing the execulion-path of the
threads). Very few instructions are executed in the normal (non-preempting) path through a
preemplion point, which permits their distance apart to be small without significant overhead. A
eount is maintained to identify arrival at a preemption point; because of both deterministic
lightweight thread scheduling and the machinery for handling asynchronous events about 1o be
described, the same count (N-1, N, N+1, .__ in figure 5) is assured to identify the same point in

When the leader arrives at a preemption point, code examines a preemption flag and
normally continues computation if it is nou ser; periodically, it sends “continue from N-K 1o N*
instructions at such points (K is a constant and N-K is where the last instruction was issued).
Such instructions consumne very little network bandwidth and assist the follower to keep up or
detect desynchronization. The set of such instructions provides a continuous description of
execution requirements. When a follower arrives at such a point, the code compares its own
preemplion point count with the value supplied by the leader in the instruction currently being
followed, and proceeds if it is less. When it arrives ar an identified point, it obeys the leader's
instruction te proceed or divert to accept a message (figure 5). Note that the leader must stay
one instruction ahead; if this has not been sent, the follower blocks for a bounded time at the
next preemption point beyond those for which it has received instructions.

When a message containing a request for service arrives at a station, its precedence is
compared with that currently occupled by the destination replica (leader or follower), which is
running with at least the precedence of its current computation, If the message precedence is
higher, the replica is immediately given that precedence, and the preemption flag is set. If that
precedence exceeds that of any other computation on that station, the replica gains exclusive
access 1o the execution resource, and the execution distance o the next preemption point is then
bounded in time.

The leader is diverted by this flag at its next preemption point, and will then select the
highest precedence waiting message; this selection, together with the preemption point count
when diverted, is sent 1o the followers. The service required is then invoked by running a local
lightweight thread to temporarily represent the global thread in that replica, and will be
identically invoked ar the followers,

The group manager at a follower blocks the replica when it requires to read an input
message until the corresponding notification has been received. Similarly when a replica
requires to produce an output it is blocked until the notification confirming that the leader has
senl it has been received. It would be possible to buffer output messages in followers, thus
allowing computation 1o proceed, but for the moment we believe that the complications in
message buffer management that this would entail do not justify the benefits to be gained. The
argument is that the follower must be only a little way behind the leader, or the application
would fail to meet its deadlines if the leader fails. There is thus very litile 1o be gained by
buffering output messages except programming complexity and probably reduced efficiency.

Follower replicas are also blocked by their group managers when they reach a
point for which a preemption notification has not been received from the leader. All such
interactions between group manager and replicas (notification of reaching a preemption point;
suspension/resumption of a replica, etc.) are handled by the host-NAC interface library. In the

288 9. Extra Performance Architecture (XPA)

present implementation, this uses shared memory to reduce multi-processing context switches
and a UNIX device driver for preemption of Deltase threads,

Fig. 5 - Replica Group Determinism, Leader-Follower Model

9.6.5.4. Supporting the Leader-Follower Protocol. The group manager relies on
xAMp to inform it when a node containing a leader replica has failed, so that a follower must
therefore become a leader, It is sufficient for the group manager of the follower that is about to
become a leader to pass the information that the follower must become a leader in the normal
flow of notifications to the follower, The follower can take appropriate action when it processes
the notification (this is done within the host interface library). This assumes that comrect
ordering of messages and notifications is maintained within the group manager and that xAMp
co-operates with the group manager by providing the indication that the leader node has failed
in a suitable manner.
To support the leader-follower protocol, the group manager must support the following
assumptions:
« total order of inputs 1o replicas;
+ messages with the same precedence class do not overtake messages with the same or
a higher class; i.e., FIFO — and therefore causal — ordering of messages with the
same precedence and source is not violated;
* a similar consideration applies to notifications as messages.
The group membership management service for the reliable xAMp QOS must provide the
following:
+ notification of node failure (i.c., a group change indication) must be delivered to a
node after any delivered messages from the failed node.

9.6. XPA as an Inegrated Machine 247

9.6.5.5. Replica Synchronization. With all forms of replication on XPA, the fastest
replica will normally output messages to the network and to any non-replicated device. The role
of the slower replica(s) is to provide a correct and timely service if the fastest replica fails. To
provide this timely service, they must be synchronized with the Fastest replica to within a
bounded time.

Badly desynchronized replicas also present other problems: the slower replica may appear
to have failed silently, or its input queue may overflow. When a follower replica reads the
present time, it is given the value that was given earlier 1o the leader, to preserve replica group
determinism; however this value is inaccurate unless replicas are well synchronized.

9.6.5.5.1. Detection of Desynchronization. One of the problems is to detect excessive
desynchronization. Here a natural mechanism occurs as pant of semi-active replication. A
stream of notifications passes from leader to follower, indicating the results of non-
deterministic decisions and successful transmission of the leader's output messages.
Preemptible capsules send notifications of the form “Continue from N-K to N”, with bounded
inter-notification delays, which indicate that the leader recently passed preemption point &,

A follower's group manager can thus detect excess replica desynchronization. If the
“Continue from N-K 1o N™ notification is time-stamped T (in the approximate global time of the
leader’s node) and the follower has still not reached preemption point N at time T+X, (in the
approximate global time of the follower’s node), where X is an appropriate desynchronization
event “trigger”, the follower's GM raises the desynchronization event to both leader and
follower.

This is a local event (see section 9.7.4.1) since it is handled differently at the two
locations. The follower event handler reports the event 1o the local system administration ohject
responsible for station management, which may merely log the event, or may initiate some
long-term solution such as load-balancing. The leader event handler is discussed in the next
seciion,

However, the follower may not only be desynchronized, but may have failed silently, e.g.,
because of a Heisenbug (software fault that manifests itself independently in different hosts)
that causes it to fail at a point where the leader procesded correetly. It is therefore necessary to
define a time-out F larger than X and to raise the follower-failed event if the follower has still
not reached preemption point N at time T+F. Such a follower is incapable of timely back-up of
its leader, so it is correct to deem it failed, whatever the reason for its tandiness,

9.6.5.5.2. Synchronization Technigues. Two types of synchronization technique have
been identified: lightweight probabilistic mechanisms that usually prevent the desynchronization
exceeding X and, when the desynchronization is greater than X but less than F, a reliable
protocol to keep the desynchronization below F unless the follower has failed.

Lightweight probabilistic mechanisms include:

1) Replicas should be allocated to hosts so that each follower (or slower replica) has as
much processing power and other resources as its leader, For example, one host
could support a group of leaders while an identical host suppons the comresponding
followers,

2) However, even with such a distribution of components, variations because of
factors such as different disc Interrupt times may cause some followers to finish
early and athers late, compared with the corresponding leaders. Those which finish
earlier than the targetline, or which catch up with their leaders, should then suspend
until the targetline or arrival of the leader’s notification. This releases the spare
resources for re-allocation to the late followers on the same node,

248 9, Extra Performance Archilecture (XPA)

3) Synchronization of semi-active replicas can be optimized by conferring the role of
leader on the slowest replica, i.e., on the replica that has fewest local resources such
as processing power and buffer space. The followers will then complete most
operations more quickly than the leader and cumulative desynchronization is
unlikely.

4) A follower in fact requires slightly fewer resources than its leader, since it does not
normally output network messages or perform real actions (see chapter 12). These
factors help a follower keep up with its leader, although they are difficult 1o
quantify.

5) When a high-precedence input message enters the input queue of either replica, it
depends on the replica’s current processing, which is therefore allowed o proceed at
the high precedence of the pending input. If the follower is desynchronized, it will
experience this “speed-up™ effect for longer than the leader,

The protocol that ensures bounded desynchronization is as follows. The desynchronization
event causes the leader and follower to switch roles, and the old leader then waits for the new
leader (i.e., old follower) to catch up with it and send it an instruction. The new leader will do
this unless it fails, which is detected when it reaches the failure desynchronization F (see
above), if not sooner.

This strategy ensures resynchronization and tends to reduce the frequency of
desynchronization events. Since the former leader is running on what was recently, and may
still be, a less heavily-loaded host, it is likely 1o keep up with the new leader.

This sracgy does not dumage the timeliness properties of components where a design time
proof of timeliness exists, since any such proof must apply to both replicas. However, in
circumstances for which there is no such proof, the follower may miss a deadline that the leader
achieves, so that role-switching can increase the probability of untimeliness. Some users may
therefore prefer some other handling of the desynchronization event, and it may be necessary to
offer applications a selection of desynchronization event handlers, plus a descriprion of their
propertics,

Other synchronization mechanisms have been considered but rejected, e.g., it is
undesirable to raise the precedence of a follower to speed it up, because this will adversely
affect higher precedence components competing for the same resources, There could follow a
useless “inflatdon” of many component precedences in an overloaded node. Before precedences
are changed, there has to be a carcful analysis to prove that the side-effects will be acceptable.

9.6.5.6. Latencies. As explained in section 9.5.2, a real-time system must bound all
system latencies. This affects all parts of an XPA system, as can be illustrated by considering
the varipus latencies that occur during a remote procedure call. Figure 6 shows the request
phase of an RPC from a top-precedence client. Control paths are shown in solid lines and data
paths in dashed lines.

The RPC starts in the client application. XPA Deltase copies its parameters directly into
message buffers in the network attachment controller. For a top precedence application, which
will not be preempied, this takes a bounded time, depending on the size of the parameters.

The client application then interrupts the NAC to draw attention to the output. There are
then a bounded interrupt latency and context switching time and a bounded queuing time for a
top precedence message, before the group manager processes the message,

On a token ring, there is a bounded latency before the top precedence message can be
transmifted, since other stations may acquire the token first and transmit a bounded number of
other messages, cach of bounded length. Some LANs may entail unbounded latencies; a
standard Ethernet, for example, may be unusable in a hard real-time contexl.

9.6. XPA as an Intograted Machine 249

Preampt
current
thread in
Senar
Lrpuslm MNAC,
RPC ml-&nﬂlﬂix Preempt
parameters WF e Tl
o Bounded delay precedence
buffer before GM of servar
processes
request :'boal "-"*"i"-'li"t
E F
E‘E xAMp
Bounded Bounded! +
output input
Y queue LAN queue _
Top precadence = Top latency class

Fig. 6 - Request Phase of a Remote Procedure Call

Communication latency must be bounded, at least for messages that support hard real-time
services. The basic XPA communication system provides a choice of communication services,
with different tradeoffs between latency and reliability (see section 9.6.4). RPCs use the
Reliable QOS, which involves no overheads to ensure total or causal order (see section 10,4),

When a top-precedence RPC request arrives at the destination NAC, the xAMp and group
manager should process it in a bounded time. There are then more delays whilst the host is
interrupted and its current process preempted. These are bounded under the Real-Time UNIX
developed in Delta-4 Phase 1 [Bond 1987, SVC200]. The latencies involved in preempting a
particular server and diverting it 1o the highest precedence thread, are bounded for the semi-
active and passive models of replication,

However, in the worst case the fastest replica of the server fails. The latency that then
oceurs depends on failure detection (except for active replicas) and on the synchronization of
replicas. Methods for bounding desynchronization are discussed in section 9.6.5.5. A
follower can detect leader failure in a bounded time if the leader’s environment generates an
“I'm alive™ notification to the follower whenever there has been no other leader-follower
notification for a preset period. A similar technique can be used with passive replicas.

If this is a top precedence RPC, the server inherits its precedence and runs without being
preempied until it replies. The reply message suffers similar delays to the request message.

9.6.6. The Time Serviee

In real-time computing applications such as those XPA will support, a facility to measure
durations and the position of an event relative 1o the environment, in the metric of the external
real time, is a major demand. Furthermore, in distributed real-time control systems, it is often
required to measure the duration between two events that have been observed by two different
nodes, or to specify actions to occur at several places in the system at a given absolute time
(these operations may require a high degree of precision), It is also often required 1o establish
comparisons with the real world time, with the assistance of some external time metric, not

750 9. Extra Performance Architecture OXPA)

always with the high precision standards required for the internal time. Due to the above
reasons, clock synchronization in XPA must always ensure good clock precision and a
maoderate accuracy, i.e., clocks must be internally synchronized, but should also be externally
synchronized, although in a less siringent way.

The XPA environment ltself possesses a set of characteristics that allow good resulls to be
expected from software implemented clock synchronization. The main reasons are the use of a
local area network with broadeast facilities, which eases the sk of message dissemination, and
the possibility of implementing the clock synchronization procedure in the lower levels of the
communication system, reducing the variability of message delays. These features are
materialized by the existence of cheap reliable broadcast services provided by the xAMp, which
can offer a small variability in the time needed to execule the protocol (execution time). It can
also offer very small inconsistency time, which allows the use of the broadcast primitive to
simulate a quasi-simultaneous event or to disseminate a clock adjustment throughout the
sysicm.

9.6.6.1. Discussion. Since external clock synchronization needs consideration in XPA, it
might be argued whether a specific internal clock synchronization protocol would be at all
needed. In fact, a protocol like Cristian’s probabilistic clock synchronization protocol [Cristian
1989] appears to be a good solution to the problem of external (and thus internal) clock
synchronization.

However, we may cite two drawbacks of Cristian’s protocol, as far ag XPA is concemned:

First, unless the system designer is able to afford a great expense in traffic to achieve
synchronization, the reading delay must be chosen with a value such that there is a good
prohability p of achieving the desired precision. So, although Cristian’s protocol does not
depend on the variability of the message delay, it depends, for practical implementations, on the
distribution of these delays. In panicular, it depends on how far the expected delay is from the
minimum delay, If the sources of external real time are not assumed to be fail-silent, some kind
of agreement must be reached before the value is read. This can take the average delay far from
the minimum delay thus reducing the accuracy of the synchronization protocol.

Second, a direct use Cristian’s probabilistic clock reading method, as suggested in [Cristian
1989], is extremely dependent on the availability of a source of external real time. Internal clock
synchronization algorithms, in presence of any number of crash faults, will keep the surviving
clocks synchronized (if faulty processors remain in the right proportions 1o correct ones),
which may be enough for many applications, Given that XPA is supposed to support a number
of applications, of varving needs, the cost of having an available and reliable external source
[Cristian 1989] would be undesirable for some of them.

To avoid the total dependency on the presence of an external real time source, we propose a
configuration where virtual clocks are both intemnally and externally synchronized.

To synchronize clocks internally, an approach similar to Babaoglu®s clock synchronization
procedure might then be envisaged [Babaoglu and Drummond 1987]. However, in XPA,
group communication is achieved through the use of gates, reducing the number of Full
Message Exchange rounds to those on behalf of applications using the Multicast Group of
Stations (MGS). In Delta-4, MGS is mainly used by system administration. These applications
are not expected to produce wraffic with the frequency required o sadsfy clock synchronizadon
nieeds. Furthermore, 1o schieve approximate timed simulianeily, a need expected to be frequent
in a real-time distributed system, an appropriate protocol must be run. The protocol proposed
by Babaoglu (DemandAts) has many similarities with a clock synchronization protocol
proposed by Srikanth and Toueg [Srikanth and Toueg 1987]. We analyse next this protecol and
assess ils adequacy for our purposes.

9.6. XPA as an Integrated Machine 251

Srikanth’s clock synchronization protocol possesses several advantages, namely: it
achieves optimal accuracy; it is easily wned to tolerate different kinds of faults; it is easy w
implement. However, being a convergénce non-averaging algorithn, the precision oblained
depends on the worst-case message transit delays. This is a severe limitation that needed to be
overcome to gain the maximum profit from the XPA architecture.

Kopete's Clock Synchronization Unit (CSU) [Kopetz and Ochsenreiter 1987] could
improve protocol performance and would reduce the computational cost of the clock
synchronization protocol. However, the performance obtained by the CSU is not necessary in
the envisaged applications. Furthermore, the CSU has the commercial drawback of being a
single source component, The use of the CSU will thus be avoided.

The XPA clock synchronization protocol relies on the NAC fail-silent characteristcs.
However, the underlying physical clocks do not need 10 be fail-silent. When the physical clocks
are assumed to exhibit an arbitrary behaviour, a majority of correct clocks will be required 1o
run the protocol, i.e., a otal of 2+ clocks will be needed 1o tolerate f faults.

For internal elock synchronization in XPA we developed a clock synchronization algorithm
that exploits the intrinsic charscteristics of broadeast networks. The algorithm is based on a new
variant of the well-known convergence non-averaging technique, dubbed a posteriori
agreement. The precision achieved by the algorithm is not limited, as opposite to most of the
published works, by the variability or worst case values of network access delays.
Furthermore, our solution does not require the use of dedicated hardware,

The algorithm, that is described in detail in [Rodrigues and Verissimo 1991], achieves
clock synchronization using broadcast messages to generate simultaneous events in the system,
In most existing broadcast local area nerworks, frame transmissions arrive almost
simultaneously at the successfully receiving sites. This property is exploited by the a posteriori
agreement clock synchronization to achieve precision. Note that oceurrence of faults may
prevent a given broadcast 1o generate a simultaneous event. We use acknowledgments 1o detect
the effects of faults and several simultaneous events can be generated on a single
resynchronization, The agreement for the appropriate simultaneous event — 10 be used as the
base of a new virtual clock — is thus executed after the generation of the event, thus the name
“a posteriori™.

Virtual clocks provide a continuous function being obtained from the value of the local
physical clock and the adjusmments from internal and external synchronization. The adjustment
term for extemnal synchronization may remain null when not implemented. This allows the use
of the clock synchronization service in XPA systems where no sources of “external™ real time
are available. Several solutions will be studied for external synchronization with different fault
assumptions, since the use of a non-fail-silent source of real time may be interesting for
COONOMIC FeAsons,

9.6.6.2. Primitives Provided. The aim of a clock synchronization service is to provide a
synchronized virual clock. The more important primitive is then virtualTime, which returns the
value exhibited by the virtual clock. Since the virtual clock will be based on a local physical
clock a primitive is provided to set its value during initialization (setLocalClock) and to read its
value {(physicalTime). The virual clock is “staried” with the stariVirtualClock primitive, which
initiates a clock locally and includes the node in the synchronization protocol.

9.7. System Administration

This section iz concerned with areas of difference between system administration in OSA
{(OSA-SA), see section §8.2 and system administration in XPA (XPA-SA). XPA-SA provides
an augmented subset of the services provided by OSA-SA. Although it is exclusively concemed

252 9, Extra Performance Architecures (XPA)

with the leader-follower replication model for capsules and can take advantage of
simplifications resulting from use of this single model, the administration consequences of the
high performance and real-time featunes of XPA must be explicitly addressed. Thus, using the
terminology of [Le Lann 1989], many of the additdonal XPA-SA services and mechanisms are
concerned with the management of the time domain (timeliness properties) as well as the logical
domain {comectness properties)

XPA-SA provides similar network management services 1o OSA-SA. These are fully
deseribed in section 8.2 and may be classified as the management of events that directly affect
the logical domain, such as:

= the initial Delta-4 system configuration;

* syslem sinup operetion;

= gration failures;

+ operational changes 1o the system configuration,

XPA-SA additionally provides services to manage and attempt to minimize, the effects of
faults and overloads in the tme domain. Lack of resources (e.g.. exhaustion of a finite number
of computational threads, or message buffer space, or processing power) is manifested as
failure to meet deadlines. The treatment within XPA-SA conseguent upon the detection of such
an event depends upon what sort of event handler has been provided for the object concerned;
because of the significance of event handling in the context of the discussion of chaprer 5, this
forms a large pant of the body of this section.

Some OSA-SA services are not relevant for XPA-SA or have a changed purpose. For
instance, there is no need to collect statistics; nevertheless functions that permit pre-delivery
tuning, verification of design-time deadline assertions and so on, will prove essential,

XPA-SA is biased towards logically distributed rather than logically centralized
administration activity, separate concerns are where possible separately encapsulated. Such
object-orientation is of particular importance in the target market areas, where individual
projects are sometimes required to implement specialized administration paradigms. There is a
twofold basis for this: substitution of individual system administration components and local-
to-object thread-related event management.

System administration components are deliberately structured as a distributed federation to
minimize the granularity of substitution. Individual system administration components may be
substituted provided the subset of SA interfaces which are “presumed always to be present”,
together with the object design-level assumptions about their use, are preserved. Examples of
such components are discussed in several sections below. The semantics associated with these
interfaces may thus be extended, and in some cases reinterpreted, according to the needs arising
in particular projects.

Designers and applications programmers are encouraged to take advantage of XPA
mechanisms that permit events 10 be intercepted and managed within objects wherever this is
appropriate. Application-specific knowledge may thus be brought to bear in order to achieve a
necessary performance or timeliness requirement. Particularly in the case of a missed-deadline
event, such knowledge and such local-to-object management may be essential to the design.
Section 9.7.4 below discusses the event-handling mechanism chosen.

The processing required for the complete implementation of all 3A functions may not be
fully automated. The involvement of a human administrator will often be necessary in order to
initiate and implement the system administration function.

As standard, a very small kemel of general-purpose functions is provided, largely derived
from the equivalent work under OSA-SA. These constitute an object-library, implementing
alternative application-level SA objects that provide interfaces “presumed always to be present”
and a support-library of Iocal-to-object SA event management mechanisms. Together, these

9.7, Sysiem Administradon 253

provide administration paradigms of general value, which will be maintained and added to as
additional paradigms are recognised and implemented. The library will always maintain
upwards compatibility.

The original system configuration establishes the replication domains of each capsule as an
ordered list of stations available for cloning. Replicas are instantiated on these stations in this
order, up to the defined replication degree. The order of instantiation establishes an initial
“takeover order” for replicas; which replica is the leader, which is the second (follower) and so
on. When a station fails, promotion of followers is in this takeover order. The station chosen
for instantiation of a new clone is the first free station on the list of the replication domain. The
new clone is given the last position in the takeover order, now free as a result of promotion.
Similarly, when a station is repaired and restored, it appears last on the ordered list.

The takeover order therefore evolves with time; after & number of node failures and repairs,
the takeover order may bear no resemblance to that originally established.

In XPA, variants on this model may well be desirable in implementing a particular system;
this can be achieved by replacement of selected SA components, For instance, it may be
desirable to restore an initial configuration when this becomes possible through repair, perhaps
to restore the set of assumptions taken during design with respect 1o timeliness.

9.7.1. The Structure of XPA-SA

Section §9.6.4 describes the collapsed-layered communication stack and group manager that
replaces the OSA 7-layer communication stack and SMAP. This design is a consequence of the
XPA performance and real-time requirements. The initial stages of fault tolerance are handled
within the XPA group manager and the XPA-Deliase support environment by means of (ernor)
event-handling code. All such event-handling code is considered to be part of XPA-5A and,
indeed, code resident within the capsule takes part in the immediate handling of an event (e.g.,
follower promotion to leader, deadline-elapsed event handling). In OSA, care is taken 10
separale functionality in such a way that event handling is totally transparent to capsules that
may execute on fail-uncontrolled hosts. In XPA, the capsules — executing on fail-silent
hosts — can with advantage be given eveni-handling responsibility.

Fault-tolerance is achieved in two phases:

1) The firsr phase of fanlt-tolerance is error processing; failures of (fail-silent)

servers/stations are detected (as time domain errors) and raised as events o the
group manager and Deltase support environment in order o trigger immediate
recovery. Afier server/station failure (leader or follower), an alternative follower
replica is selected 1o take over the role of the failed replica.
This immediate emror processing is achieved on-the-fly within the group manager
communication and Deltase libraries, ransparently to the applications programmer,
The objective is to complete the promotion of followers without compromising any
deadlines carrently in force.

2) The second phase of fauli-tolerance is fault treatment, i.e., the restoration of the
specified degree of redundancy through cloning, or load balancing by migration, of
the capsules concerned onto another station within their replication domains.

These actions are implemented as either local or global services embodied in system
administration server objects with support mechanisms built imo the Delmase
envelope and the XPA group manager. In common with O5A-SA, these entities
include a domain manager plus database, local factory, catalogue server, etc. One
difference in XPA-SA is that those functions of the OSA Management Information
Base (MIB) which are required in XPA have been absorbed into the domain

254 9. Extra Performance Architecture (XPA)

manager database; there might otherwise have been a need for a protocol to maintain
consistency between the two datahases,
A general model of XPA-SA is shown in the data-flow diagram of figure 7.

lient Cperator
. Interface
User Objects E"-"ﬂl"i'
Messages {A
Delase |SA Interface Operalor
Interactions
Communications +
Manager \ Mode Changes
Instantiate
* Tarminate
|
Normal Missed Global & Local \ B
Data Deadling SA Objects

Flow Syne failures

* / Station Failure

A itialisation
Group SA
Manager Interface
Group Changa
Indications
L XA]

Fig. 7 - XPA System Administration Data Flow

9.7.2. SA Activities involving the XPA Group Manager

The group manager provides the interface between each capsule on the station and the wAMp
communication system. The group managers on each station are not themselves replicas; they
are replica coordination entities (cf. chapter 6). Each maintains its own local view of the identity
and staus (healthy, failed or quarantined, see section 9.7.8) of each station and
communication group on the network, the identity and status (leader, follower, ete.) of each
capsule on the stations and their replicaton domains.

The group manager on each station offers a management interface for processing requests
for the instantiation and termination of the replica copies of each capsule on the system. The
group managers ensure that each replica starts up in synchronism with the others and remains

9.7, System Administration 255

synchronized in the leader-follower role by the transmission of notification, acknowledgement
and other messages.

The group manager is informed of communication group changes by the xAMp. Station
failures are detected either az part of the normal message ransmissions or by means of a
multicast “Are You Alive?" request. The xAMp protocol for group change indications ensures
that they are totally ordered at all recipients; see chapter 10.

All surviving GMs will therefore deterministically update their local opinion of the
“takeover order™ of each capsule, If the leader fails, the GM supporting the “first” follower will
notify it 1o take over as new leader. (Note that the “takeover order” in XPA is maintained in the
group managers. For leader-follower replicas in OSA, it is maintained in the Deltase envelopes
of the capsules.)

This processing is carried out wholly by the system administration thread within each
group manager, but the failed station event is also raised to an application-level system
administration server, the XPA Replication Domain Manager (XPA-RDM).

The XPA-RDM is an XPA-Deliase object, unlike the OSA-RDM, and cloning of a new
follower replica may be set in motion if this is required.

The group manager also detects most timing ermors, excess desynchronism between leader
and follower replicas and events caused by lack of resources, e.g., no thread or buffer space
available for the onward transmission of a message. These are treated as fault events that may
lead to failure unless the event handling can recover from them in time,

These events are handled as described in section 9.7.4 and passed 1o a local system
administration object with an interface “presumned always to be present” for the purposes of
event-logging. This local event logger is a prime candidate for evolution 1o allow presentation to
a human administrator or an automated package capable of further action such as load balancing
by replica migration.

9.7.3. SA Activities involving the Deltase Support Environment

The Deltase support envelope of each capsule, see figure 7, contains XPA-SA components and
provides interfaces to the global and local XPA-SA server objects. Standard, or default, event
handlers are provided in the Deltase envelope of each capsule, but provision is made to allow
the use of event handlers within the application code which in turn may raise this or an
alternative event with the client or an administration component (see section 9.7.4.4). The
standard responses to timing failures and resource shortages are selected according to the real-
time requirements of the capsule (see section 9.7.5).

The Deliase libraries also include the Ghjgcr Manaper Entiry (OME) which, as for OSA-SA,
is responsible for instantiating capsules under the control of the local factory in addition to
handling capsule mode changes as described in section 9.7.8.

9.7.4, Event Management

In the context of XPA-SA, most events result from the detection of a failure 1o achieve either a
comeciness or a timeliness specification. This acts as a wigger for system administration event
management action. Event management consists of any fault treatment and maintenance
activities that enable the system to recover.

9.74.1. Event Types. The list of events that must be handled by XPA-SA is likely to
change as XPA is developed. The following is a list of standard events handled by the
prototype XPA-SA (note later discussion of the different implications of and treatment of events
at leader and at follower):

256 9. Extra Performance Architecture (XPA)

» logical events:
- station failure;
- station overloaded for components of priority P or lower;
- failure to find buffer space;
failure to find disc space or some other local resource;
- failure to find a free processing thread®:
+ timing events:
- missed deadline;
- missed periodic activation;
- excess desynchronization between leader and follower,
Any of these may oceur on any station at any time whilst a Delta-4 system is operational.
They are therefore “local events”, affecting only one copy of a replicated capsule. Some initially
local events may affect service provision. A failure to find a free processing thread ought to

occur in all correct replicas. A deadline, if missed by a leader, will be missed by all. Where this
occurs, a “replica event™ is raised’,

9.7.4.2. User Defined Events. These are defined in server imterface definitions and by
use of the “raise event” syntax of XPA-Deltase. An imponant example is conversion from
another event type (e.g., deadline-clapsed) as the final act of the event-handler concerned. By
this means, the event may be converted into some other event with greater semantic significance
to its client (e.g.. “cycle-abandoned”). Another example is some address-space-only
computational condition (i.e., the classical “exception™ concept). It could be useful for the
programmer 1 abandon a computation for application-specific reasons and have nothing else to
do but cause the client event-handler (if there is one) to un.

Note that all user-defined evenis are necessarily replica events; replica group determinism
ensures that the computational circumstances that cause the event are encountered by all
replicas, Replica transparency is preserved; the programmer never has to recognise or consider
unwanted diversity.

9.7.4.3. Event Handling, The examples of real-time problems given in chapter 5 illustrate
a tiny selection of the diverse requirements met in systems whose main characteristic is that
their design must in some sense be assured to respect timeliness requirements. Generic
mechanisms, such as are appropriate o incorporate into the fabric of the XPA support
environment, must exhibit considerable adaptability and extensibility to be of value across a
range of market requirements and to remain of value under rapid technological change. One of
XPA's key mechanisms to address this requirement is that of event handling.

The main events of interest (consideration of which lead to the development of the model
presented below) are those associated with timeliness — in particular, the elapse of deadlines.
It is, however, noteworthy that the model appears to be applicable to other events and, in the
spirit of an ODP recursively-defined architecture, allows a unified treatment of these, whether
generaled, or handled, at application-level or support-environment-level. Transparency is
achieved by the provision of default event-handling.

& Failure w0 find a free processing thread occurs when all threads arc in use and an input wies 1© preempt a

loweer-precedence thread in the capsule.

A replica event is implemented like an input message: it is only passed W the follower at the same
presmption point al which the corresponding event was passed 1o the leader, o the leader always sends an
instruction for replica events,

7

9.7, System Administration 257

System administration in XPA is considered to be pant of the normal machinery available 1o
fulfil application requirements. To achieve this, a mapping of events onto the computation
models is desirable, The passage of control in the presence of an event must be defined; when
an event is raised, an identified thread must be despatched. This may take a path through a
series of objects; collectively, such objects make up XPA-SA. Some of these will have
interfaces that are “presumed always to be present”; their implementation may, however, be
standard or in some way system-specific, The path taken may therefore be more or less
complex according to the particular system implementation choices taken.

In a symmetrical situation to that of user-defined events, user-defined handlers must be
invoked only for replica events. Circumstances that are not replicated, such as a particular
follower missing a deadline that the leader has met (and notified), are handled by invoking a
local SA server (“presumed always to be present™) that (at least) logs the occurrence. If the
leader misses the deadlineg, then this will (as well as being locally logged) be notified to all
followers by the normal XPA deterministic support mechanisms and will indeed result in
invocation of all replica event handlers. Again, replica transparency is preserved; the
programimer never has to recognise or consider unwanted diversity.

The event handling system must be sufficiently flexible to accommodate user-defined
events and new requirements as they are identified, perhaps as a special case arising in a
particular system implementation. It is not desirable to constrain the handling of events to a
single outcome or even a small set of predefined cutcomes,

9.7.44. A General Execution Model for Event Handling. In an ideal world, the
machinery underlying an abstraction would be totally wansparent 1o programmers, However, an
abstraction that is elegant 1o use is not always elegant in its implementation; abnormal as well as
normal combinations of circumstances must be addressed in a manner appropriate to the
system's target application.

A suitable application-level abstraction and a matching infrastructure are required. A
computational model of administration events is needed that can map easily 1o programming
languages. A programmer should be granted the ability to ignore particular (or even all) events
and have them receive default handling; in tumn, the default should be selectable by a project
engineer from a set of standard handlers during system construction, There is a strong
resemblance between the mechanism needed here and that which has proved successful in a
quite different context; that of handling exceptional circumstances arising in a pure
programming context. We therefore propose to introduce into Deltase-XPA a generalized
exception-handler.

A possible execution model, which may be employed in implementing some of the ideas
outlined above, is a distributed exception handling mechanism based upon that of the Ada
programming language. This is concerned with the passage of control in response to an event
that causes suspension of normal program execution. When an exception is raised in an Ada
subprogram:

* If a local handler has been provided, this is executed in place of the remainder of the
current subprogram. Where there is no handler, or where a further exception is
raised within the handler, the exception is propagated to the point of call of the
subprogram.

* If there is no handler provided by the calling subprogram, the remainder of its
execution is also abandoned and the same exception is propagated (re-raised) to its
point of call, the next subprogram outwards and so on until the body of the
originating task is reached.

&

9. Extra Performance Architecture (XPA)

= If the body of the task (which can be thought of as the origin of the thread of
control) provides no handler, then the task is terminated.

This model can be mapped onto a distributed environment. As always, a distinction is
drawn between inter-chject and intra-object behaviour; the former can be deseribed withoul
elaborating the details of the larter. Thus, within an object, the local passage of control as a
result of an event depends on the language mapping.

The model may be extended in various ways. For instance, the exception propagation can
generate an “awudit wail”, This includes a description of the path that otherwise would be lost.
These parameters are important in the case of onward propagation through a series of objects
that do not provide handlers for the exception concemed. Eventually the top-level administrative
object iz reached where, instead of a simple termination (of the relevant thread), a handler is
eventually provided in the form of a human administrator as the only remaining basis for
handling the exception. This human will cenainly require the path parameters (and much other)
information, as well as an interactive service that permits what is necessary in the way of
delicate or drastic action,

Another possible enrichment of the exception model, where a (human or machine)
exception handler can successfully correct the circumstances giving rise to the event, is to
provide for the return of control so that execution continues. An example involving a human
administrator might be circumstances that interfere with or augment the mechanism for cloning
a new replica. It could be argued thart all such circumstances amount to design faults in the
cloning service, but this view fails to mke account of the sheer complexity of possibilities that
can arise and the advantage in terms of simplifying the machinery involved of including &
human “in the loop”, represented by an SA server. Once the human has successfully created
additional disc space, or resolved local naming difficulties, or determined a suitable destination
host, or installed additional required servers, or whatever, it should be possible for control to
return first 1o the machine cloning service and, when this is complete. to any thread that was
diverted from its normal activity to pass the exception.

An elapsed deadline event occcurring at a capsule does not remove the need to receive any
outstanding RPC responses. Although the servers concemned inherit the deadline as part of the
precedence and so may also experience the elapsed deadline event, their threads of control are
returned, as below, immediately or eventually, either as a raised event or as provision of
service, depending on those servers’ own local handlers.

The exact form of object behaviour in the presence of a “deadline-elapzed™ event is decided
by the programmer:

= If the programmer chooses not © provide an event handler, then a default is
provided (selected on component generation) which abandons computation, marks
any outstanding remote services as orphaned and then returns a “server-deadline-
elapsed™ event to the invoking client concerned (or “top-level-deadline-elapsed” to
the XPA-RDM event-catcher, if the object is top-level).

= If the application programmer provides a handler, it is this that determines how the
component behaves, The next section discusses how event handlérs are mapped into
the programmer’s language.

9.7.4.5. Language Mapping of Event Handlers. It is desirable to make a distinction
between events occurring at an object and events raised with an object by {remote or local)
servers. The former invoke 2 handler, if provided, in a manner similar to UNIX signal handling
in that the handler is run as a preemptive parameterless procedure (with the important difference
that the preemption is at an XPA preemption point and is therefore deterministic across

9.7, System Administration ph)

replicas). The latter involve the return of a thread of control and therefore constitute an
abnormal return from a procedure for which a clear semantics must be established.

For any particular RPC (or LPC) and server-gvent, return values must take a state that is
definable with respect to the interface concerned. Any return parameters expected may indeed
be returned if the event is raised by server code that is able 1o set theny, this is not mandatory but
a mater for the language mapping eswblished. If server code does not or cannot set the
parameters, then the Deltase envelope, which unmarshals parameters from the message
representing the returned thread of control, is able to construct agreed “null” values for the type
concerned (typically all ('s). If the event is raised elsewhere than within the server, for instance
by a group manager protocol detecting network partition, then no such parameters can be
retumned even though the message is identified with a thread of control; the Deltase envelope of
the client again constructs “null™ values. This permits control to return eventually to the
staternent immediately following the RPC (or LPC); before doing so, a handler is run,

The means of mapping this to a language depends on the facilities of that language.
“EVENT" is typically an enumerated type, with the enumeration of standard events predefined
and extensions as necessary for particular interfaces. An event is raised using a standard

procedure exported by the Deltase envelope:

FalseBvent (Cycle Abandoned, String):

where “String” is a legible identifier of the source and reporting path of the event, so that the
event can be understood and maybe managed by a human administrator.

The event handlers discussed here can then be achieved by use of “case™ or “select”
statements, or by introducing new keywords and associated syniax such as:

interface declaration:
(1) EVENT Cycle Abandoned: assigrment of event to handler:
(2] EVENT Cycle Abandoned : Catch_All();
(3) EVENT Time Out : {
Do Semething: /* using local variablasg #/
RaiseBvent (Cycle Abandoned, Local Name):
bz

which are preprocessed to construct “case” or “select” statements. The latter solution is more
¢legant and transparent in that it allows automatic insertion of defaults to preserve the equivalent
appearance of local and remote procedure calls.

This allows handlers to be context-independent or context-sensitive. A context-independent
handler is a parameterless global procedure assigned to all occurrences of a server event on a
particular interface by declaring the assignment at the point of import of service as in (2), or to
selected occurrences of an event by declaring the assignment at the point of server invocation. A
context-sensitive handler is assigned to an event by declaring the assignment and positioning its
code at the point of server invocation (3).

A different syntax is used in the body of code to catch standard events such as time-out
occurring at an object. At the start of service, the default handler is assigned to all standard
events. At any point in the code, a new handler may be assigned 1o a standard event using the
standard procedure AssignEvent; this handler then remains ready to catch that event on that
thread until an alternative is assigned or the service completes:

AssignEvent (Time Out, Catch All):
At present, this is restricted to assignment to a parameterless global procedure. The more

difficult issues of how to permit context-sensitive handling of events occurring at an object are
the subject of ongoing study,

260 9, Extra Performance Anchitecture (XPA)

It is the nature of such handlers and their interaction with SA that determines the run-time
behaviour of the component in terms of the categories of real-time. The programmer is offered
an opportunity to decide whether a particular event is o be weated by object application code or
by a system-administered strategy or by some combination of both. This is particularly
important in the case of events such as “missed deadline”, where the nature and specificaton of
the application are what necessarily determines how this event is reated. At one exmeme it is
considered a failure and therefore treated according to Delta-4's model for failures, whereas at
the other extreme it is merely a convenient prompt to the application of circumstances that must
be addressed.

9.7.4.6. Mechanisms to Support Event Handling. The group manager raises all GM-
generated events to the Deltase envelope of the affected capsule. In some cases, such as replica
desynchronization, the event is raised 1o both leader and follower replicas. However, nat all
events are generated by GM — both application objects and their Deliase envelopes may also
raise events.

The Deltase envelope contains a default handler for each event, which may just re-raise the
event, replacing the reply to some RPC with a standard event message containing named path
information.

9.7.4.6.1. Local Events. Local evemts are received as input messages or as ¢rmor replies w
LEX calls (e.g., no free dise space). If the group manager has a local event for a follower, it
may create an inpul message accompanied by a special pseudo-notification (Mreceive this
message and invoke local event handler at next preemption point; afterwards perform any
replica action otherwise notified, 10 be performed at this preemption point™), or may raise a
signal (e.g., in UNIX),

A local event handler may itself raise a replica event. For example, if a leader runs out of
disc space, the event handler in the leader generates the “leader failed”™ replica event. Indeed, an
event is transformed from a local to a replica event only if it occurs at the leader capsule's
station. For cenain local events, for example persistent desynchronization, a follower capsule
raises a replica event by notifying the leader capsule.

9.7.4.6.2, Replica Events. The transformation from local to replica event is implemented
by either the leader's GM or local event handler raising a high-precedence input message to the
capsule, which will therefore be deterministically received by all replicas. Deltase accepts the
replica event at a preemption point and decodes it. When the event is decoded, it may be found
to be directed at a particular thread; Delase then runs the appropriate event handler in the
context of the affected thread. Some events, such as “leader failed”, concem the whole capsule
rather than a particular thread and these are handled in the Deltase envelope itself.

Some computational events, e.g., “floating point exception” and “illegal instruction™ will
affect all replicas and are inherently deterministic since they occur immediately after the
offending instruction (e.g., in UNIX they are presented as signals that preempt the next
instruction). There is therefore no need to use the XPA determinism arrangements 1o treat these
as replica events. From the point of view of the application, they are presented and may be
handled in the same way as events arriving as inpul messages.

9,7.5. Hard and Soft Real-Time

“Hard" is a design-time classification (see chapter 5). At run tme, 8 dming failure of a “hard™
capsule is assumed to be an indication that the external world behaviour is no longer within the
operational envelope. This assumption recognises that the entire responsibility for assuring that

9.7, System Administration 261

hard real-time requirements are met depends upon the system design process; there is nothing
that can be done at run-time to wlerate such design faults.

The design process must therefore consider the “worst case” scenario, The “worst case™
scenario conceivable is when all stations are in a non-operational mode. This drastic (and highly
improbable) condition is, however, not useable for design purposes. The operational envelope
is a definition of some less extreme worst case scenario with acceptably small probability of
being exceeded, say in the lifetime or mission time of the system.

For a system subject to unboundable demands from the environment, the operational
envelope may be exceeded and hard deadlines may not be met. What happens to “hard™
components under such circumstances is not defined by the classification but by the application
programmer; a “hard” component may have a missed-deadline handler defined for such an
eventuality®, According to the design strategy, the passage of the event through programmed or
default handlers and administration components may cause any action up to and including a
controlled emergency shut-down of the entire Dielta-4 system.

The following separation of concems is made: the system designer is concerned o assure
that the missed-deadline handler will not be invoked within the operational envelope and
therefore the application programmer can assume this to be the case.

A capsule is classified as soft real-time when real-time deadlines are regarded as desirable
targets. Unlike hard capsules, timing faults do not conflict with the requirements specification
and can be tolerated. Delay or loss of instances of service can be said to occur “gracefully™; that
is, any such degradation of system performance is not catastrophic and can be arranged to ocour
in stages. As the load on an XPA system is increased, the services of lowest priority are the
first to suffer timing faults and the most imporant and valuable services are the last,

The real-time type classifications, “hard” and “soft” actually represent examples of a
continuous spectrum of design assumptions that effectively define a function representing the
cost of inability to achieve computational timeliness. The following paragraphs discuss
intermediate type classifications made possible by the characteristics of the leader-follower
model under XPA.

Congider the detection of a missed-deadline within a single capsule replica. This is
considered to be a local event but if the affected replica is the leader, it will also constitute a
replica event; the service deadline has not been met and there is reason 1o propagate this event to
a client (and perhaps ultimately the top-level object, according to the mechanism described in
the exception model). If the replica that misses the deadline is not the leader but a follower, then
the ability of the system to meet service deadlines will be at risk if the leader should fail.

After leader failure, the follower should normally be able to perform the low-level protocol
1o become leader prior to deadline. The follower’s missed deadline is evidence that if the leader
fails, this may no Jonger be possible.

A strategy that cannot be used during the design process to achieve absolute assurance of
hard behaviour, but may offer a high probability that such behaviour will nevertheless be
cxhibited, is as follows;

The follower’s missed deadline causes SA to declare that the follower has failed because of
station overload rather than station failure. This is then handled by cloning or migration of the
capsule 1o a less loaded station, 50 as to reduce the risk of a future actual missed deadline, Note
that there are several small contributions that must be taken into aceount when determining the

 If the “hard" deadline is also “critical” (in that if it is missed then the consequential damage is
incommensurate with the benefits of the service provided by the sysiem as a wholg) then there may be no
action that is reasonable 10 take in that eventualily or there may be no action that limits the scale or level of
damage. To a [irst approximation, however, “criticality” is only compatible with “boundability™ only when
the system is subject 1o boundable demands can the design process give an sssurance that the catsstrophe
will never occur. Given such an assurance, a ron-time missed-deadline handler is irrelevant,

62 Y. Exira Performance Archileciune (XPA)

probability that this will succeed. There may be pathogenic coincidences; the leader may fail
coincidentally with the follower first missing its deadline, there may be no lighter-loaded
station, there may be a failure during migration, ete. Even if such a calculation results in a
probability that is close o 1 over the lifetime of the system, it is still possible for a pathogenic
case to occur, This is very similar to the case discussed earlier of the possibility of all stations
failing simultaneously.

9.7.6. Real-Time Events and Replica Group Determinism

Real-time events need to be handled efficiently, but without compromising replica group
determinism, The implications of this are discussed below.

Section 9.3.5 lists some possible responses to a missed deadline event. The handler of a
local event must not create replica divergence, or raise the event to a client, since the local event
may yet be masked by the normal behaviour of other replicas of the server. The local event s
therefore handled in the Deltase envelope and the handler runs in a diverted thread in a manner
analogous to that of a UNIX signal handler (it cannot be given its own thread since the free
thread resources in different replicas would then be different). The context of this handler is
severely limited; it is, in effect, necessary to treat the execurion as occurring in a separate virmal
machine (although this may occupy part of the address space of the capsule). All interactions
between this handler and elsewhere must be through remote service invocation unless or until
drastic action is necessary, after which the capsule ceases o be a replica and terminates. Local
events are normally handled by reporting them to the local SA event logging object, which may
merely record the event, or may initiate some recovery or reconfiguration, or appeal to some
human administrator. The local event handler may contain no preemption points of its own,
Missed-deadline events are handled by the thread thar missed the deadline, at a precedence
higher than that thread, to ensure the event will preempt the thread. The missed deadline event
can be a replica event, i.e., all replicas have missed the deadline, or a local event, i.e., only the
local replica is known to have missed the deadline,

Missed-deadline events in a component that is known to be non-replicated cannot
compromise replica group dererminism. A Deltase handler might take advantage of this, but a
handler in the application code itself should not assume any particular state of replication.

Missed-deadline events at the leader are necessarily ransformed into replica evenrs and are
handled as follows. When the deadline elapses according to the local NAC clock (which is
approximately synchronized with other local clocks, see section 9.6.6), the group manager
local to the leader sends a replica event to all replicas. This is an input message of higher
precedence than the thread that has missed the deadline, to ensure that thread will be preempted.

If a high-precedence thread and a low-precedence thread in the same component both miss
a deadline at the same time, the high-precedence missed-deadline handler runs first in all
replicas. As with the processing of normal input messages, the low-precedence thread cannot
delay the high-precedence activity and replica group determinism is preserved.

The NAC clock is managed by a NAC clock server that maintaing an ordered list of
deadlines and the threads that are to be informed when these deadlines elapse. When a thread
meets its deadline, it either terminates or sets a new deadline and the old deadline is removed
from the list. A missed-deadline event may be produced in the NAC whilst the thread meets the
deadline in the host; in this case, the event iz discarded.

The handler can report the missed deadline to the local SA logger, This provides another
example of the intended project engineering flexibility of the event handling model. If, in an
XPA system where such mechanisms are important, the logger is constructed to further raise

9.7, System Administration 43

the local event to a special SA component? which is constructed 1o manage a load-balancing
strategy, this might respond to the fact that a soft real-time follower has missed a deadline
which its leader has met by migrating the follower w0 an underloaded node.

The missed deadline event is typical of the real-time events, signals, or interrupts that
should be reported 1o XPA software components without compromising replica group
determinism. One of the above methods of preserving replica consistency should be selected in
each case. The need to preserve replica consistency can increase the latencies of event reporting
or preemption handling. In [Le Lann 1989], it is argued that this normally has small real costs;
50 long as latencies are small compared with computation times, even a large increase in latency
causes only a small increase in required processing power. Nevertheless, XPA seeks to
minimize all such latencies and to ensure they have known bounds so that required processing
power can be calculated.

9.7.7. XPA System Startup

This section discusses the initial starup of an XPA systemn. When it is switched on, an XPA
system becomes fully operational after a sequence of steps, each of which depends only on its
predecessors:
1) Initialization of GM on each station. This includes the initialization of message
buffers for each group of priority levels to manage flow control and credit allocation
(see section 9.6.4.2),
2) Creation of the GM group

3) Activation of Deltase on every station. This will lead to creation of the catalogue
group or groups and RDM group, as well as local factories on each station, as with
OBA. (The functions of the OSA MIB are fulfilled on XPA by the RDM database.)

4) A startup file contains instructions interpreted by a system startup component that
invoke the necessary services on the RDM, and thence the local factories, to
instantiate Deltase capsules, again as on OSA. The GM is also instructed to create
communication facilities for each capsule.

5) Expons and imports are made via the trader, which uses the (possibly federated)
catalogue (normally this is transparent 1o application code), again as on OSA.

6) Application-code startup activity, e.g., testing availability of and initialising /O,
setting up application-specific initial conditions within servers through invoking
their services, etc. During this phase, timeliness properties cannot be assured of
capsules; this is a convention that must be taken account of by the programmer.

7) Afier they have initialized, each component individually awaits initalization of its
imported servers. A top-level component also raises its precedence.

8) Normal run-time operation. Servers await invocations of service, top-level
components are avtonomous (and usually cyclic). This is the phase with which the
design-time assurances of timeliness are concerned.

In order to avoid individual entry 1o normal run-time operation causing conflict with its
own timeliness and server availability requirements, the order of exit from startup is important
and is controlled as follows:

Under OSA, if a client object invokes service on an imported server interface during the
client’s startup activity, then it will be blocked until the server object has completed its own

9 wmmwwmﬁMMmmmMﬂmmhhmﬂ

264 9. Exua Performance Architscmrs (XPA)

startup activity and is able to receive and service requests. This characteristic is made use of in
XPA to assure that all of a client’s servers are able to perform in a timely manner before the
client itself enters normal min-time operation. This is done by introducing, for XPA, a
“dummy” server invocation, recognised by the server envelope as being part of its clients’
initialization and immediately returned, rather than being treated as a normal invocation
requiring the allocation of a thread, or as an interfacing emor requirng the raising of an event.

Each client must, after completing its startup activity but before entering normal operation,
invoke this “dummy” service on all imported servers. This is done in the envelope and therefore
is ransparent to application code. In the case of a client that is itself a server, this is done within
the envelope immediately prior o first waiting for service invocation.

In the case of a top-level client (i.e., one that does not export its service) the initialization
code is in effect long-lived. Before entering the portion of this code considered 1o represent
normal run-time operation, a real-time wop-level client must raise its precedence, e.g., to a value
determined in the object’s environment string or the system startup file. A standard (envelope)
procedure is invoked by application code to enter normal operation that both raises precedence
and the necessary “dummy" service invocations. A non real-time top-level client need not raise
its precedence or issue “dummy” service invocations, so need not call this procedure.

Since all objects during initialization have non-real-time precedence, then top-level clients
completing initialization and gaining their normal precedence are in a better position to meet
deadlines (i.e., have less competition) than under nommal global run-time conditions. The above
mechanism ensures that all their servers (to whatever degree removed) have preceded them into
normal run-time operation. Therefore conflict with timeliness is avoided during the period of
transition.

One restriction imposed by this mechanism is to prevent the mulual import of interfaces that
would otherwise permit recursive interaction between objects. This is, in principle, permitted
by OSA Deltase, but some language mappings (e.g., Ada) already impose this restriction, The
restriction is not considered serious in XPA; recursive interactions would make timeliness
predictions extremely difficult.

The group manager activides are inidated by a command from each host. (1) includes such
operations as the initalization of the pool of free message buffers in the NAC. (2) and (3)
involve distnibuted protocols described in the Delta-? Implementation Guide [Delta-4 1990]; in
(2) the group managers may discover that not all the expected stations are operational,

All capsules are generated with a connection 1o the local trader and binder; after stage (3},
the local raders can access the catalogue, so that stage (5) becomes possible. Thus far, XPA
startup differs little from OSA startup in that equivalent structures are créated in an equivalent
way; e.g., the GM group, used in the detection of station failure, is equivalent o the SMAFP
group,

However, XFA has 1o impose restrictions on the later startup of hard real-time activitics at
run-time. This is because the timeliness of hard real-time components is normally assured as
part of the design process; therefore, to change the configuration of these components at run-
time invalidates this assurance. All hard real-time activities must therefore be instantated during
the startup sequence. Soft real-time components may be instantiated later, but the appropriate
SA service is only made available to authorized humans, e.g., a “real-time administrator”. For
non-real-time components, the service can be less reswicted.

9.7.8. Maintenance/Fault Diagnosis

Facilities are needed to enable the human operator to start up a new station, or (o re-introduce a

station that has failed, into the Delta-4 communication network after it has been repaired. The
new configuration will now support the cloning of those user capsules whose replication

§.7. Sysiem Administration 265

domains include the new station 50 as 1o restore the required level of capsule replica redundancy
to pre-fault conditions. It is necessary to ensure that this is carried out in a controlled manner
for two reasons:

* The cloning of a number of different user capsules to the new station must be
scheduled to minimize the additional loading of the existing stations.

* The fault may not, in fact, have been discovered and repaired whilst off-line so that a
restored station, or an individual capsule, may show the fault again cither
inmediately or after a short period of operation. The effects of this on the rest of the
Delta-4 system must be minimized.

An interesting method of controlling the re-introduction of the capsules on a restored station
that will be studied for inclusion in the prototype XPA-SA is described below:

A policy might be that, on a new station or perhaps a station on which maintenance action
has not revealed a suspected fault, none of the objects is trusted (they are prevented from
becoming leader) until a period of “quarantine” (a mode, held as a node- or object-level status)
has elapsed. During this period, behaviour comparison with the trusied leader is desirable,
discover whether the fault is sill exhibited. The duration of this quarantine period, and the
testing that is possible, are entirely under human control. Any necessary promotion of a
quarantine object 1o leader, arising as a result of the failure of other nodes, is explicitly detected
as part of the failure event handling. This is another example of an event appropriate to present
to a human administrator “server™ as described in section 9.7.4.4, in this case to decide
whether to lift the quarantine or take some other action such as creating or migrating an
additional replica.

Methods of comparison of the outputs of a suspect capsule replica against those of a
healthy replica will be studied on the XPA prototype and will require additional services within
the group manager and Deltase,

9.7.9. Cloning in XPA

Cloning of Software Components in XPA makes use of the same architectural COmponents as
cloning in OSA: that is the Object Manager Entity (OME), the Replication Domain Manager
(RDM) and the factories, and their relationship is that described in section §8.2.4. These
components for XPA differ in detail from those in OSA, due 1o the different communication
system to which they interface, and the use of the leader-follower model of replication. This
section describes the differences in implementation of cloning between OSA and XPA.

Phase I: Reestablish communication conrext,

In OSA, messages queued in the NAC for the Sofrware Component before and
during this phase, and which will not arrive at the new replica, are always received
by the Software Component before phase 2 starts, due to the ordering properties of
the Atomic service of the XAMp (see section 10.4). In XPA, which uses the xAMp
Reliable service, this cannot be guaranteed. Therefore in XPA there is an extra phase
during which messages queued at the leader replica are transferred to the new replica
by the group manager, and duplicate messages at the new replica are discarded. This
new phase is carried out in parallel with phases 2, 3 and 4, but must be completed
before phmj CAN COMIMEnoe,

Phase 2: Take a snapshot of the computational context,
‘This phase is essentially the same as in OSA.

Phase 3: Generare the global contexe.

9. Extra Performance Architecturs (XPA)

In XPA, only the leader replica sends the checkpoint data (no voting takes place on
checkpoint packets) and therefore the OME does not have to ensure identity of
replicated checkpoint data before starting phase 4.

Phase 4: Transfer the global context.
This phase is essentially the same as in O5A.

Phase 5: Continwation at the execigion checkpoins,
In XPA, before the new replica can continue, the OME and group manager must
discard instructions generated and associated messages received during phase 1,
ie., messages which form part of the snapshot taken in phase 2. The instructions to
discard are those whose preemption point counter is less than the value included in
the snapshot.,

