Chapter 10
The Atomic Multicast protocol (AMp)

The utility of reliable group, or multicast, communication protocols was recognised in section
§6.9. The rationale behind the desired qualities of service was also discussed, i.e., which
properties the service implemented by these protocols should offer, to support distributed fault-
tolerance. We will have the opportunity to formalize those properties and to present the relevant
protocols, in this chapter.

In building a reliable communication service to support distribution in Delta-4, we were
faced with three concerns: (i) network design, in order that it would be as portable as possible;
(ii) architecture design, so as to harmonize the use of standard components with the
procurement of adequate levels of fault tolerance; (iii) protocol design, in order to take
advantage of the network architecture, both in terms of performance and reliability.

These concerns were materialized in AMp, the Atomic Multicast protocol. The present
chapter concentrates on the design of the overall architecture supporting the AMp service, and
the description of the protocols. We begin by presenting a model for the kind of problems
Delta-4 communications wish to solve, and we formally describe the required properties of
AMp. However, since no service can be more reliable than the system supplying it, the
dependability model of the communications architecture deserved particular attention: section
§10.3 identifies the building blocks of the architecture; determines their individual behaviour
and the way they interact with one another; establishes a system fault model, and finally,
discusses the measures to ensure system dependability. Two aspects of relevance are the use of
self-checking components and of a non-replicated LAN, and their implications on the fault
model, i.e., the fact that a “nice” behaviour can be expected, and that time domain redundancy
must be used, to recover from transmission errors. Sections 10.5 and 10.6 deal with the
provision of an abstract network service by the channell, and of a group communications
service, by a protocol built on top of the abstract network.

A note about the framework concerning AMp, in the project: protocol design has been
discussed in several papers, where variants of the basic multicast protocol were presented:
some, specifically for given local area networks, namely the token-ring and the token-bus
networks, require hardware modifications [Guérin et al. 1985, Verfssimo et al. 1987]; the other
version is a software implementable protocol, which is LAN independent [Verissimo et al.
1989], and which is currently ported to the various LANs supported in the project (token-ring,
token-bus, FDDI). Detail about these various implementations is given in §10.8.

The implementation specifications of both these versions are fairly complex, recommending
the use of semi-automated methods for validation. In consequence, a fault injection campaign is
in course, with the aim of forecasting faults and assisting in their removal, with the help of a

1 In the remainder of the chapter, the word network will be used not to mean layer 3 of OSI, but rather the
networking infrastructure, that is, the entities concerned with providing the abstract network service: the
LAN Medium Access Control (MAC) sub-layer and Physical layer, and the relevant firmware.
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specialized tool [Arlat et al. 1990]. The software variant was formally specified, in Estelle, and
is being formally validated [Baptista et al. 1990]. Detail about this work is given in chapter 15,

10.1. Notions about Reliable Group Communication

A reliable broadcast protocol is a protocol that fulfils a set of safety and liveness and/or
timeliness properties, in the form of agreement, order and synchronism paradigms. If the
addressing modes supported by the protocol concemn subsets of participants (multicast), rather
than all the participants (broadcast), then it is called a reliable group communication protocol.
Delta-4 is concerned with the latter.

10.1.1. Agreement

Distributed agreement in the presence of faults has been the subject of a number of publications.
Useful paradigms have been identified, among which the well-known Byzantine Agreement
[Lamport et al. 1982]. Informally, it seeks to make a participant disseminate a value to all the
other participants, so that those who are correct, accept the same value; if the sender is correct,
the value accepted has to be the one it sent, otherwise it is some default value. The problem as
originally equated, is concerned with a specialized, phased-execution environment in which
faulty participants can behave arbitrarily. To ensure that participants behave consistently, forms
of agreement such as those found in atomic broadcast protocols specify, alternatively, that a
message may or may not be delivered, but in affirmative case, it is delivered to all intended
recipients. The word “intended” is used to underline that the specification may not include all
participants, but only a group of them, or refer to relaxed forms of agreement, such as majority,
at-least-N, etc.

In general, the conditions for achieving distributed agreement can be equated in terms of
agreement and validity properties [Perry and Toueg 1986]. The strongest form of agreement is
unanimity:

Unanimity: Any message delivered to a recipient, is delivered to all correct
recipients.

The ancillary validity properties specify the conditions in which agreement is, or is not,
performed. A normally necessary validity condition called non-triviality, specifies that any
message received is a “useful” message, i.e., not forged or spontaneously generated, not a pre-
agreed message, etc.:

Non-triviality: Any message delivered, was sent by a correct participant.

In systems where components exhibit fail-silent behaviour (see section 6.2), it is possible
to define accurately situations where components may temporarily refrain from providing
service, without that having to be necessarily considered a failure. We call this concept
inaccessibility and it is detailed in section 10.3; the resulting validity property is therefore:

Accessibility: Any message delivered, was delivered to a recipient correct and
accessible for that message.

Given that a reliable group communication protocol is supposed to actually deliver
messages, it is necessary to specify the (hopefully rare) conditions when the message may not
be delivered without that constituting a failure:

Delivery: Any message is delivered, unless the sender fails, or some recipient(s)

is(are) inaccessible.
A practical example of the use of inaccessibility in Delta-4 is to represent buffer-full
conditions at recipients: this situation — under limits — is one valid situation for the protocol
not to deliver a message. The other one concerns sender failure: logically, it is rather irrelevant
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whether a failure occurred right before a sender sent a message, or right after it did it, let alone
during the execution of the protocol. What is important is that recipients perceive whatever
happens consistently — this is guaranteed if the protocol secures the unanimity property.

The unanimity property has a cost that may be unnecessary in some situations. For
instance, queries to a group of replicas need only to reach one of replicas, or a quorum of them,
it does not matter exactly which. Depending on the validity condition, i.e., whether the message
must always reach N recipients, or whether it may not reach all of them if a failure occurs (e.g.,
the sender), an at least N or a best effort N agreement semantics is obtained, respectively. For
completeness, the situation where N = 0 is the well-known datagram semantics.

At-least-N: Any message delivered to a recipient, is delivered to at least N correct
Tecipients.

Best-effort-N: Any message delivered to a recipient, is delivered to at least N
correct recipients, in absence of faults.

A slightly different but also useful semantics, is the one where the set of recipients is a
named subset of recipients. Consider the example of passive or semi-active replication
schemes, where there is a privileged participant, i.e., the primary or leader replica, or the
example of a cooperating activity where there is a coordinator. For correctness reasons, it is
mandatory that any message arrives at that privileged participant; for performance reasons, it
may be interesting that the message also arrives at the other participants, should they need it,
taking advantage of the multicasting facilities?. The considerations made about validity
conditions are still relevant, and the following properties are then obtained:

At-least-To: Given a set Pyg of recipients, any message delivered to a recipient, is
delivered to all correct recipients in Py,

Best-effort-To: Given a set Pyg of recipients, any message delivered to a
recipient, is delivered to all correct recipients in Pyg, in absence of faults.

10.1.2. Order

10.1.2.1. Partial and Total Orders. In a distributed system, so that participants
coordinate their actions in a decentralized way, they must perceive how the system evolves,
i.e., the order in which actions and events take place. Each participant will observe system
evolution, as a sequence of events, which may not be the same for all participants, due to the
relativity of their positions (space-time view). In other words, the best that can be achieved is a
partial ordering on events [Lamport and Schneider 1985].

The cause-effect relation is the natural partial ordering of events in a system. Consider two
events @ and b occurring at different sites of a distributed system, The event a and b can be
ordered if an information departing from the site where a occurred, arrives at the site of b before
b occurs. The event a is said to precede event b, a — b, in those conditions. Given the space-
time relation, it may occur that neither of them can cause the other, in which case they are
concurrent, i.e., (a — b or b — a), and may be ordered in any way. For practical reasons,
protocols that seek to respect the causal order, normally do so by guaranteeing a “precedes”
order, i.¢., that events are potentially causally ordered. So, a potential causal (causal, for
simplicity) order in communication is defined as:

Causal Order: If any two messages, delivered to any correct recipients, are not
concurrent, they are delivered to each recipient in their “precedes” order. If the
messages are concurrent, their order of delivery is undefined.

2 Although, in case of error, it can be forwarded by the privileged participant.
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There are essentially two ways of implementing the “precedes” relation. If participants can
be made to only exchange information by sending and receiving messages, they can only define
causality relations through those messages. Messages ordered in this way are said to be in
logical order. Lamport proposed such an implementation, using logical timestamps [Lamport
1978], and Birman later gave an implementation using message piggybacking [Birman and
Joseph 1987]:

Logical Order: A message m] is said to logically precede message m2 if: m] is
sent before m2, by the same participant or if m] is accepted by the sender of m2
before it sends m2 or there is a chain of such recipients and senders linking m] to
m2.

For clarity, it is to be noted that the order obtained is thus a logical (potential) causal order.

There are however circumstances where the logical order does not correctly represent
causality. This can occur when interactions have to take place in real-time (see §9.5.1 for
details). The solution for these situations consists in implementing potential causality with a
technique based on temporal order of messages, for example, by locally time-stamping them,
from synchronized physical clocks [Lamport 1984].

Temporal Order: A message m] is said to temporally precede message m2 if: mj
and m? are sent by the same or any two participants, respectively at real times tI and

12, and 12-t1 > 6t.

The variable &t is introduced to achieve an implementation-independent definition of the

relationship defined above — which we shall call &t-precedence. Given that message
transmission speed is not invariant in the systems dealt with, messages do not arrive naturally
in order. One solution is to transport precedence (space-time) relations to the time domain,
establish a discrete quantifier, d¢, to account for the influence of space? and order them based in

their time differences of module . Thus, &r is the granularity with which it is possible or
desired to distinguish orderings between messages. This way, the temporal (potential) causal
order definition obtained is implementation independent: &t is just the minimum real time
difference for the order between two messages to be recognizable, by a given communication
system. One way to enforce it is the one mentioned above: using approximately synchronized
real-time clocks. The clock precision will correspond to 8. A number of methods exist to
maintain local clocks approximately synchronized [Cristian 1989, Schneider 1986, Srikanth
and Toueg 1987].

Clearly, not all events that are potentially causally related are actually causally related.
Distinguishing this implies that the ordering discipline acquires some specific knowledge. In
consequence, when serving a particular application semantics, or computational model, or
replication technique, chances are that the causal order may be relaxed. These situations are
detailed in section §9.5.1, since they form a practical example of how orderings can be relaxed.

The most obvious example is that of a causal order degenerating to FIFO (first-in-first-out)
order, if senders are all concurrent, for example, if requests from different clients commute,
which is a frequent situation in some distributed client-server applications:

FIFO Order: If any two messages, delivered to any correct recipients, were sent
by the same participant, they are delivered in the order sent. If the messages were
not sent by the same sender, their order of delivery is undefined.

Given the orthogonality of properties, if messages exchanged by a group are all
commutative, order may be completely relaxed, while maintaining other useful properties of the

3 Adistance overa velocity.
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protocol. An example may be a replicated state machine application where all requests commute
[Schneider 1990].

Regardless of the way in which participants causally relate themselves, if a participant is
actively replicated, there is the requirement (already discussed in section 6.5), that the replicas
process the same messages in the same order. One way to do this is to ensure that they receive
all of them in the same order. So, to start with, messages should be totally ordered, as
opposed to partially:

Total order: Any two messages delivered to any correct recipients, are delivered in
the same order to those recipients.

Then, to receive all messages, the replicas also require unanimity, an agreement property.
The combination of total order with unanimity, yields what is called an atomic multicast
protocol. In other words, a message is either delivered to all recipients, or not at all. Any two
delivered messages are seen in the same order by all recipients [Cristian et al. 1985].

As said before, in other forms of replication, namely semi-active, there is a privileged
replica, the leader, which performs ordering operations. In this case, a simpler protocol can be
used, simply providing unanimity, and no order or at most FIFO order, It is called a reliable
multicast protocol in Delta-4.

10.1.2.2. Incomplete and Complete Orders. Given that maintaining a globally
consistent view of system events by participants obliges the properties of the service to be valid
system-wide [Chang and Maxemchuck 1984, Cristian et al. 1985], and given that a significant
part of those events are not related to one another, it will be advantageous, from a point of view
of performance and simplicity, to ensure consistency only between related participants instead
of all participants in the system. Birman has studied the problem in [Birman and Joseph 1987].
The ISIS CBCAST uses a labelling method controlled by the high-level user, which allows the
paths of causality inside the system to be traced. In consequence, it only orders the potentially
causal relationships that are significant (for the application). This means restricting the universe
of observation, to a subset of the messages exchanged by all participants, or to the messages
exchanged by a subset of all participants — in short, by means of incomplete orders (as
opposed to complete):

Incomplete Order: An order is incomplete, if the set of messages under the
ordering discipline is not the set of all messages delivered.

Being complete or incomplete is orthogonal to being total or partial. “Partial” has been used
to name both complete and incomplete orderings in previous work: using clabels in the
CBCAST protocol or establishing orderings in the conversation groups in [Peterson et al.
1989] are ways of implementing incomplete orderings. Notwithstanding the fact that the user
may end up perceiving a single order, either from using a protocol providing a complete partial
order, or several protocols supplying incomplete orders, the fundamental difference is that
partial ordering results from an a posteriori observation on the way the system evolved, This
obliges all events in the system (messages in this case) to obey the discipline defined. On the
contrary, incomplete orders are obtained after a priori precluding relationships between separate
flows of information. Groups are a way of structuring a system in order to reason in terms of
incomplete orders.

10.1.3. Synchronism

From our viewpoint, a synchronous protocol is one that has bounded and known execution
times. This is a mandatory property for real-time operation and when it necessary to establish
temporal order. The reader may find a more detailed discussion of synchronism in chapter 5.
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10.2. Related Work

Architecturally, existing systems which provide reliable broadcast services, belong to two
major groups: (i) problem-oriented, closed solutions, with dedicated hardware and software,
normally designed around Byzantine agreement protocols and networks with multiple
redundant message-passing links [Babaoglu and Drummond 1985, Cristian et al. 1985]; (ii)
high-level network-independent solutions over standard systems (e.g. UNIX, Ethernet), which
are open, but whose achievable performance and dependability are limited by network
independence [Birman and Joseph 1987, Garcia-Molina et al. 1988].

Few works exist, however, which directly use standard local area networks as a low level
solution [Cart et al. 1987, Chang and Maxemchuck 1984]. This is a fundamental aspect of the
Delta-4 architecture. Another fundamental aspect is the preference for local area networks.
LANs are a standard means of communication, and components are largely available.
Additionally, they have architecture and technology attributes that can be used for improved
performance and dependability.,

Disadvantages of LAN based solutions are the limited scope of the low-level approach, and
the scale problem. Generally, LAN dimension is somewhat limited both in distance and number
of nodes*. Network-independent approaches scale better than LAN based ones. However, they
will hardly be able to take advantage of the optimizations achievable by low-level data-link
solutions. On the other hand, the data link is sufficiently low-level to allow several options for
upper layers: OSI-like multipoint stacks, such as the Delta-4 MCS architecture, described in
§8.1; transfer layers [Chesson 1988], architectures compacting the network and transport layers
and providing optimized access to and from user space, very suitable for high-performance
real-time; or collapsed application support environments, such as the Delta-4 XPA
communications architecture, described in §9.6.4. Importantly, high-performance, hard real-
time or highly fault-tolerant applications, may take advantage of the optimized and controlled
environment yielded by a single LAN used in a closed fashion,

Further to that, our system, unlike the protocols in [Babaoglu and Drummond 1985,
Cristian et al. 1985], does not use clocks; it relates more directly with other clock-less
approaches [Birman and Joseph 1987, Cart et al. 1987, Navaratnam et al. 1988]. However,
among other differences, we have studied the capability of addressing real-time applications, by
using techniques to enforce known and bounded execution times. This clock-less approach
trades the predictability of clock-based protocols, for faster termination in absence of errors.

In [Babaoglu and Drummond 1985], a phased execution Byzantine protocol is presented,
using exact clock synchronization and multiple LAN channels. The protocol family of [Cristian
et al. 1985] is diffusion-based. It relaxes the clock assumption to approximate synchronization,
but requires all processes to participate in the protocol and delays termination to a worst case
time A. A depends on network parameters and clock precision.

Chang describes an asynchronous atomic broadcast protocol that provides a global order;
requests pass through a centralized token holder to be ordered. To tolerate failures of the token
site, it is rotated; in consequence, a message is only guaranteed to be committed by all
recipients, after two token rotations, introducing a significant latency, which is not bounded a
priori. The work of Navaratnam is based on the approach taken by Chang.

Two works on reliable group communication — i.e., multicast instead of broadcast —
use piggy-backing to establish incomplete causal orderings, materialized in [Birman and Joseph
1987] by piggy-backing messages and using clabels in the CBCAST protocol, and in [Peterson

4 Although emerging fibre-optic standards like FDDI, feature up to 1000 nodes, in 100-200 Km, added to an
improved bit error rate, typically 10-14,
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et al. 1989] by piggy-backing references in conversations in the Psynch primitive. These orders
are partial: only subsets of messages are bound to be ordered so they may be satisfied by
several orderings. Birman also provides another primitive, the ABCAST, that enforces a total
but not causal order. The AMp provides an ordering that is both total and causal. It uses
properties of the underlying network, to achieve it at low cost, in comparison to the alternative
methods, based on explicit sequencers [Chang and Maxemchuck 1984, Navaratnam et al.
1988], logical clocks [Cart et al. 1987, Lamport 1978], or piggybacking [Birman and Joseph
1987], involving significant context exchange to enforce logical ordering of messages.

Our approach takes advantage of the properties of broadcast LANs and, such as in [Cart et
al. 1987, Chang and Maxemchuck 1984], it integrates communication layer error processing in
the reliable broadcast layer. Additionally, it integrates participant management with
communication, Participant management includes failure detection, which is normally
performed by a centralized monitor, elected or selected in some way [Birman and Joseph 1987,
Chang and Maxemchuck 1984, Navaratnam et al. 1988]. However, instead of a preexistent
monitor [Birman and Joseph 1987, Chang and Maxemchuck 1984, Navaratnam et al. 1988],
the monitor is only elected when needed, on a contention basis. The information needed for
recovery actions is very little, making the whole process of election, investigation and recovery,
reasonably fast. Failures trigger reconfiguration, which can be a complex process, if histories
of past and pending transmissions are to be kept [Chang and Maxemchuck 1984]. In our
protocol, any node can become monitor, but the history is reduced to the last accepted message,
per sender node.

Approaches using space redundancy, like the architectures proposed in [Babaoglu and
Drummond 1985] or in [Cristian et al. 1985], assume replication of the message passing layer.
Our architecture uses standard LANs, and space redundancy only exists in the physical layerS,
to resist permanent medium failures.

The V-kernel group IPC [Cheriton and Zwaenepoel 1985] is worth mentioning. It differs
from AMp because, while very efficient in multicasting, it does so at the cost of other attributes:
faulty process behaviour is not handled, agreement semantics is at-least-one and order is not
provided. The kind of attributes of reliable group communication just discussed would have to
be built on top of V [Navaratnam et al. 1988].

10.3. System Architecture

This section identifies the building blocks of the Delta-4 communication system architecture and
explains the relevant fault model. It should be borne in mind that standard LANs are to be used
in order to gain in openness and portability,

The characteristics of the Delta-4 communications architecture, i.e., not using a global
clock for communication, and not having space redundancy (single logical LAN), raise two
interesting problems, related with its real-time capabilities: how to maintain nodes
interconnected in the presence of channel faults and how to achieve synchronism in protocol

execution. The first is treated in this section, whereas the second is postponed until section
§10.7.3.

10.3.1. Fail-Controlled or Fail-Arbitrary

System modelling and relevant assumptions have been discussed in chapter 6. Let us
recapitulate some concepts, and introduce others, which will support the explanations of the

5 le.,the design of the protocol does not take into account the possible replication of the physical media — if

redundant physical media exist, they are treated as a single logical message-passing link.
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Host
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Fig. 1 - Local Computer Broadcast Network

following sections. In the system model used, components interact exclusively through input
and output ports, or service access points, delivering messages to one another. A component
produces system errors because it fails to follow its service specification. Although each
component may be regarded itself as a system, at the level of abstraction of figure 1, where a
Delta-4 local computer network is depicted, the system components are: a broadcast channel
(possibly composed of several redundant physical media), interconnecting several network
attachment controllers (NACs). These serve the computing units (Hosts). Each host-NAC set is
a node.

The aim of this coarse granularity is trying to decouple errors in the interactions between
components, from errors inside components, in order to obtain practical results concerning
system design. In fact, the former (system errors), are visible outside component boundaries:
they are the subject of the system error processing measures that will be discussed throughout
the text. The latter are component errors: they should propagate to the outside only in
accordance with the admissible faulty behaviour specified for the component. The separation
between component and system errors yields a well-founded fail-controlled system: given the
universe of all possible faults, components only display a subset of that universe; the remainder
of the universe is supposed to have a negligible probability of occurrence. From now on, when
just mentioning errors, we mean System errors.

In essence, system errors are caused by component failures. From now on, when just
mentioning failures, we mean component failures. Component failure modes in the value
domain are avoided, in our model, in the interest of building an efficient protocol; it has been
shown that the comparative cost of coping with them in reliable broadcast protocols is high
[Cristian et al. 1985], in relation to time domain errors, the most general of which are timing
errors. This work is concerned with timing and omission errors.

Omission errors in communication may have many origins: mechanical defects in a cable or
electromagnetic interference may garble a passing frame; a modem loosing synchrony; a
receiver overrun or a transmitter under-run, etc. These component failure modes sometimes
occur in bursts. We call Omission degree, Od, the number of consecutive omissions produced
by a component.

Certain kinds of components may temporarily refrain from providing service, without that
having to be necessarily considered a failure. That state, that we call inaccessibility, is
definable, if: (i) it is made known to the client of the component; (ii) inaccessibility limits
(duration, rate) are part of the component specification; (iii) violation of those limits implies
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permanent failure of the component. This attribute will assist the definition of timeliness
properties of the service.

10.3.2. NAC Fail-Silence Assumption

The last section discussed the conditions for obtaining a well-founded fail-controlled system.
Restrictions on the behaviour of the NACs and the Channel will be imposed so that errors do
not propagate to the outside of the communication system. Assumptions like fail-silence are the
most restrictive type (see chapter 6): a component delivers messages correctly (as specified),
until it stops functioning (after its first failure). In essence, this means the system always
exchanges correct messages on behalf of the hosts. In consequence, systems built to this
assumption are: simple, provided the measures taken to justify the fail-silent assumption are
also simple; and efficient, because they do not have to take into account processing of errors
like timing or value. So, we begin with the working hypothesis that components are fail-silent,
and that a single component may fail during a protocol phaseS.

However, the broadcast channel is equivalent to a single LAN. There is no space
redundancy at the message level and consequently, transients in the medium’ during
transmission are unavoidable; they cause omission errors, and have the same impact as if
caused by the NAC. So, the model will be weakened in order to take a certain omission degree
(Od) into account. The failure-of-a-single-component assumption then means:

Failure of a single component:

« During a protocol phase, any errors result from failures in the same component: it
may produce multiple errors (Od = j, j integer), or it may fail permanently, by
silencing.

Forgetting for a moment the particular NAC interconnection method, i.e., blaming the
NAC:s for any errors, including those of the network, the overall behaviour of a fail-silent NAC
is defined by:

Fail-silent NAC:

* Fsl: A NAC may omit to deliver messages to other NACs; if & is the allowed
omission degree (Od), then a NAC with Od>k fails permanently (remains silent).
« Fs2: All the messages a NAC does deliver, are delivered correctly.

Although having some similarity with the fail-stop processor approach [Schneider 1984],
rather than a processor, the NAC is a communication component that provides a reliable
communication service to the hosts (processors), which they may use to implement fault-
tolerant computing [Powell et al. 1988]. Certain errors are allowed, but when the pre-defined
behaviour criteria are violated, there is an abrupt transition to a permanent failure state, by
silencing (Fs1). This decoupling yields a simple design of the NAC, using self-checking by
duplication and comparison. Additionally, unlike fail-stop processors, it does not require stable
storage since all NAC information is volatile. Furthermore, the failure of a NAC is detected not
through a local readable failed predicate (which would require the NACs to be fail-operational)
but indirectly, through a distributed monitor function.

Now, we proceed by correctly identifying in the model the causes of temporary errors.
Remembering that there is a network underlying the NACs, those errors will arise both in the
NAC and in the medium. We are going to rework the model to represent these errors in a
uniform way, given the broadcast nature of the channel.

6 A phase is a well-delimited portion of a protocol execution, which is a containment domain for error
detection. A protocol may have several phases.

7 The medium is the passive part (cabling) of the channel.
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Observing the internal structure of a real NAC (in the left of figure 1): the operative part —
processor, memory, etc. — dubbed CPU, runs the protocols software; the MAC contains the
LAN specific medium access protocols — normally cast in communications VLSI — being a
frame-level part®; the PHY part — containing interface components, like modems, codecs,
amplifiers, etc. — is the bit-level, electrical signalling part. PHY is the omission error prone
part, so system structure is modified, by moving component boundaries, to include PHY in the
channel, as shown in the figure. In consequence, the portion of the physical NAC that must
exhibit fail-silence includes the CPU and MAC parts: it executes the communications software,
The remainder of the parts, encapsulated by the thin line in the figure, compose the channel.
Clearly, if “channel” is substituted for “NAC” in Fs1 and Fs2, we have the behaviour required
of the channel.

10.3.3. Channel

The broadcast channel is itself formed by several sub-components recalled here: (active)
receiving and transmitting parts (the physical layer (PHY) entities of the NACs) and the
(passive) medium. Interaction-wise, the channel offers a pair of ports (input and output) at each
node.

The remarks made in the beginning of §10.3.2 should now be apparent: the duplication
shown in figure 1, is concerned with providing high availability of the channel. Please remark
that the dual cables shown are only symbolic. They may be switch-over buses, or reconfiguring
dual rings, depending on the LAN being considered. MAC receives from a single medium at a
time (from the part of the channel that is currently selected for reception), so if a transmission
error occurs, the frame has to be retransmitted, because it is lost. Then, taking our failure
assumptions into account, the faulty behaviour of a channel during a limited number of frame
deliveries — a protocol phase — will be the following: omission errors only; up to k
consecutive errors, in the same outputs, for deliveries coming from any input (receiver or
medium failures); up to k successive errors, in any output, for deliveries coming from a single
input® (transmitter failures). The issue is further discussed in section 10.5, where the
behaviour of the channel with competing transmissions from several AMp groups is
characterized.

The major consequence of this observation of channel behaviour is property Pn3, in table 3
(Pn3 is discussed in the next section), allowing to establish the foundation of our bounded
omission degree technique:

» Pn3, in short: if (k+1) series of N transmissions are made, then in at least one
series, all V transmissions are indicated in all destinations;

* the protocol is resilient to temporary omission failures, provided that, during each
protocol phase, they are produced by one single component, with a bounded
omission degree of value k (Od <k) and k is known during the life-time of the
system.

In certain kinds of networks, the channel may become temporarily inaccessible (e.g., upon
token loss recovery or medium reconfiguration). Although with a very low rate of occurrence,
duration may be large, compared to normal frame delivery delay. We specify:

8 The protocol offers a message-level delivery service to the user. A whole protocol execution is composed of
several network-level frame deliveries.

9 Successive does not mean consecutive: consecutive input failures may be interleaved with other
transmissions.
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Channel inaccessibility limits:

* A channel, during a whole pretocel execution, has at most one inaccessibility
period, whose duration is bounded to a known limit T}y, for all envisaged cases.

In conclusion, this section stated the behaviour required of the different components of the
local computer network, in order to meet assumption Fs. Next, it must be discussed how to
enforce it: the upper part of the NAC will not be addressed here (see chapter 11); channel
implementation issues are discussed in the following sections.

10.3.4. The Extended AMp or xAMp

The Atomic Multicast protocol (AMp) is the basic communication primitive of Delta-4, on
which the various fault tolerance mechanisms rely. The AMp service offers some of the
properties identified earlier as being useful in this context. The strongest quality of service
(QOS) possible in this architecture, atomic multicast, whose properties are highlighted by
arrows in table 1 below, formed the basis of the design of AMp. This was the only QOS
available during the early phases of the project. The need, discussed earlier in this chapter, for a
range of QOSs to obtain the best match between performance and functionality, led to the multi-
service xAMp. This is an extension of the original AMp, where the atomic QOS is retained, and
the additional QOSs derived from the main core of the protocol. Discussions about architecture,
dependability and performance are thus made around this core implementing atomic multicast.
We will be using AMp and xAMp interchangeably, except where specifically noted. The
complete set of properties offered by x AMp is enumerated in table 1,

10.3.5. xAMp Execution Model

A generic communication system should support several applications, possibly disjoint; the
entities running them are fault-tolerant participant groups. Those groups should operate with
parallelism and independence. For example, several independent fault-tolerant groups in the
same system, or several groups working in parallel for the same fault-tolerant application, such
as groups of replicated clients, accessing the same group of replicated servers. That support
should additionally allow for dynamic evolution of groups, if possible in a location independent
manner.

This may be established by isolating sets of participants. Let us say that participants group
themselves in universes. Membership of participants in the different universes may overlap,
nest, or be completely disjoint. The word universe was chosen to signal that what happens
inside a set of participants is a priori independent from the rest of the system, i.e., in other
disjoint universes. Each universe is identified by a designation e: Ul.

Let us define how participant interactions are supported, and which properties they should
observe. Participants interact through the messages they send one another; they are
disseminated, universe wide, rather than system wide (i.e., multicasted). The attachment of a
participant to a universe is thus materialized by an entity used to send and receive messages —
a communication gate, with the universe designation — and membership, at a given time, is
given by the group of gates of that designation that exist in the system. There is a one to one
mapping between a node (Sy), a gate (Ge,y) and a participant (Pj,3)19, i.e., there is a single
point of access to a universe, in each node, owned by a single participant. A protocol (the
AMp) controls all the messages exchanged between participants, ensuring that the sets of
received messages — the receive queues at each gate, Mgy — observe certain order,

10 1t is recalled that the objective is a low-level primitive. Multiplexing of a single gate by several high-level
entities is likely to be performed by a participant that is an upper layer protocol, a service element, etc.;
applications or processes access the group through that participant.
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Table 1- AMp Properties
(“=>” designates properties of the atomic QOS)

¢ Addressing
« Pal — Selective addressing: The recipients of any message are identified by a pair (g,s/),
where g is a group identification and s/ is a selective address (a list of physical addresses).

= » Pa2 — Logical addressing: For each group g there is a mapping between g and an address
Ag, such that Ag allows all correct members of g 1o be addressed without the knowledge by
the sender of their number or physical identification.

* Agreement
= » Pa3 — Unanimity: Any message delivered to a participant, is delivered to all correct
participants.
* Pad4 — At-least-N: Any message delivered to a participant, is delivered to at least N
participants.
+ Pad.1 — At-leasi-to: Given a subset Pto of the participants, any message delivered to a
participant, is delivered to all correct participants in Pto.

» Pa5 — Best-effort-N: Any message delivered to a participant, in absence of sender failure, is
delivered to at least N participants.

» PaS5.1 — Best-¢effort-to: Given a subset Pto of the participants, in absence of sender failure,
any message delivered to a participant, is delivered to all correct participants in Pto.

+ Validity
= * Pa6 — Non-triviality: Any message delivered, was sent by a correct participant.

=} + Pa7 — Accessibility: Any message delivered, was delivered to a participant correct and
accessible for that message.

(=] « Pa8 — Delivery: Any message is delivered, unless the sender fails, or some participant(s)
is(are) inaccessible.

* Order

= « Pa% — Total order: Any two messages delivered 10 any correct recipients, are delivered in the
same order 10 those recipients,

» Pal0 — Causal order: If any two messages, delivered to any correct recipients, have the
same clabel, they are delivered by their logical order of precedence.

» Pall — FIFO order: If any two messages from the same participant, with the same clabel,
are delivered to a correct participant, they are delivered in the order that they were sent.

* Synchronism

= * Pal2 — The time (T,) between any AMp service invocation by a correct participant and the
subsequent indication at any correct and accessible recipient is known and bounded.

* Consistent Group View

=2 = Pal3 — Given any receive ordering observed by the participants of a group, each change to
group membership is indicated, in a total order, to all correct group participants.
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agreement and synchronism properties. Once this is ensured, the consistency rules for each
universe or group of participants can be defined. Location transparency is achieved by mapping
the universe designation onto a logical address, which is used as a location independent
message destination address. This feature is obtained efficiently by using hardware level LAN
multicast addresses.

A correct participant in a group is a pair (Pj u.Ge,u), operating according to its
specification. So, not only must the participant itself be operating, i.e., timely servicing its
input queue M y, but also the gate must exist. Gate closure implies participant failure, and
vice-versa.

The execution view of the system is the one shown in figure 2, where the concepts
presented in §6.9.7 appear and one can see how the relevant services map onto the various
components. Bottom-up: the network service, provided by the channel and all MAC parts,
implements the interconnection between protocol entities. In fact, all happens as if there were
several virtual broadcast channels (one per group) over a single physical broadcast channel, as
shown in the figure. Each group communicates on a virtual channel, through instantiations of
the xAMp in every node where a gate of the group exists. The xAMp runs on the CPU part,
and provides a service to participants Pj y, residing at nodes Sy. These participants may use
more than one gate (e.g., P 2 is in groups e and f).

Fig. 2 - Execution View of the System

10.4. Summary of xAMp Services

The properties of the various xAMp qualities of service are summarised in table 2. These
qualities of service are available through a multi-fold amp.request primitive. The relevant
primitives have the following format:

res = amp.request ( QO0S, groupld, destList, frame,

prio, {QOS dependent params} ):
amp.indication ( groupld, frame, priority, nSlots );
getSlots.request ( groupld, nSlots );
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As far as group management is concerned, in addition to the gateOpen and gateClose
primitives, offered by the basic AMp protocol, two new primitives are included: AttachGate and
DetachGate, that allow non-group members to communicate with a group.

In the amp.request primitive, QOS stands for quality of service, which can be one of the
following: bestEffortN, bestEffortTo, atLeastN, atLeastTo, reliable, atomic, and tight. They
derive from a common AMp core, and each of them offers an incremental quality of service at
the price of an incremental loss of performance. All primitives share the same three parameters:
groupld (the gate identifier), destList (the selective list of the destination stations), frame (the
frame to be sent), and priority. All the primitives are then selective since only a subset of all the
group members needs to be addressed.

Table 2 - Summary of xAMp Service Properties

Quality of Agreement Total order Causal order Rx queue
service per clabel —
bestEffortN best effort to N no FIFO no
bestEffortTo best effort to list no FIFO no
atLeastN assured to N no FIFO no
atLeastTo assured to list no FIFO no
Reliable all no FIFO no
Atomic all or none yes yes no
(same gate)
Tight all or none yes yes yes
(same gate)

The bestEffortN QOS requires an extra parameter, nResps, the number of responses
necessary before the transmission is to be considered as finished. Obviously, nResps must be
less than size of destList. If nResps equals zero, no responses are expected which is equivalent
to an unreliable multicast. The bestEffortTo QOS accepts instead a response list, respList, of
stations whose response is necessary to consider the transmission finished. With these two
qualities of service, agreement is relaxed. The frame is retransmitted in order to obtain a
positive acknowledge from at least n/ respList of the addressed stations. Accessibility
constraints are not tested and no assurance of delivery is provided when the sender fails. The
“at-least” qualities of service enforce stronger agreement, assuring that a given sub-set or
number of the participants will receive the frame, even if the sender fails. As with best effort
QOSs, both atLeastN and atLeasiTo primitives are available. The reliable quality of service is a
particular case of atLeastTo, where delivery is assured to all the addressed participants.

The frames sent through bestEffortN, bestEffortTo, atLeastN, atLeastTo or reliable QOS
are delivered to the user as soon as they are received. No effort is made to assure that the frame
is totally ordered in relation with other frames sent through this or through any other QOS.
Also, no effort is made to avoid the violations of potential relations of causal order. Only FIFO
order is guaranteed, between frames with the same clabel.

The aromic QOS is the basic AMp quality of service, with “slotted” messages and
providing incomplete orderings through the use of clabels. As in the basic AMp, frames are,
upon reception, always inserted at the end of the receive queue. The tight QOS provides the
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same service but allows the negotiation of the final position of the frame in the receive queue.
The frame can be inserted between two pending frames or even between the remaining slots of
a frame being consumed. In addition, the right QOS offers a reduced inconsistency time.

With these last two QOSs, accessibility is tested in all destinations. The frame is only
delivered if all destinations are accessible to received it. If a frame is delivered to at least one
participant, it is delivered to the participants in all the addressed stations. Frames sent through
atomic or tight QOS are totally ordered in relation to other frames sent in the same group.
Potential relations of causal order are preserved at the communication level between all frames
carrying the same clabel.

Frames sent through atomic or tight QOS can be associated with several “slots”. When
nSlots > 1 a descriptor of the frame is kept at the head of the receive queue. No other frame
with ordering constraints is delivered until nSlots - 1 slots are removed using the
getSlots.request primitive. Since high priority frames can negotiate their place within the
remaining slots, a new frame can be received as the result of getSlots operation.

10.5. The Abstract Network

In the design of AMp, it was tried to take advantage of LANSs, but the network interface,
although LAN oriented, has a general set of properties, being in essence, LAN independent.
That independence was limited to guaranteeing those properties to be fulfilled by a set of
existing LANs, namely: 8802-4 token-bus [ISO 8802-4], 8802-5 token-ring [ISO 8802-5] and
FDDI [ISO 9314]. In the criteria of choice, relevant factors were: standardization, existence as
industrial products, with availability of (possibly second-sourced) VLSI, possibility of
implementing media redundancy, inherent real-time and reliability attributes.

In consequence, the abstract network service interface formulates, in a way usable by the
AMp, a set of helpful properties (table 3) that are typical of LANSs, along with the reliability
attributes of the channel, discussed in the last section. At each node, there is a pair of service
access points to the network, one for transmitting frames (source), the other for receiving them
(destination). These access points will be used by the xAMp machines. The properties are
defined in terms of a network delivering each frame, transmitted at a source, to all destinations,
Pnl, Pn2, Pn3, Pné6 satisfy the channel model developed in §10.3. Pn4 and Pn5 are the
foundation of the ordering attributes of the protocol. Using LAN terminology, the abstract
network implementation will comprise functions of the PHY and MAC layer communication
and management entities, complemented with the necessary hardware and/or software.

Pn1 and Pn2 impose detection of value domain errors, in a broadcast. This derives directly
from the CRC protection mechanism used in LANS, and has its coverage. Pn4 and Pn5 can
also be provided by LANS.

Behaviour in the time domain is defined by Pn3 and Pn6. Let us define a protocol phase to
be composed of up to ¢ series of up to N broadcasts from N different stations. In consequence,
Pn3, the bounded omission degree property, guarantees that at least one fault-less series of N
broadcasts is obtained in any protocol phase, provided that 1 = k+1, where k is the allowed
omission degree. This holds even if omission errors are not consecutive in the network!l; the
property also holds for any virtual channel used by the AMp groups, replacing N by the group
dimension. It is easy to verify that a single group of the maximum dimension, N, yields the
worst case scenario; smaller groups in competition for the channel have a more favourable
situation, because they “share” channel errors.

11 In that case, they must, by assumption, originate in the same component. Reliability of individual
components has thus to be such that the single failure assumption holds during the worst case duration of a
phase: (k+1)N transmissions.
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Table 3 - Network Properties

* Pnl — Broadcast: Destinations receiving an uncorrupted frame
transmission, receive the same frame.

= Pn2— Error detection: Destinations detect any corruption by the
network in a locally received frame,

* Pn3 — Bounded omission degree: In a network with N nodes, in a
known interval, corresponding to (k+/) series of unordered
transmissions, such that each of the N access points transmits one
frame per series, all transmissions are indicated in all destination access
points, in at least one series.

* Pn4 — Full duplex: Indication, at a destination access point, of
frame reception, during transmission by the local source access point,
may be provided, on request.

* Pn5 — Network order: Any two frames indicaled in two different
destination access points, are indicated in the same order.

* Pné6 — Bounded transmission delay: Every frame queued at a source

access point, is transmitted by the network within a bounded delay
Tina+Ttd.

Acceptable coverage of the bounded omission degree assumption can be enforced through
redundancy in the physical and “medium” layers. An example of an implementation for a dual
cable token-bus LAN, allowing real-time switch-over between media, is described in detail in
[Verissimo 1988]. On the other hand, when the channel deviates from the behaviour postulated,
it fails permanently. A distributed failure detection and fault treatment mechanism for a
redundant LAN channel, which acts upon each node’s opinion of the channel state, is also
given in [Verissimo 1988].

Pn6 depends on the particular network, its sizing, parameterizing and loading conditions,
which must be known, in order to calculate Ty4. The value of Tjng depends on the network
alone and can be predicted for a set of known local area networks. According to the definition
of inaccessibility, exceeding T}, implies permanent failure.

To end with, it must be underlined that, in a sense, the abstract network extends the
concept of LLC — Logical Link Control sub-layer — the LAN independent sub-layer of the
IEEE, and later ISO, 802 standard. Historically, the LLC was intended to hide the differences
between LANs, multiplex the broadcast channel access, and provide some additional reliability
to the MAC datagram service. The abstract network concept is innovative in that, besides
offering a message (service data unit) delivery service, it makes visible a set of functional
properties that are common to LANSs in general. It is believed that the principle can be used to
optimize design of protocols intended to work on LANS.

10.6. Two-Phase Accept Protocol

Without restriction on the kind of faults allowed, the cost in traffic and time to achieve
agreement is rather high. In consequence, the Delta-4 approach relies on fail-silent property of
the attachment controllers, to centralize protocol execution. The protocol, forming the core of
xAMp, that implements the atomic multicast quality of service, is a two-phase accept protocol.
Its operation resembles that of a commit protocol, in that the sender coordinates the protocol: it
sends a message, implicitly querying about the possibility of its acceptance, to which recipients
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reply (dissemination phase). In the second phase (decision phase), the sender checks whether
responses are all affirmative, in which case it issues an accept — or reject, if otherwise. In the
event of sender failure, protocol execution is carried on by a termination protocol. However, in
this case, although Pa3 is always respected, delivery is no longer ensured (see Pa8) for that
execution. This core protocol is formally described in annexe J; together with the formal
presentation, the outline of a correctness demonstration is also given.

Two protocol variants have been derived from that description, differing in whether mutual
exclusion is ensured between executions, or not:

+ The token-based protocol assumes that there is at most one message transmission in
course in a group, at any time, in the whole network. For an efficient
implementation, such a token should be managed by hardware, otherwise execution
times increase and the forced serialization becomes a performance problem. The
token may be the LAN token itself, in token-based LANs. Such a token
implementation is discussed in §10.8.1. In fact, these hardware based variants
collapse the AMp and the abstract network in a single modified MAC layer, since
they are based on changing the standard 802.x machinery.

+ Avoiding hardware modifications, the token-less variant is discussed in §10.8.2,
allowing several concurrent message transmissions, for different groups, and
several competitive message transmissions, for the same group. That variant relies
on an abstract network implementation as discussed in the last section.

An informal explanation of the protocol implementing the atomic multicast quality of
service is now given. Since some functionality is variant dependent, we base ourselves on the
token-less variant in what follows, in order to cover all the relevant details.

10.6.1. Protocol Structure

Each gate, the entity used by a participant to communicate, uses an instantiation of the AMp
machinery. This comprises a local GroupMonitor agent, which participates in error recovery
and fault treatment procedures, and two context structures, the GroupView and the
ReceiveQueue, containing, respectively, the group composition and the frames received for that
group. A station may belong to any number of gate groups and their number in the LAN is only
bounded by implementation limits. Users (mapped on gates) join and leave a group at any
station, through local gate opening or closing operations. Due to the nature of the
communication architecture, joins and leaves are not truly independent of communication, such
as found in [Cristian et al. 1986]. Instead, those actions are performed in a privileged state,
which temporarily obliges all participants to synchronize. This ensures that the group views in
all gate group members are updated consistently, in relation to the ordered flow of information
(§10.6.5). However, the operation is perceived as being dynamic in most situations. The group
join/leave protocols in [Birman and Joseph 1987] work similarly.

Error detection is done on a transfer-by-transfer basis, and relies on consistency of the
group view by each member. The minimum information needed is a concise GroupView,
which contains only the number of group members. The concise view is used to detect station
failures or undelivered frames (omission errors). For instance, if an emitter requests
acknowledgment to a frame, it can compare the number of responses received with its view to
detect the presence of an error. However, to allow fast identification of failed stations, the
permanent maintenance of a complete list of member identifiers would be desirable: a so-called
extended GroupView was implemented!2,

12 Given that the approach is very expensive in terms of storage, a compression lechnique was used.
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10.6.2. Assumptions

We proceed by describing some assumptions that support protocol operation, followed by the
description of operation itself. The set of assumptions that guarantee correctness of operation of
the token-less protocol implementation is presented below.

Assumptions:
A1l  There are at most k message transmission pending from each node, at any
time.

A2  There may be several concurrent transmissions in course in the network,
A3  There may be several competitive transmissions in course, in the same group.

A4 From each node, at any time, there may be only one transmission in course
associated with a given clabel.

A5 The sender positively confirms that all correct participants receive a decision,
if it is reject.

A6 A transmission, once started, executes atomically, i.e., it is not preempted by
other emitting actions, for example, from the GroupMonitor.

Assumption A2 is the source of external parallelism in AMp: unlike other approaches
providing global order [Chang and Maxemchuck 1984, Cristian et al. 1985], AMp enforces
incomplete orderings and in consequence several concurrent executions run simultaneously, On
the other hand, assumption A3 allows internal parallelism in a simple way. Group members just
run transmissions competitively, in a fully decentralized fashion. There is no coordinator to
achieve order, unlike the work in [Chang and Maxemchuck 1984]; several transmissions may
be initiated simultaneously.

Order and agreement are achieved by the protocol, based on the network properties, and the
error detection and recovery mechanisms provided, which rely on Assumption Al. In fact, this
assumption reflects a subtle restriction to parallelism, which maintains protocol simplicity,
namely, in obtaining order properties. Together with Assumption A3, it also allows safe use of
an error recovery algorithm detailed later in the text, which uses no context about previous
transmissions. In consequence, maintenance of histories or lists of significant dimension often
found in other approaches is avoided; this greatly simplifies recovery and makes the monitor
operate very efficiently.

10.6.3. Atomic Multicast Transmission

A multicast transmission is performed by a protocol entity called the Emitter Machine.
Assumption A1 limits the number of simultaneous transmission from each node, so there is a
limited number of Emitter Machines available at each node. Emitter Machines are locally
identified by an integer, s, in the range 7 to k. Thus, every Emitter Machine in the network can
be identified by a pair (n,5), where n is the node id. In the following text, an Emitter Machine
will be simply designated as “the sender’.

An atomic multicast transmission is initiated by the protocol coordinator, the sender (E), by
sending a multicast frame containing the message. The Dissemination phase (figure 3) then
proceeds as follows:

* After transmission, E will expect a number of responses indicated by its group view,
within a predefined response time (TwaitResponse). When all responses arrive or
TwaitResponse has elapsed, they are analysed and if some recipient cannot accept
the frame, decision = reject.
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+ Normally, responses are of “can accept” type, meaning recipients are accessible;
then, if all recipients responded, according to the sender GroupView, decision =
accept. If there are responses missing, the data frame is retransmitted.

+ If some station does not answer within the retry mechanism, it is considered failed.
However, the execution proceeds, allowing timely termination: an accept decision
may be sent if all the remaining stations can accept the message. Stations considered
as having failed are removed from the group view, by the Group Monitor.
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Fig. 3 - Protocol Timing

The decision phase is implemented in the following way:

* The reject frames always require response (assumption A5). A station that does not
answer within the retry limit, is considered failed.

* The accept frame, on the other hand, does not require response, in the interest of
improved performance. A time-out mechanism, at the recipients, covers omission
errors in the transmission of a decision: after receiving an information frame and
responding, a timer is started with a predefined TwaitDecision time. If no decision is
received within this time, a recipient requests the decision from the sender (figure 3).
Safety of this method is based on a simple algorithm, relying on assumptions Al
and AS5:

- all participants log the sequence number of the last message delivered
(lastDeliv for sender) or accepted (lastAccept for recipients);
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- omitted decisions can then be recovered very simply: a recipient requests a
missing decision, and the sender may respond accept if lastDeliv has a higher
sequence number; else, it is not yet finished with processing it.

- Note that in case of reject, a sender only starts a new transmission after
ensuring that all the group members received the reject (assumption AS). So,
when a sender receives such a decision request it can answer with an accept
without any knowledge of the past, or proceed, if it was still processing that
frame. The recipients will retransmit the decision request, until the retry limit is
exceeded. When that happens, the sender is considered failed and the
GroupMonitor is called upon, to reestablish group coherence.

The accept decision being the most frequent completion of the protocol, negatively
acknowledge was chosen. This optimizes transmission rate, due to the pipelining effect, in
absence of faults. It allows the transmission cycle time to be decreased, since a new transfer
may start right after issuing the previous one’s accept. However, the detection of omission
errors in a negatively acknowledged transmission is slower than its positively acknowledged
counterpart, since a recipient must wait a worst case transmission time, before issuing a
decision request frame. A performance improving consequence of assumptions A1 and A5 is
that a recipient may accept a pending frame if it receives a new frame from the same sender.
This is expected to avoid the expiration of the waitDecisionTimer, in situations of fair to high
traffic, maintaining the pipelining effect.

10.6.4. Other xAMp Qualities of Service

Most of the primitives provided by xAMp are implemented as byproducts of the basic atomic
protocol just described above, others require only slight expansions. The relevant aspect of the
implementation of XAMDp is that all services are integrated in the sense that different qualities of
service share common data structures and procedures. For instance, all qualities of service
share the recovery procedure.

10.6.4.1. Selective Multicast. Selective multicast can be seen as an enhancement of the
basic AMp addressing mechanism. In addition to a logical group address, a selective multicast
list is associated with each message. This means that, to receive a message, a station must have
the addressed gate opened and must belong to the address list. Moreover, a sender only waits
for responses from stations in the selective address list. This excludes non addressed stations
from the multicast transfer. The abstract network recognises selective address lists in order to
perform the address recognition task in the lower layers of the architecture and, whenever
possible, by the underlying hardware.

10.6.4.2. Exploiting AMp Message Delivery Procedures. The frame delivery
procedure of the basic AMp, TxwResp, is sketched out in annexe J. Its properties, that were
illustrated in Lemma 1, can be stated informally in the following way: when a sender executes
TxwResp, frame delivery is assured for all the intended recipients if and only if the sender
remains correct during the execution of the primitive.

This procedure is exploited in xAMp to obtain the bestEffortN, bestEffortTo, atLeastN,
atLeastTo, and reliable qualities of service. The bestEffortN and bestEffortTo QOSs are direct
sub-products of the TxwResp procedure. The “at-least” qualities of service require extra work
since delivery must be assured even when the sender fails.

In the basic AMp primitive a frame is only accepted after being received by all group
members. If the sender fails before unanimity is reached the frame is rejected. This means that,
in case of failure, the recovery procedures do not need to re-transmit the frame, only to
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disseminate a Reject decision. Now we want to develop a primitive where a frame is accepted
as soon as it is received, before the unanimity had been assured, avoiding the use of the two-
phase accept protocol. However, since the sender may fail before termination of the TxwResp
procedure, only those correct stations who did receive the message can assure protocol
termination. So, to offer this quality of service, every receiver must be ready to act in the role of
the sender, retransmitting the frame until the protocol terminates. The “at-least” qualities of
service are then implemented as follows:

The sender transmits the frame and executes the TxwResp procedure. When a recipient
receives a message, an Emitter Machine is activated at that node, also executing TxwResp, to
control the termination of the protocol. Emitter Machines, when activated at the recipient side,
omit the first step of the TxwResp procedure and start immediately collecting
acknowledgments, avoiding unnecessary retransmission of the data message.

10.6.4.3. Exploiting Two-Phase Accept. The two-phase accept protocol can be
enhanced to allow the sender, which is acting as a coordinator, to obtain the state of the
recipients receive queues. If the access points to the receive queues are locked until the frame is
accepted, the sender may choose an appropriate insertion point for high priority messages, such
that the total delivery order is not violated. The Accept would then disseminate the position of
the high priority message in the queue (possible within the “slots” of a message being
consumed). This mechanism is the basis for the negotiation protocol available in the tight
quality of service.

10.6.4.4. Using Responses to Exchange Group Views. The algorithms described
until now rely on the knowledge of the group membership to assure protocol properties. This
conflicts with an xAMp goal: the ability the allow non-group members to send messages to a
given group. For xAMp a solution is envisaged which consists of inserting the group view in
the response frames, using a similar mechanism to the one currently used in the AMp GetView
procedure. This will allow the sender to obtain the group view during message transfer,
without significant loss in performance.

10.6.5. Distributed Group Monitor Function

The Group Monitor function executes, under a privileged state, critical activities relevant to
correct operation of the protocol. Namely, it maintains consistency of the GroupView,
recovering from station failures. Additionally, it runs the termination protocol in case of sender
failure. It also controls group membership: joins and leaves from an MGateGroup require
activation of the GroupMonitor so that all GroupViews change consistently.

The distributed Group Monitor function relies on information provided by the various local
GroupMonitors of a group. It may be invoked by several groups simultaneously, executing
with total independence from the monitors of other groups. The local GroupMonitors are
normally inactive. So to speak, a GroupMonitor only exists when needed. At that time, an
election is performed, if there is more than one contender, information is gathered from the
local entities if necessary and a decision is made and disseminated to group members. If an
Active Monitor fails, it is replaced by another GM who detects the failure. The procedure is
recursive.

10.6.6. Active Monitor Election

The need for group monitor intervention can be detected simultaneously at two or more group
members so it is to be expected that several GroupMonitors (GM) will compete for the activity.
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To ensure that only one monitor becomes active, the first frame sent by a candidate carries the
Suspension attribute, which suspends multicast traffic on the MGateGroup. Other candidate
GMs will find the traffic suspended and return to the Standby State.

However, this simple solution must be improved to avoid deadlock and contention.
Deadlock occurs when an Active Monitor fails, leaving the traffic suspended. Contention can
occur in the presence of an omission fault during the competition for the activity if two different
monitors lock different subsets of the recipients.

These two problems are solved with a mechanism based on the association of a value, the
suspension level, to the suspension attribute. When a receiver is suspended it stores the
suspension level associated with the suspending frame; this value is the Current Suspension
level, If another frame, with the Suspension attribute, is received during the suspended state,
this frame is rejected unless it carries a suspension level higher than the current one. In this
case, its sender will become the new Active Monitor, preempting the old one (and the current
suspension level is updated). Deadlock and contention avoidance with the suspension level
mechanism are now explained.

To solve the deadlock problem a timer is started when the traffic is suspended. Whenever
the Active Monitor (AM) sends a new frame the timer is restarted. If the AM remains silent for a
long time, the timer will expire and the failure of the AM is assumed. The GroupMonitor who
first detects the failure becomes active, incrementing the suspension level. The contention
problem is also easily overcome: when one monitor detects contention (receiving some
responses reporting traffic suspension and others acknowledging its frame) it retransmits the
frame incrementing the suspension level. In both situations, the new frame with a higher
suspension level than the current one will be accepted by all the suspended participants,
establishing consensus on who is the new GroupMonitor.

10.6.7. Handling of Failed Stations

Whenever a station fails, the GroupMonitor function is invoked, to reestablish group
coherence. The GroupMonitor winning the activity must, if needed, finish the transmission
interrupted by the failure and disseminate a new group view. To accomplish this objective, the
monitor executes in two phases (StepOne and StepTwo).

These phases include the identification of failed stations, search for the presence of pending
messages from failed emitters, decision to accept or reject those messages and finally the
dissemination of the new group view.

The decision process for the frames pending from failed emitters is the most difficult step
of all monitor actions. The Monitor must ensure that the pending transmissions are finished
correctly. This means that the Monitor must investigate if the message had been accepted by any
member of the multicast group and if so, all the other members must also accept it. If none of
the group members had accepted the message, it can be rejected.

This action can only succeed if the recipients are able to provide some knowledge that can
map onto past transmissions, since many other messages may have been received (from other
emitters) prior to detection of the failure. Since no context is kept about previous transmissions
(see §10.6.2), an indirect information will help solve the problem. Each station keeps a table
with the Multicast Data Number (MDN) of the last message accepted from each sender in the
LAN!3 (StationMdnTable!4). The active monitor reads its contents concerning the failed

13 From assumption Al there are at most k senders at each node, thus only k*N*sizeof (MDN) bytes need to
be reserved for monitor action (where N is the number of nodes in the system).

14 Note that a station may belong to many gate groups and more than one group may keep information about
the same station. Thus, to save both execution time and storage, a structure containing information about
all the stations with AMp capability is created in every station: the StationMdnTable.
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station(s), on all group members, chooses the highest MDN value for each sender and
disseminates pairs sender/d/MDN, during the next phase. These search for the presence of a
message in the receive queue, sent by the failed senders. If found, should its MDN be lower or
equal to the received MDN, it is accepted, else it is rejected.

The first phase (StepOne) covers the identification of the failed stations, the search for
pending messages and, finally, the investigation of the StationMdnTable. The investigation
frame carries the identification of the failed stations. The responses will carry a list of triplets
containing the id of the failed station, the content of the StationMdnTable for that station and a
Boolean stating if there is any pending message in the receive queue sent by that station, After
this, a second phase (StepTwo) is performed, including the dissemination of the decision for
the pending frames and group view. An exceptionDecision frame simply contains pairs
senderld/MDN where the MDN is the highest MDN (for that sender) received in the first phase,
The recipients will use this value and the decision algorithm presented above, to finish pending
transmissions. The first frame sent in the monitor action, always carries the suspend attribute,
while the last one carries the resume attribute,

10.6.8. Joining and Leaving the Group

There are two control frames sent to change the group membership, inserting a participant in or
removing it from a gate group. These frames, called respectively OpenGate and CloseGate, are
sent in response to a local request by a participant, to join or leave a given MGateGroup. Since
these two frames change the GroupView, they may interfere with other transmissions in
course. So the traffic is temporarily flushed and suspended, prior to the processing of a Gate
frame. In a normal situation, this gap is hardly perceived by group users.

The CloseGate action is very simple. A frame with the identification of the participant to be
removed is sent with the Flush and Suspend attributes. If the traffic was not already suspended
by another participant, the end of the current message transmission is awaited for, before a
close accept frame resuming the traffic is sent. When the accept frame is received, each
participant changes its GroupView and group activity is restarted.

The OpenGate action needs an extra step since the participant desiring to enter a multicast
group must, prior to sending the Gate frame, obtain a view of the group. The OpenGate action
is then started with an GetView frame, which is sent with the Suspend and Flush attributes as
above: this ensures correctness of the View obtained. If no response is received to the GetView
investigation, the frame is retransmitted. If silence persists after k+/ tries — allowed omission
degree plus one — the requesting participant assumes it is the first member of the MGateGroup
and initializes his GroupView. If the GetView investigation obtains a response, it is followed
by the OpenGate frame, which is retransmitted if needed. When it is acknowledged by all the
participants, an accept frame is sent. At this moment, the GroupViews are changed, inserting
the new participant in the group. Traffic is resumed.

10.7. Performance and Real-Time

Definitions about real-time communications protocols have been given in chapter 5.
Requirements for XPA high-performance real-time communications, have been stated in
chapter 9. This section addresses the derivation of the execution time expression, calculation of
execution times under several scenarios and, finally, the demonstration of the existence of a
known upper bound for the execution time, necessary for synchronous operation. The
framework covered by the present section is mainly that of high-performance, fault-tolerant,
real-time systems. These issues are addressed in chapter 9. The relevant scope in
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communications is that of a service with timeliness guarantees — among other attributes —
specially important for XPA (see sectior 9.6.4).

10.7.1. Atomic QOS Execution Time

To quantify the duration of an execution of AMp, one has first to observe that it depends very
much on the LAN used, and the particular protocol implementation. The following observations
will be made on the token-less protocol implemented in firmware, as described in [Verissimo et
al. 1989]. The atomic QOS, being the most complex and covering many aspects of weaker
qualities of service, was chosen for this example. The execution time (T¢) expression!S for the
atomic service, taking the possible errors into account, is given in table 4. Observe that the
protocol is structured in transmission-with-response series of the several frame types,
txwr{FR), where FR is: message msg; decision DEC; request for decision regDEC; monitor
action Stepl and Step2. These alternate with several processing or waiting steps, accounted for
by CPU times (tpr) and timers (fwaitResponse, twaitDecision and tearlyDecision)- The
transmission-with-response is itself composed of datagram transmissions and processing. Its
duration highly depends on the target network and NAC performance parameters.

The sender uses timer tygitResponse, after receiving confirmation of transmission by the
network, to control recipients activity. Each recipient uses his timer tygjtDecision to control
sender activity, In fact, it is a two-shot timer, to optimize recovery in case of omissions, with a
first ime-out given by fearlyDecision-

The variables O; take values according to the allowed error scenarios, and the execution
time expression changes accordingly. For example, O3 accounts for the existence of errors in

transmission of the decision frame. If errors occur, the term on O 3 in the expression is
replaced by the one on O3,

10.7.2. Performance

This section deals with the performance implications of supporting distributed applications,
with reliable broadcast protocols. In general-purpose computing systems, most of the time
domain requirements are of the on-line, or soft real-time kind. That is, applications require
responsiveness, fastest possible reaction and a probabilistic treatment of worst-case response
times. To encourage utilization of reliable broadcast protocols in such applications, it is
mandatory that the above-mentioned benefits in quality of service are not considered too costly
in performance, by the user(s).

From the performance viewpoint, there are three questions in the design of reliable
broadcast protocols, which influence the final result: (i) which fault model; (ii) what level in the
communication stack; (iii) which network? It is assumed that the communication system is fail-
silent. The protocol was designed both to run on top of LANS, i.e., at the data link level, and
not to depend on a particular LAN.

There is clearly a difference between LANs with moderate date rates, from 4-16 Mb/s, and
LANs with high data rates, of the order of 100 Mby/s. So, to predict performance of AMp, we
will concentrate in one example of the lower class, namely a 10 Mb/s 8802-4 token-bus.
Second, it is analysed whether AMp performance will benefit from migrating to a higher
throughput LAN, such as the 100 Mb/s FDDI ring.

The scenario defined is a small cell network for real-time manufacturing control, in an
industrial environment: a 500m network with 32 stations. The performance assessment will be

15 We recall that the execution time is the time between the send request primitive and the issuing of the last
receive indication for that message.
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Table 4 - Temporal Expression for AMp Execution Time (T¢), with Several Error Scenarios (token-less
variant

All situations

(Oﬁl).lmR“p (msg )+

r O [ b+ (02+1}"waesp (DEC ) + ‘:d} +

Os5:- thg + typ )+ Oty

Active Monitor action — after sender failure

Ly 04+ l).txwkﬂp (lNV)+rpr +
(0, + I}wakesp (DEC) +1t,,
Variables for error situations
01 Number of Dissemination errors (< k)
0, Number of Decision errors (< k)
03‘4 Number of Monitor action errors (< k)
04 Sender Failure after Dissemination: true — O;=1; false — O,=0

Inaccessible Network: true — 06=1; false — 06=D

based on an evaluation of the execution time, T. Values will be extracted from the expression
in table 4. The various parameters will be quantified taking into account the specific LAN, the
scenario, and assuming a well-engineered implementation on a high performance NAC. This
supposes a very efficient local executive, very powerful CPU and fast data paths. The objective
of this “optimistic” approach is to show the possibilities of the architecture and protocol, rather
than those of a given implementation, and mainly, to appreciate the comparative behaviour
between different LAN ports.

Real implementations will hardly combine all of these favourable attributes. A normal AMp
implementation will run at about four times the optimum-case execution times quoted.

Some example situations were extracted, as a function of message length, number of group
participants, and several typical error situations. The relevant values are presented for Te of
AMp on a token-bus LAN, in table 5.

With the purpose of comparison with the token-bus LAN, predictions for an FDDI network
with the same dimensions are then made. The channel rate, which was 10Mb/s, becomes
100Mb/s. The predictions for Te in the same situations as done for token-bus are repeated in
table 6.

These results are detailed in [Verfssimo and Rodrigues 1990]. The use of FDDI, with a
100Mb/s rate, seems to be advantageous: it is shown that for small messages not only AMp
throughput increases, a natural consequence, but also speed, measured in duration of single
AMp executions!®. This fact is of importance, since it has been recognised that communication

16 In essence this is due to the following facts: (i) the increased available bandwidth, which reduces the impact
of protocol frames in channel utilization; (ii) the increased speed, because of the shorter rotation and
transmission times, for the same load condition; (iii) the assumed low values for processing times, which
are achievable for a low-level implementation.
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speed is the dominating requirement for distributed computing. On the other hand, it shows a
way of using technology to improve performance without compromising portability. While
keeping a neat, independent interface in the LAN world, something can be done to increase
performance, by merely changing LAN.

Table 5 - Execution Time Predictions, Te (ms) (AMp on TB)

80 oclets n=6
Te n=6 n=12 320 oct. 1280 oct.
no faults 27 3.1 28 3.6
1 om. f. diss. 4.5 5.1 4.7 5.5
1 om. f. dec. 5.5 6.2 57 6.5
k om. f. diss. 6.4 7.2 6.6 7.4
sender fail.. 13 14 13 14

Table 6 - Execution Time Predictions, Te (ms) (AMp on FDDI)

80 octets n=6
Te n=6 n= 12 320 oct. 1280 oct.
no faults 0.72 0.94 0.73 0.81
1 om. f. diss. 1.0 13 1.0 1.1
1 om, f. dec. 1.15 1.4 12 1.3
k om. f. diss. 1.3 1.6 1.3 1.4
sender fail.. 24 3.0 24 2.5

10.7.3. Synchronism

One of the questions raised in the beginning of this chapter was how to achieve synchronism
with a clock-less protocol, given that classical approaches to synchronous protocols are clock-
based [Babaoglu and Drummond 1985, Cristian et al. 1985]. Synchronism is taken in the sense
of the existence of a known time bound for all executions.

A fundamental issue about synchronism is the way timing errors are treated, i.e., if there
can be, for example, delivery of messages outside the bound, and if so, how is this event
treated. Timing errors are avoided by imposing a performance specification on the NAC.
However, load variability imposes a significant amount of head-room in that specification,
since worst case delay situations are far from normal ones. Since the execution proceeds in
transmission-with-response series, late deliveries are detected as not belonging to the present
series and can be rejected. This is equivalent to transforming a timing error into an omission
error, reflected in the omission degree: a NAC doing more than k successive timing errors is
failed. This way, sporadic timing errors are allowed, and thus the performance specification can
be tightened.
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The main issues about the clock-less AMp structure concerning synchronous operation are
the following:

+ achieve and determine upper bounds on frame delivery delays by the abstract
network, in the presence of overload and faults (T4 and Tjpg, discussed in §10.5);

* impose a performance specification on the NAC hardware and software (CPU,
kernel, etc.) in order that processing times of the protocol actions be bounded and
known for the specified worst case traffic scenario;

* structure the protocol in phases, so that an execution predictably has a bounded
number of phases; clearly delimit phases, in what concerns error detection and
recovery (omission and timing), and permanent failure detection;

* structure each phase as a series of timed-out transmissions-with-response, so that it
can be decomposed in time, in a sequence of frame deliveries and protocol actions as
specified above, thus having a known duration bound.

With these measures, the AMp execution time expression of table 4 is bounded to a known
value (and in consequence, T}, once T; < Te). Given the assumptions made in §10.3, namely
the single failure assumption, only some error combinations are allowed. To determine T =
Temax - Temin, those error scenarios have to be exercised in the expression to compute
Temax and Temin. The existence of the bound ultimately means the AMp is synchronous in the
sense of property Pal2 in table 1,

10.8. Implementation Issues

Two implementation approaches are possible, as already seen. One consists of embedding the
atomic multicast mechanisms in the Medium Access Control (MAC) sub-layer, by intervention
in the MAC state machines. The second approach consists of implementing atomic multicast on
top of the exposed MAC interface of a LAN VLSI, while still presenting the same extended
interface to the user (figure 4).
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Fig. 4 - Functional Decomposition of the Aliernative AMp Implementations
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10.8.1. The Token-Based Protocols

Fardware support was considered mandatory to achieve an efficient solution for the token-
based protocols in Delta-4. The approach followed consisted of designing a superset of the
MAC sub-layer, in order to include AMp services. The neat interface between the abstract
network and the AMp itself disappears, since they are compacted in a “super”-MAC.
Consequently, the protocol becomes LAN dependent.

A theoretical study of the approach for token-bus was made, whereas a prototype for
token-ring is actually being built in Delta-4: it is dubbed “Turbo-AMp” and the protocol was
formally specified and validated. It is a superset of the standard, with the existing services plus
the AMp functionalities (figure 4b). Turbo-AMp only implements the atomic multicast service.
Although implying modified VLSI (for example an ASIC), it is an interesting approach for
providing a standard LAN with atomic multicast capability. Intervention in the state machines
allows establishing a clear protocol execution containment domain, through token hold control.
This hardware token!7 yields an efficient implementation of a variant of the two-phase accept
protocol of figure 1, annexe J. A high degree of synchrony and low error latency are given by a
transmission with multiple acknowledgment mechanism, based on on-the-fly operations on the
passing frame.

10.8.2. The Token-Less Protocol

The token-less variant implementation, shown in figure 4a, is less efficient, yet readily
implementable in software or firmware. The protocol implementation is detailed in [Verfssimo
et al. 1989]. The main points are: higher parallelism, portability (LAN independence by means
of the abstract network); evolvability (being software-based). The protocol particularities, with
regard to the core protocol in annexe J, are the non acknowledged decision and the group
monitor actions. The protocol was described informally in section 10.6.

In consequence, the token-less variant is a generic protocol, LAN independent, and ported
to the various LANSs in Delta-4, just requiring an implementation of the abstract network on
each target LAN, It was also the basis for the evolution that led to xAMp, whose extended
services only exist in this variant.

17 Which is the same token as the LAN itself.




