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Abstract—Efficiently storing large data sets of human genomes
is a long-term ambition from both the research and clinical life
sciences communities. For instance, biobanks stock thousands
to millions of biological physical samples and have been under
pressure to store also their resulting digitized genomes. However,
these and other life sciences institutions lack the infrastructure
and expertise to efficiently store this data. Cloud computing is
a natural economic alternative to private infrastructures, but it
is not as good an alternative in terms of security and privacy.
In this work, we present an end-to-end composite pipeline
intended to enable the efficient, dependable cloud-based storage
of human genomes by integrating three mechanisms we have
recently proposed. These mechanisms encompass (1) a privacy-
sensitivity detector for human genomes, (2) a similarity-based
deduplication and delta-encoding algorithm for sequencing data,
and (3) an auditability scheme to verify who has effectively read
data in storage systems that use secure information dispersal. By
integrating them with appropriate storage configurations, one can
obtain reasonable privacy protection, security, and dependability
guarantees at modest costs (e.g., less than $1/Genome/Year). Our
preliminary analysis indicates that this pipeline costs only 3%
more than non-replicated systems, 48% less than fully-replicating
all data, and 31% less than secure information dispersal schemes.

Index Terms—Data Storage, Dependability, Cloud, Genomes

I. INTRODUCTION

Whole genome sequencing (WGS) is the process of digitiz-
ing the complete sequence of nucleotide pairs that compose the
DNA stored in a cell of an organism at a specific time [1]. The
DNA sequence of every human being has more than 3.2 billion
nucleobases (e.g., A for adenine, C for cytosine, G for guanine,
and T for thymine), which results in more than 300GB of data
in the FASTQ format (i.e., the standard raw data format from
WGS [2]). Research and clinical life sciences communities
will directly benefit from solutions that enable the efficient
storage of large data sets of human genomes. For instance,
there is a pressure on biobanks to store the digitized genomes
from the thousands to millions of biological physical samples
they already stock in their infrastructures [3].

Sequencing a human genome currently costs around $1000
and this price is expected to drop even further in the near fu-
ture [4, 5]. This decreasing cost of DNA sequencing motivates
the adoption of sequenced data in routine medical procedures.
For instance, personalized medicine brings medical decisions
to the individual level propelling the use of specific procedures
and treatments for each patient [6]. It may benefit from the

expansion of genome sequencing, and individuals may have
their cells sequenced multiple times during their lives.

The number of to-be-stored genomes is increasing ex-
ponentially [7]. Storing genomes efficiently may accelerate
medical breakthroughs since researchers would like to analyse
thousands of samples at time. However, this sharing augments
the risks for donors’ privacy (e.g., DNA may be used to obtain
identity- and health-related information [8]). The million-scale
size and criticality of sets of genomes require systematic
solutions to store and share this data in efficient, scalable,
and secure ways [8, 9].

In general, life sciences institutions do not have the nec-
essary expertise on data storage nor sufficiently large infras-
tructures to efficiently store this data [10]. Cloud computing is
a natural economic alternative to private infrastructures since
it requires low initial capital and allows a scalable growth
in an pay-as-you-go manner. However, cloud computing is
not as good an alternative in terms of security and privacy
concerns [11]. Additionally, the increasing severity of data
breaches (e.g., [12]) and the tightening of privacy-related
regulations (e.g., GDPR [13]) have been driving the demand
for increased security also on cloud-based storage. Secure
storage solutions based on multiple clouds (i.e., a cloud-of-
clouds) have been proposed in the last decade (e.g., [14, 15]).
However, they usually incur in high storage overheads (e.g.,
50% [15]), which prevents a bigger adoption in practice.

In this work, we present an end-to-end composite pipeline
intended to enable the secure, dependable cloud-based stor-
age of human genomes by integrating three mechanisms we
have recently proposed. These mechanisms encompass (1) a
privacy-sensitivity detector for human genomes [16], (2) a
similarity-based deduplication and delta-encoding algorithm
for sequencing data [17], and (3) an auditability scheme to
verify who has effectively read data in storage systems that
use secure information dispersal [18]. The first mechanism
identifies the privacy sensitive portions of human genomes and
allows the portions associated with different privacy risk levels
to follow different privacy-related paths in the pipeline. The
second mechanism focuses on balancing reduction ratio and
read performance better than existent genome compression al-
gorithms. Finally, the third mechanism identifies and enforces
the additional requirements for auditing who has effectively
read data from a modern secure dispersed storage.

We advocate that one can obtain reasonable privacy protec-
tion, security, and dependability guarantees at modest costs
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Fig. 1. Overview of our pipeline intended to enable the efficient and dependable storage human genomes in public clouds.

(e.g., less than $1/Genome/Year) by integrating the men-
tioned mechanisms with appropriate storage configurations.
Our pipeline presents a small storage overhead of 3% com-
pared to non-replicated systems, but it costs 48% less than
fully-replicating all data and 31% less than secure information
dispersal schemes.

II. THE PIPELINE

In this section, we present an end-to-end composite pipeline
intended to enable the efficient, dependable cloud-based
storage of human genomes. This pipeline inserts privacy-
awareness, cost-efficiency, and auditability into the storage
ecosystem focused on human genomes. It is composed of five
phases, as presented in Figure 1: SEQUENCING, DETECTION,
REDUCTION, STORAGE, and MANAGEMENT.

The first phase (SEQUENCING) obtains the digitized genome
from biological samples. The second (DETECTION) sepa-
rates genomes’ portions according to their privacy sensitivity.
The third (REDUCTION) applies data reduction techniques to
improve data density and reduce storage costs. The fourth
(STORAGE) retains the genome’s portions in appropriate
repositories and provides data to clients. Finally, the fifth
(MANAGEMENT) provides tools for controlling and monitor-
ing the system. These phases are described in the remaining
of this section.

A. SEQUENCING

Sequencing machines digitize genomes by translating the
chemical compounds from biological samples to digital in-
formation. Next Generation Sequencing (NGS) [19] is the
name given to the machines that sequence genomes at a high-
throughput [20]. However, NGS machines do not provide the
whole human genome in a single contiguous DNA sequence.
They generate millions of small DNA reads, which are small
pieces of DNA containing sequences with hundreds to thou-
sands of nucleotides each. Additionally, every nucleobase from
a human genome is sequenced many times and appear in
several complementary reads (e.g., 30–45×) to improve the
sequencing accuracy.

Data obtained from this process is usually stored in the
FASTQ text format [2], in which every entry contains four
lines. The first line of every FASTQ entry is a comment about

the read sequence and starts with a “@” character. The second
line contains the DNA sequence read by the machine. The
third line starts with a “+” character to determine the end of
the nucleotide sequence and can optionally be followed by the
same content of the first line. The fourth line contains quality
scores, which measure the confidence of the machine on each
read nucleotide. Each sequenced FASTQ entry (i.e., 4 lines)
is sent separately to the next step in our storage pipeline.

B. DETECTION

Previous works on privacy-preserving genome processing
advocated the partitioning of genomic data [21, 22], but as-
sumed it would be done manually [23] or by a tool out of their
scope [24]. We closed this gap by proposing a DNA Privacy
Detector [16], which was the first comprehensive privacy-
aware detection method that enabled users to implement such
partitioning automatically.

Given a DNA segment of a predefined size, our method
detects whether this segment may contain a known privacy-
sensitive information or not. It does so based on a knowl-
edge database of published signatures or patterns of privacy-
sensitive nucleic and amino acid sequences. The detector
decides based on the information present in the knowledge
database, and forwards each received FASTQ entry alter-
natively to a privacy-sensitive output or to a non-sensitive
one. Recent works have upgraded this detection method to:
evolve the knowledge database to detect previously unknown
privacy-sensitive sequences [25]; support FASTQ entries with
larger DNA sequences [26]; and support additional privacy-
sensitivity levels according to different risk classifications [27].

In this work, data from the DETECTION phase results in
two subsets: a small privacy-sensitive portion (i.e., 12% of the
FASTQ entries from each human genome) and a large non-
sensitive one (i.e., 88%). This 12/88 ratio between these two
portions comes from the employed knowledge database, which
contains the currently known privacy-sensitive sequences [16].
Reducing the data that requires stronger security and depend-
ability premises (to less than 12%) naturally contributes to the
cost-efficiency of any storage solution.

By identifying the privacy-sensitive sequences using our
solution and protecting them, one neutralizes the existent
threats of re-identifying individuals [28] and of inferring pri-
vate information about them [8]. Finally, FASTQ entries from
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both portions (i.e., the privacy-sensitive and the non-sensitive)
are sent to the REDUCTION phase, which deduplicates this
data to make it even more cost-efficient.

C. REDUCTION

Reducing the size of data from genomes is imperative to en-
able the efficient storage of large data sets of human genomes.
Without a considerable data reduction, most hospitals and
biobanks cannot store this data, which may delay advances
in medical research and diagnosis [29].

We evaluate and compare several generic (e.g., GZIP [30])
and specialized (e.g., LFQC [31]) compression tools [32]
to better depict the state of the art in the reduction
of human genomes. We have selected portions of five
representative human genomes (SRR400039, SRR618664,
SRR618666, SRR618669, SRR622458) from the 1000
Genomes project [33]. They sum up approximately 265GB of
data in FASTQ files. GZIP is the fastest generic compressor
in our experiments and compresses the selected genomes, on
average, 3.21×, which results in a reduction ratio r = 0.3115.
LFQC is the specialized tool with the best reduction ratio and
compresses the mentioned genomes, on average, 8.20×, which
results in a reduction ratio r = 0.122. Other evaluated tools
provide intermediate results between these two solutions both
in terms of throughput and reduction ratio.

Storage of sequencing data is an important, challenging do-
main mostly unexplored in the systems community [29]. Dedu-
plication is a technique that reduces the storage requirements
by eliminating unrelated redundant data [34]. Additionally,
deduplication has two advantages when compared to com-
pression algorithms: it may leverage the inter-file similarities,
while most compression algorithms consider only intra-file
data or use a single generic contiguous reference; and it usually
achieves a better read performance than compression. How-
ever, due to the fact that FASTQ entries contain unique iden-
tifiers, traditional identity-based deduplication (e.g., chunk-
based [35]) fails to provide a satisfactory reduction in the
storage of genomes.

Similarity-based deduplication is an interesting alternative
since there are several entries with very similar structure
or content. Solutions for similarity-based deduplication com-
monly cluster similar entries into buckets and use identity-
based deduplication within them [35], or they focus mostly
on the delta-encoding problem [36] and employ inefficient
global indexes [37]. We have been working on a solution that
balances space savings and read performance by integrating
efficient similarity-based deduplication based on Locality-
Sensitive Hashing (LSH) [38] and specialized delta-encoding
based on the Hamming distance for genome sequencing
data [17]. This solution finds, separately for the DNA and
QS lines of each FASTQ entry, the most similar base chunk
in a deduplication index and replaces the original lines by a
pointer to the best candidate and the transformations to recover
the original sequence from it.

Preliminary analysis of our ongoing work indicates it
achieves 60% of the reduction ratio of the best specialized tool
(i.e., LFQC) and compresses 50% more than the fastest generic

competitor (i.e., GZIP) using a human reference genome as the
deduplication index for the DNA lines and 220 synthetic can-
didates for the QS lines. Additionally, it restores data 83.3×
faster than LFQC and 4.4× faster than GZIP. In summary, our
solution is currently able to compress the selected genomes,
on average, 4.92× (i.e., r = 0.2032).

D. STORAGE

Data from the DETECTION phase is divided into two sub-
sets: a privacy-sensitive portion of human genomes and a non-
sensitive one. These two portions are deduplicated and delta-
encoded in the REDUCTION phase and are handled differently
in the present phase. The privacy-sensitive portion requires
stronger security premises, while the other portion can use
affordable security techniques. From the moment they are
delivered by the previous phases, the STORAGE phase applies
commonly used dependability and security techniques to store
data properly in public clouds.

Cloud computing is an economic alternative to expensive
private infrastructures. We consider a system architecture
composed of a single public cloud to store the non-sensitive
portion of human genomes and a cloud-of-clouds to store the
privacy-sensitive portion.

1) Single-Cloud Storage: This is the simplest scenario,
where we apply standard encryption on data from the RE-
DUCTION phase and store it in a single public cloud. This
encryption guarantees that only authorized users have access
to data, and these users need to know the decryption key. The
rationale for this decision is the fact that this data is the less
(or non-) sensitive portion of human genomes, and thus the
security and dependability provided by a single public cloud
is acceptable.

There is an inherent execution cost in this scenario. The
cost for reading data will be equals to the cost of transferring
the compressed encrypted file from the cloud, decrypting it,
decompressing it, requesting the original sequences and quality
scores from the deduplication index, and applying the delta-
encoded transformations to recover the original data.

2) Multi-Cloud Storage: In this storage configuration, we
also initiate by applying standard encryption on data. Then,
data is split in blocks that will be sent to different clouds
later [15]. It guarantees that no cloud has the whole genome
in its infrastructure, which increases the privacy-protection in
case the data stored in a subset of clouds is compromised.
We opt to apply secret sharing [39] on the encryption key to
distribute it together with the data blocks, which makes the
system independent of key managers. Storage optimal erasure
codes [40] are also employed to allow recovering the data in
case of failures without the need of replicating all data blocks,
which reduces the storage cost compared to full replication.
Finally, data is sent to a quorum of clouds from the cloud-
of-clouds, where each cloud stores different data blocks in a
secure setting and provides increased availability.

There is an inherent execution cost in applying all these
techniques over data. The cost for reading data will be equals
to the cost of transferring the data from a subset of clouds
plus: recovering the original blocks from the erasure codes and
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secret sharing methods, decrypting the data, and decoding the
original data based on the entries used in the deduplication
system and the delta-encoded transformations. The needed
subset of clouds must result in clients receiving at least the
minimum number τ of correct blocks to decode a data item.

We employ CHARON [41] as our backend since it is a
complete storage solution that provides the two mentioned
configurations (single public clouds and a cloud-of-clouds)
and allows also the storage of data in private repositories. The
original cloud-of-clouds configuration of CHARON assumes
n ≥ 3f + 1, with τ ≥ f + 1, which means that this storage
configuration incurs in an optimal storage overhead of 50%
(f = 1). As it will be explained in the next section, to support
auditability, we consider a cloud-of-clouds configuration in our
pipeline where n ≥ 5f + 1 and τ ≥ 3f + 1 (i.e., resulting in
a storage overhead of only 25% with f = 1).

E. MANAGEMENT

Several components (e.g., key distribution, performance
monitoring, and billing) may fit in this generic phase. How-
ever, we are interested only in the access control and au-
ditability ones because these are the main blocks responsible
for guaranteeing that only authorized users can and have
effectively accessed the data.

1) Access Control: Access control permits certain users to
obtain and modify specific data items according to their roles.
This mechanism may also have distinct access rules for the
different portions of human genomes (i.e., the privacy-sensitive
and the non-sensitive portions). Additionally, cryptographic
solutions from the STORAGE phase complement access control
mechanisms since an attacker that circumvents the access
control does not obtain the data in clear. Finally, the cloud-of-
clouds in CHARON provides a joint access control combining
multiple cloud providers, where its access control is satisfied
even if up to f providers have been compromised [41].

2) Auditability: Auditability is the systematic ability of
verifying some property in an environment and is a deterrent
measure that complement preventive ones, e.g., security, de-
pendability, and privacy-protection. In this work, we are inter-
ested in auditing exactly which users have effectively read each
human genome stored in the system, which already separates
them from the whole group of users that are authorized to
read it but have never done so. Auditors need to access only
metadata, such as filenames, access logs, and access control
rules (i.e., they do not need access the whole data sets).

Usually, auditability systems must keep an indelible tamper-
proof track of data accesses to detect, analyse, and sanction
misuses. However, the guarantees from this registry directly
depend on the configuration of the system. For instance,
non-replicated storage systems must trust in the single cloud
provider they use to register and provide evidences for every
action users perform in the system.

However, storage systems that employ multiple cloud
providers have the opportunity to avoid this trust requirement
by using the logs from a subset of providers to create a
Byzantine fault tolerant track of records. We have recently
identified the formal requirements of such auditability for

systems based on secure information dispersal schemes [18].
Basically, auditability requires n ≥ 5f+1 (i.e., τ ≥ 3f+1) to
provide a weak form of auditability in systems supporting fast
reads [42] or a strong form of auditability in systems with slow
reads (i.e., reads with more than one communication round).

Privacy-awareness (from §II-B) allows us to provide ad-
equate auditability guarantees for the different portions of
human genomes. The fact that only the non-sensitive portions
of human genomes are stored on single-cloud storage reduces
the impact of loosing auditability information on these config-
urations. The storage of the privacy-sensitive portion of human
genomes guarantees that every effective read is reported by the
audit process [18].

III. FEASIBILITY DISCUSSION

Storage costs directly impact the feasibility of collecting
large sets of whole human genomes. Furthermore, storage
solutions must benchmark their cost-efficiency to not burden
institutions and to make dependability affordable [43].

Haussler et. al [44] estimated the costs of creating a data
warehouse to store (and process) one million human genomes
(compressed to 180GB each). Their calculated capital expen-
diture (CapEx) was $65M for the first year and $35M per
subsequent year to maintain and update the infrastructure.

One million human genomes is an interesting example of
the scale biobanks will face since they already manage similar
numbers of physical samples [7]. Assuming that each human
genome sizes s = 300GB (i.e., 30–45× of coverage), one
million genomes result in 300PB of data. Storing all this data
is expensive, where even the cost of using only cold storage
from a single cheap cloud provider (e.g., Microsoft Azure—
see Table I) is $3.6M per year. Investing in more dependable
solutions (e.g., secure information dispersal using multiple
clouds) increases this annual cost to approximately $13M.

In this section, we evaluate the feasibility of the presented
composite pipeline. We use the estimated annual cost (in $) to
store a single human genome as the metric of interest since it
can easily be adapted to deployments of any size. We start by
delineating three basic configurations typically used in cloud-
based storage and present their pros and cons.

TABLE I
CLOUD STORAGE PRICING (IN $/GB/MONTH) IN JUNE, 2019.

Cloud Storage Standard Infrequent Cold
Microsoft Azure1 0.0184 0.01 0.001

Alibaba Cloud2 0.0185 0.01 0.0036

Google Cloud3 0.02 0.01 0.004

Amazon AWS4 0.023 0.01 0.004

IBM Cloud5 0.022 0.012 0.006

Oracle Cloud6 0.0425 0.0255 0.0026

1https://azure.microsoft.com/pricing/details/storage/blobs/
2https://www.alibabacloud.com/product/oss/pricing
3https://cloud.google.com/storage/pricing
4https://aws.amazon.com/s3/pricing/
5https://www.ibm.com/cloud-computing/bluemix/pricing-object-storage
6https://cloud.oracle.com/storage/pricing

https://azure.microsoft.com/pricing/details/storage/blobs/
https://www.alibabacloud.com/product/oss/pricing
https://cloud.google.com/storage/pricing
https://aws.amazon.com/s3/pricing/
https://www.ibm.com/cloud-computing/bluemix/pricing-object-storage
https://cloud.oracle.com/storage/pricing
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Fig. 2. Estimated annual cost (in $) to store a human genome (s = 300GB) considering different configurations and reduction ratios (r).

The first configuration (NON-REP) stores all data only in
the cheapest single cloud provider from Table I (i.e., Microsoft
Azure). It is the baseline of this evaluation and represents a
non-replicated scenario, where the cloud provider has to be
trusted and is a single point of failure at the administrative
domain level. The second configuration (FULL-REP) repli-
cates all data into trusted cloud providers. It tolerates cloud
outages (i.e., crash faults only) of a subset of providers (i.e.,
n ≥ f + 1). We consider tolerating one fault (i.e., f = 1) in
this evaluation, which means that this configuration results in
a storage overhead of 100% since n = 2. The third configu-
ration (INFO-DISP) distributes data into multiple untrusted
providers using secure information dispersal schemes [14, 15],
which guarantee that no single cloud stores or has access to
the entire data set. It tolerates a subset of malicious clouds
(i.e., n ≥ 3f + 1) and results in a storage overhead of 50%
(for f = 1) [15] compared to our baseline (i.e., NON-REP).

Our pipeline employs the steps described in §II and stores
each genome portion in an appropriate configuration. It re-
sults in a fourth configuration (PRI-AWR) that conservatively
stores approximately 12% of each human genome (i.e., the
privacy-sensitive portion) using a special case of secure in-
formation dispersal and the remaining 88% (i.e., the non-
sensitive portion) in a non-replicated configuration. Our secure
information dispersal uses more clouds than the configuration
in INFO-DISP to support the auditability of who has ef-
fectively read data, as described in §II-E. This increase in
the number of replicas results in a storage overhead of 25%
(for f = 1) instead of the 50% from INFO-DISP. In the
end, our pipeline has a storage overhead of only 3% since
0.12× 1.25× r × s+ 0.88× r × s = 1.03× r × s.

Despite the configuration of choice, we assume all solutions
encrypt data to protect confidentiality and use the n cheap-
est clouds on each different configuration. Additionally, this
comparison considers that a human genome originally sizes
s = 300GB (i.e., r = 1) and can be reduced by different
algorithms with the following compression ratio r: GZIP
reduces a genome to 93.45GB (r = 0.3115), our similarity-
based deduplication reduces it to 60.96GB (r = 0.2032), and
LFQC reduces it to 36.66GB (r = 0.1222).

Figure 2 presents the estimated annual cost (in $) to store
a human genome in every configuration described in this
section either uncompressed or compressed by one of the
three mentioned reduction algorithms. Additionally, this figure
considers scenarios using three storage service levels that are

available in all evaluated cloud providers and differ in the
expected frequency of data accesses: standard, infrequent, and
cold storage (the less frequent, the cheaper—see Table I).

While storing an uncompressed human genome can cost
$66.24 per year in NON-REP using the cheapest standard
cloud storage, it can drop to $0.43 storing this genome
compressed by the LFQC in the cheapest cold storage provider.
Considering dependable alternatives, fully replicating data
always costs more than using secure information dispersal,
which by its turn always costs more than using our privacy-
aware pipeline. Storing an uncompressed genome using only
our privacy-awareness (§II-B) and auditability phases (§II-E)
can cost $69.29 per year in NON-REP standard storage, while
$0.58 are enough to store it compressed with LFQC using
cold storage. However, LFQC has a small restore throughput
compared to our deduplication and the other competitors (see
§II-C). Using all phases from our pipeline (i.e., deduplicating
instead of using LFQC) results in a storage cost of $14.08
using standard storage services and $0.97 using cold storage.
It means that storing one million human genomes with our
pipeline costs less than $1M per year. These results vouch
for the utility of the mechanisms integrated in our composite
pipeline to enable the efficient, dependable storage of human
genomes in public cloud infrastructures.

IV. FINAL REMARKS

We described an end-to-end composite pipeline that intro-
duces privacy-awareness, cost-efficiency, and auditability into
the data storage ecosystem focused on human genomes. By
integrating the presented mechanisms with appropriate storage
configurations, we showed that it is possible to obtain reason-
able privacy protection, security, and dependability guarantees
at modest costs (e.g., less than $1/Genome/Year). This pipeline
is intended to enable the efficient, dependable cloud-based
storage of human genomes since it provides enhanced depend-
ability guarantees with adequate storage overhead (e.g., 3%
compared to non-replicated systems). Moreover, the efficiency
of the proposed pipeline is also attested by the fact it costs
48% less than fully-replicating data and 31% less than using
secure information dispersal schemes exclusively.
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