Chapter 14
Software-Fault Tolerance

At the beginning of the Delta-4 project, a design assumption was made to the effect that only
physical faults were to be taken into account when providing fault-tolerant mechanisms: the
possibility of design faults could therefore be neglected. In the subsequent years, recognizing
that software design faults are becoming a major source of system service disruption, it was
decided to study how to provide the Delta-4 architecture with specific provisions to deal with
this kind of faults.

Since the term software-fault tolerance may assume different meanings, let us also say that
we intend here to deal with ways to tolerate design faults in software. The tolerance of
hardware design faults will only be considered as a side issue. The general consideration
applies that the effectiveness of fault-tolerance techniques is not usually limited to a precisely
defined class of faults, and hardware design faults, software bugs and transient hardware faults
often lead to similar behaviour, as discussed in section 6.4.2.

It should be noticed that design faults may be present in Delta-4 hardware, operating
system software, and applications. Application-level software-fault tolerance can help against
all three kinds of errors (assume an operating system error that causes messages to be delivered
in the wrong order: an application will often be able to recognise this, based on the expected
contents of the messages), but is mainly directed against errors resulting from faults in the
application itself,

This chapter, after briefly recalling the main techniques presented in the literature to tolerate
software design faults, focusses on the problem of applying some of these techniques in the
Delta-4 architecture. Support mechanisms and structuring concepts are presented. It should be
pointed out that the solutions shown below are still in the specification phase — no
implementation has yet been carried out.

14.1. A Brief History — the State of the Art

14.1.1. The Problem of Software Dependability

Software engineering has offered many improvements in the way software is produced, but no
radical solution for producing dependable software is in sight [Brooks 1987]. Formal proofs of
correctness are still unfeasible for many real-world products, and suffer from some inherent
limitations (with respect to specification faults and/or ambiguities, for instance). Testing suffers
from basic limitations, best stated as the fact that it can discover faults, but not prove absence of
faults (sometimes not even upper bounds on the probabilities of failures caused by residual
faults [Hamlet 1987, Miller 1986b]). Development methodologies and tools have improved, but
none are known to avoid software faults.

352 14, Software-Fault Tolerance

From a management point of view, increasing the expense in fault avoidance methods
beyond some threshold yields diminishing returns, because of technological limits, increased
overhead and human communication problems.

Since creating perfect software components seems impossible anyway, to increase
reliability, and in general dependability, of current, complex computing systems, we need
strategies for coping with software design faults and techniques suitable to tolerate their effects.

According to [Gray 1986], for instance, once disc storage is duplicated, software faults
become by far the most common cause of errors (except operator errors) in a transaction-
oriented computer system. According to Giloth and Prantzen [Giloth and Prantzen 1983], about
one fourth of the down time in the 4ESS electronic switching system was due to software
problems. So was the January 1990 nationwide outage in the AT&T telecommunication
network.

Software-fault tolerance, besides improving reliability, for a given cost, is thought to have
the potential of: i) decreasing the cost of operational testing of the final product, through on-line
error detection; ii) thus, shortening the teething problems of new products; iii) obtaining
reliability levels that would be impossible by other means, regardless of the accepted cost, for
applications where the cost of failure is very high.

Of course, software-fault tolerance techniques, given their cost, can only be cost-effective
if they use reasonably reliable individual modules in their redundant configuration.

14.1.2. Software-Fault Tolerance Methods

Early proposals for software-fault tolerance began to appear in the mid 70s [Avizienis 1975,
Horning et al. 1974, Kopetz 1974, Randell 1975, Shaw 1976, Yau and Cheung 1975]. By the
late 70s, some methodological proposals had been defined. We will quote here:

1) General concepts about error detection and treatment (independent of the origin of
errors): executable assertions, exception handling and such. These are proposals
about language constructs, and corresponding program-structuring criteria, that
would make it easier to: i) state conditions that the state of the computation must
satisfy at given points in the execution, and ii) describe the actions that must be
taken if an assertion is not satisfied [Cristian 1987].

2) Structured software-fault tolerance: Specific proposals for structuring the addition of
redundant code in programs in a simple and coherent way:

2a) Recovery blocks [Randell 1975], where a block! of code contains, besides the
“primary” routine for the specified computation, i) an acceptance test to be
performed on its results and ii) back-up (“alternate”) routines, functionally
equivalent to the primary, to be invoked, on the state of the data prior to the
execution of the primary, if the results of the primary fail the acceptance test.
So, the recovery block concept is based on error-detection through executable
assertions plus backward error recovery; only if no alternate produces an
acceptable result the block fails, and the resulting exception must be handled at
a higher level.

2b) N-version programming [Chen and Avizienis 1978], or “multiple version
software”: replicated, diverse, functionally equivalent software modules,
referred to as “variants”, are executed concurrently (e.g., on the replicated
processors of an N-modular redundant system), and their results are compared

1 “Block” has the same sense here as in “block-structured languages”.

14.1. A Brief History — the State of the Ant 353

and voted to mask errors and possibly correct the internal states of the variants
themselves: it is a form of masking redundancy, with forward error recovery.

2¢) N-Self-Checking Programming [Laprie et al. 1987]: N functionally equivalent
self-checking components are executed concurrently; one is considered as
being acting and delivers the results, the other self-checking components are
considered as hot spares. A self-checking component can be either the
association of an acceptance test to a variant or the association of two variants
with a comparison algorithm.
Subsequent research has elaborated on these basic concepts; its topics may be divided as
follows:

* Architecture of fault-tolerant software. A number of proposals have appeared,
generally originating from one of the three concepts of recovery blocks, multiple-
version software, and assertion checking, and often combining aspects of these
techniques [Anderson 1986, Avizienis and Kelly 1984, Hecht 1976, Kim 1984,
Kim and Ramamoorthy 1976, Strigini and Avizienis 1985] deal with how the
component elements of those techniques can be subsumed in a more global vision of
design possibilities. A series of contributions from the University of Newcastle (see
[Randell 1987]) concentrates on the structuring of complex systems for fault-
tolerance: nesting of recovery blocks, nesting of generic components and exception
propagation, structuring fault-tolerance in distributed systems. An experimental
supervisory system for running multiple-version software on Unix-like systems,
called “Dedix” (Design Diversity Experiment), was developed at UCLA [Avizienis et
al. 1985].

* Ad hoc techniques for tolerating special classes of faults. We shall quote the area of
“robust data structures” [Taylor and Black 1985], dealing with techniques for
protecting, through redundancy in their representation in storage, the “structural”
information of data structures (e.g., the topology of a graph structure, regardless of
the information located at the nodes).

* Evaluation of software-fault tolerance strategies. The effectiveness of software-fault
tolerance techniques, as an improvement in the operational reliability or safety of
software, has been studied along two main directions: experimental measurement
and analytical estimation. Only very partial conclusions have been be reached so far,

Documentation, and additional references, about most of the experimental work and
industrial applications can be found in [Littlewood 1987, Strigini 1990, Voges 1988].

14.1.3. Software-Fault Tolerance in Practice

14.1.3.1. Fully Redundant Software. Fully redundant software is not yet widely used
and is at present limited to highly critical applications. Nonetheless, there are a number of
interesting applications. Most of these are documented in the book [Voges 1988].

These examples are in aerospace, railway and atomic energy applications. All these areas
are influenced by the presence of regulatory agencies whose approval is needed for the
operation of products. Fail-safeness is usually required (the computer system can stop,
provided it leaves the controlled system in a safe state), sometimes with continuous fault-
tolerant operation as a long-term objective, but in avionics, as computers take on flight-critical
tasks, the basic requirement is becoming continuous fault-tolerant operation.

Nuclear applications have been only experimental so far.

354 14. Software-Fault Tolerance

Avionic multiple-version software systems have been operational for several years. We can
quote the Airbus A-310 flap and slat control, the autopilot for the Boeing 737/300, the Airbus
A-320 fly-by-wire flight control system, and the Space Shuttle Flight Control System.

There are examples of dual version (fail-safe) systems in railway applications in Sweden
[Voges 1988] and in Austria [Theuretzbacher 1986].

14.1.3.2. Other Software-Fault Tolerance Techniques. Two outstanding examples
of systems able to cope with software faults without massive (diverse) software redundancy are
the Electronic Switching Systems of the Bell System, in its several versions, and the Tandem
systems. Both systems were primarily designed to tolerate hardware faults by an error detection
and backward recovery scheme; but including in programs means to detect erroneous behaviour
proved to be quite effective to handle software faults as well.

A detailed description of the techniques used in the No.5 ESS system to detect software
errors is given in [Haugk et al. 1985]. The software system in the No.5 ESS is structured in
functional components that communicate by messages and operate with duplicated units in an
active-standby configuration; at run time, relatively short lived processes are created to perform
specific tasks. Error detection is based on in-line defensive checks to ensure quick error
detection, audit programs to verify consistency of data using data redundancy, special
processes to detect program loops, scheduling problems, unavailability of critical resources,
time-out on watchdog timers and such. For each detection mechanism, a specific error recovery
procedure is designed.

In the Tandem system, the main features that assist in tolerating software faults [Gray
1986] are:

+ software modularity (the structuring of application software into processes that
interact via messages reduces error propagation);

« fault containment through fail-fast software modules (processes are made “fail-fast”
by defensive programming, i.e. they run many consistency or reasonableness
checks on their inputs, intermediate results and outputs, and abort themselves if an
error is detected);

+ atomic transaction mechanisms to establish natural checkpoint-rollback points,
masking the actions of the aborted process to the rest of the world;

* process pair mechanisms to allow easy repetition of failed computations (for
processes that cannot use the atomic transaction mechanism, automatic
checkpointing is provided).

14.1.4. Effectiveness

All experiments to date have shown that software-fault tolerance improves the reliability of
software to which it was applied, but it is difficult to evaluate its effectiveness in quantitative
terms.

Several analytical estimations of the effectiveness of structured software-fault tolerance
techniques (and sometimes of performance) have been published, differing in the models and
analytical tools used and in the assumptions made. Unfortunately, they all depend, in order to
estimate reliability, on the probability of errors common to redundant components (replicated
modules, or the producer of a result and its verifier). This information must be obtained
experimentally, but we are still far from being able to determine it with any confidence. Much
experimental work is aimed at selecting development rules that make that probability as small as
possible, but the comparison between alternative rules is done mostly by qualitative
observations on the anecdotal history of each development.

14.1. A Brief History — the State of the Art 355

The experience in aerospace, railway and atomic energy applications cannot be used to
measure the effectiveness of software-fault tolerance techniques: the experimental sample is
small, little information is published, and the operational record of the software usually shows
few or no serious errors. Such software is built to very high standards, and the desired
reliability level is so high that it could hardly be measured experimentally with any reasonable
degree of confidence. These techniques are used because of an a priori belief that they help,
although in a non-quantifiable way, to reduce the probability of failures whose cost would be
extremely high.

Even for the SESS system and Tandem no specific figures for the effectiveness of
software-fault tolerance techniques are known; the high reliability and availability demonstrated
in the operation of these systems is an indication of success of the mechanisms used.

14.2. Software-Fault Tolerance for Delta-4

14.2.1. Fields of Application

We must first recall that the intended product of the Delta-4 project is not a computing system
that can be used in life-critical applications, but computing systems that will provide a
significant increase in reliability and availability compared to those currently used.

There is a common misconception that structured software-fault tolerance is worth applying
only for life-critical applications, where the supposedly very high costs of software-fault
tolerance are acceptable. Actually, software-fault tolerance can be applied in different degrees
depending on the applications, to match the cost of the redundancy to the expected benefits.
Moreover, cases can be found where even expensive forms of software-fault tolerance are
justified.

It is probably safe to assume that no life-critical safety functions will be programmed on
Delta-4. Safety systems for industrial plants must usually be built independently of the main
control systems, and they must be very simple and easy to validate. Hence, even in cases where
they are implemented in software, this probably would not be run on a Delta-4 system.

However, in many applications that are not deemed life-critical, large amounts of money
are staked on the dependability of the software. In some cases, the software can directly cause
damage to valuable items (either information or physical objects); in others, the software may
cause unavailability of a computer system, which in turn causes the financial loss.

Some examples of intended uses of Delta-4 systems and related risks are listed below.

* High level planning and management functions (in industrial applications). This
means that faults may cause large inefficiencies in the allocation of resources and
disruption in the production process. The distributed computer system is also bound
to be involved in plant-wide emergency contingency plans, and so indirectly have
life-critical functions, although the operation of individual machines in the plant is
safeguarded by reliable safety systems.

* Control of individual peripherals. A chemical reactor can be induced to ruin a batch
of an expensive or profitable product. Robots used in material handling or
processing will be prevented from running into each other or rolling over people by
safety interlocks, but they can still damage the objects they handle, if given wrong
orders or information.

* Electronic funds transfer and banking applications. There have been several recent
episodes of huge losses to banks and security brokers due to computer error or
unavailability [Risks].

14. Software-Fault Tolerance

General Criteria

Software-fault tolerance support should be provided in Delta-4 according to the following

356
14.2.2.
criteria:
1)
2)
3)
4)
5)

Consider the software component as the basic unit to which software-fault tolerance
techniques may be applied (following a general Delta-4 rule).

Exploit basic Delta-4 fault tolerance mechanisms, e.g., atomic multicast,
checkpointing, etc.

Offer a coherent set of support mechanisms, enabling the implementation of a wide
spectrum of software-fault tolerance techniques. The user is left the choice of the
technique best suited to the application, by trading cost against dependability
improvement, as well as considering real-time requirements and other factors, e.g.,
error coverage. Simple techniques, featuring the notification of an internal error to
abort the computation, up to structured solutions like N-Version-Programming and
N-Self-Checking Programming can be implemented, as well as new paradigms, not
bound to “classical” proposals.

In fact, in some critical applications, there is a well-defined set of catastrophic failure
modes that will invite the use of structured software-fault tolerance protections as an
obvious and economical precaution. In others, audit and cross-checking procedures
will play the some réle. In some applications, the complexity of the system may
make it desirable to apply a “blanket” approach, such as global replication, to reduce
the residual failure probability.

Allow software-fault tolerance and hardware-fault tolerance to be configured
independently. In the general case, however, an integral approach to fault tolerance
has to be followed, to minimize the redundancy (and cost), to extend the coverage,
and to facilitate fault diagnosis.

Obtain ease of use. An important feature for any reliability-increasing technique is
the possibility of applying it without changing the representation of the system at
some level of abstraction. This allows the application programmer to concentrate on
the functional specifications of the product, and another designer to add redundancy
without complicating the program.

By contrast, many of the possible ways of providing software-fault tolerance require
the application developer to think up tests based on the semantics of each individual
module, to worry about whether the use of diverse modules might cause problems,
etc.: in short, the application of redundancy complicates the development process.

As this lack of transparency is a necessary consequence of the willingness to check
for deviations from the specifications of the individual applications, as opposed to
the specifications of the machine supporting the applications, it is desirable that at
least the individual application programmers be shielded from the need to take care
of software-fault tolerance at the same time as they program the functional parts of
the application. The division of the software into work jobs assigned to different
programmers should take into account the desirability of diversity, and configuration
tools should make the task of assembling the redundant software parts relatively
easy and error free. For instance, it must be possible for a configuration manager to
vary the number of software variants in a redundant module without interfering with
the individual variants.

In a similar way as for hardware-fault tolerance, strategies for tolerating software faults in
Delta-4 can be developed for:

14.2. Software-Fault Tolerance for Delta-4 357

a) use of software components that are either self-checking or fail-uncontrolled; in the
latter case error detection is accomplished through comparison with independently
obtained results, or by separate components (consumers of results, auditors).

b) use of deterministic or non-deterministic replicas. Non-deterministic programs must
be self-checking: non-deterministic non-self-checking programs can be made
tolerant of software faults by ad hoc techniques that hardly suggest mechanisms of
general use.

c) use of backward or forward recovery of faulty components.

The choice of how the basic support mechanisms are combined into a coherent strategy to
cope with software faults is left to the application designer. The next section presents some
typical combination schemes, that are thought to have wide applicability, and could be
incorporated in tools for assisting the designer in this task.

In the presented solutions it is assumed that the hosts are fail-uncontrolled.

14.3. Support Mechanisms and Features

A number of specific mechanisms should be provided to support software-fault tolerance in
Delta-4 in the several activities that it involves, namely error detection, error processing,
recovery of damaged state in faulty variants; they are described in the following subsections.

14.3.1. Error Detection

Errors in a computation can be detected essentially in one of two ways: by checking that its
results have some properties required by its specification (acceptance test or executable
assertion), or by comparing them with independent results (here independence refers to the
computation failure modes). These techniques are dual to self-checking and replicate-and-
compare circuits, respectively, for hardware-fault tolerance (an acceptance test can be included
in the same software component together with the code to be checked).

14.3.1.1. Self-Checking Software Components. Detection of internal faults during the
execution of a program can be carried out by a variety of techniques, from simple data
consistency checks (e.g., non-null pointers, range checks), computation of the inverse function
with respect to the main program computation, up to, conceivably, execution of a different
implementation of the specifications and comparison of results (inside the component).
Self-checking software components, when an error is detected that is not recoverable inside
the component?, are allowed to behave in two ways:
a) simply omit sending due messages (like fail-silent hardware) and abort;
b) explicitly notify the error occurrence to their rep_entities (cf. section 6.4.4).
The second alternative allows the system to react sooner, since there is no need to wait for a
time-out to expire; it also offers some benefits for error processing, as shown later.

A self-checking software component is characterized by its use of error-detection
mechanisms and by appropriate reactions to the detection of errors.

Error detection mechanisms include:
» tests explicitly programmed by the application programmer;

2 Backward recovery inside a component can be done transparently to the rest of the system, but must satisfy
the constraint of replica determinism and must not have side-effects outside the component.

358 14. Software-Fault Tolerance

« mechanisms existing in the virtual machine supporting the application component:
hardware (divide-by-zero trap), operating system software (overflow of system data
structures, illegal system calls), language support (array overflow checks).

The latter error detection mechanisms, in general-purpose computers, are typically
configured to abort the application process, in a way transparent to the application programmer.
However, many systems give the application programmer some limited control of the reactions
to exceptions raised by the support virtual machine. Such control may be offered by the
operating system (e.g., the UNIX signal system call) or as part of a language (programmed
exception handling, as in Ada, for example).

For Delta-4, it is desirable that, to the largest degree allowed by the native LEX used,
exceptions be made available to Deltase and/or the application program. Deltase must provide a
default reaction, which must not only abort the erroneous component but also notify Delta-4
system administration.

The application programmer can instead customize the reaction to a detected error based on
his knowledge of the context where it arose. Depending on the severity of the fault, two
different actions can be performed:

a) If the software component cannot be (internally) recovered to an operational state, an
exception-notifying message is generated; a subsequent system recovery and/or
reconfiguration is required.

b) If a single output result is recognised as erroneous, but the internal state of the
component still allows continued operation (e.g., an internal recovery action has
been successful), the expected output message is generated, with the special format
<ABSTENTION>. This allows the normal message flow to be maintained, avoiding
the need for system recovery. Several <ABSTENTION> messages can be sent out
by a software component during an execution.

14.3.1.2. Error Detection by Comparison. In the Delta-4 fail-uncontrolled host
paradigm, detection of hardware-induced errors is accomplished by comparing the results
produced by two or more identical software components, running on separate hosts. This
method relies on the assumption that faults in physically autonomous electronic circuits exhibit
statistical independence: in fact, the assumption closely matches the actual behaviour, with
limited exceptions (e.g., upon occurrence of large electromagnetic disturbances).

To detect errors caused by software bugs it is necessary to compare results generated by
program modules, which are ideally free from common design faults. The assumption of
statistically independent failures in redundant software modules has sometimes been used.
Although convenient for mathematical analysis, this hypothesis represents neither reality,
according to experiments, nor an ideal goal (an ideal goal would be zero probability of common
error, i.e., negative correlation). It has been shown in the literature [Eckhard and Lee 1985,
Littlewood and Miller 1987a, Littlewood and Miller 1987b] that programs developed
“independently” (in the sense that they are extracted randomly and independently from a
population of possible programs) do fail independently on individual inputs, but may exhibit
failure correlation, on a population of inputs, if some inputs are more likely to induce failures
than others. Anyway, there is evidence that forcing methodological diversity in development is
generally better or no worse than not forcing it.

When error detection is based on comparison of results, the problem arises that diversely
implemented replicas of a software component (variants) will often produce different correct
results; such components will be referred to as divergent variants. For instance, diverse
implementations of real-numbers arithmetic functions will usually produce results that differ in

14.3. Support Mechanisms and Features 359

the least significant digits (specifications that allow multiple, very different correct solutions are
not considered here).

For this reason, the possibility of inexact comparison is a requirement for practical
systems. Otherwise, many redundant applications would always fail on a “no agreement”
situation.

Since the result comparison is inherently connected to find out the “good” result from the
set produced by several variants, the recommendations for its use in Delta-4 will be discussed
below, together with the latter problem.

14.3.2. Error Processing

Several error processing strategies, allowing different levels of dependability, must be
available,

The simplest way of processing an error condition, upon detection, is to abort the affected
computation and discard the faulty modules. This solution is appropriate, of course, for
applications having almost no requisite of dependability. The only support needed for such an
action is the capability of self-aborting by application programs, which is ordinarily supplied by
LEXes. However, such an occurrence has to be signalled to system administration; this can be
implemented by intercepting the LEX’s abort call.

As the next step in dependability levels, Delta-4 supports a range of applications that do not
have stringent time constraints and allow the use of backward error recovery techniques.

To support applications with more demanding requirements in terms of real-time response,
the voting mechanism (introduced in section 14.3.1.2 for the purpose of error detection and
error masking) can be effectively exploited to determine a “correct” value out of N results
obtained by diverse, concurrent, redundant variants.

While in the backward recovery technique both the correct result and a consistent
computation state are obtained by the single recovery action, only the correct value can be
obtained by voting. The state recovery of failed components is (optionally) obtained by ad—hoc
means.

Backward error recovery and the problem of choosing a “good” result (adjudication) are
discussed below.

14.3.2.1. Backward Recovery. Error-handling techniques based on backward error
recovery can be reduced to a common scheme: the state of the computation is saved from time
to time (checkpointing). In case of a fault detected by error detection mechanisms, the
component execution is stopped, and a backward recovery action is taken, by restoring the state
saved in the last checkpoint and the same computations are repeated (using the same code). For
example, consider the case where an exception is raised by the operating system, due to some
internal problem (say, overflow of the process table). The programmer can invoke the rollback
primitive, since he may expect the problem to clear itself in short time. Notice that the
implementation of the rollback primitive must i) be such as not to be likely to worsen the
problems that may have caused the original exception (in this example, must not require new
space in the overflowing table, but wait for the overflow to be resolved), and ii) allow a clean
abort of the application component, with proper notification to system administration, if a roll-
back does not succeed.

This technique recovers only those faults (whether in hardware or in software), whose
effects are expected not to last until the subsequent re-execution. To recover from solid
hardware faults, the checkpoint data need to be stored on a redundant host (as in the Delta-4
passive replica model). There is a class of software faults that cause errors having a “transient”

360 14. Software-Fault Tolerance

appearance: quoting from [Gray 1986], the residual bugs in good software are often
“Heisenbugs” rather than “Bohrbugs” (see section 6.4.2).

Backward recovery techniques for software faults without design diversity are
recommended on mature software only (where Heisenbugs only are likely to be left). The
software components shall be equipped with extensive run-time error detection mechanisms,
based on: defensive programming techniques; consistency and reasonableness checks on
inputs, intermediate results and outputs; program structuring and run-time organization able to
confine the effects of errors (such as processes communicating through messages only, object-
oriented systems; e.g., Deltase programs).

These techniques are an extension of the passive replica model for hardware-fault tolerance
(see section §6.6). However, unlike the passive replica model, the checkpoint data can be
stored in the same node where the software component is running, if application software-
caused errors are deemed to be the principal source of system problems.

Another way of implementing backward recovery in Delta-4 is to use a transactional model
of computation. Transactions implement recoverable atomic actions at the application level. By
forcing a transaction abort in case of error, the component itself, as well any other component
involved in the transaction, is brought back to a consistent state.

The processing of software-originated errors by backward recovery, possibly through the
structuring of applications in transactions, needs the same support as the processing of
hardware-caused errors as shown in section 6.6, on passive replication. However, the process
of rolling back to a previously saved checkpoint can be triggered by an autonomous action of
the software component itself (which, of course, will act upon internal detection of an error).
Furthermore, there is no need to clone the component on a different node, with savings on
hardware redundancy requirements.

Handling also “Bohrbugs” requires the execution of diverse variants; this is accomplished
by the recovery block structuring concept. No new architectural support, other than those well
known in the literature, is needed in Delta-4 when using the active replica protocol for
hardware-fault tolerance. The case of passive replicas on fail-silent hosts will be shortly
discussed in the remarks concluding this chapter.

14.3.2.2. The Adjudication Problem. Structured software-fault tolerance techniques,
such as N-Variant Programming and N-Self-Checking Programming, can be considered
instances of a general model [Anderson 1986], based on the use of diverse variants, whose
outputs are used by an adjudicator sub-component. The adjudicator [Di Giandomenico and
Strigini 1990], or generalized decision function [Avizienis and Kelly 1984], or collator [Cooper
1984], must produce the most probably correct result.

Several adjudication functions have been presented in the literature. Some of them use only
the normal outputs of the replicas (e.g., exact (bit-by-bit) majority voting; median adjudication
function; mean adjudication function). Others use additional information, such as: results of
acceptance tests, reasonableness tests, maximum distance between consecutive results, etc.

A comprehensive discussion can be found in [Di Giandomenico and Strigini 1990].
Summarizing, the adjudication problem, is based on algorithms much more complicated than
exact (bit-by-bit) voting as provided by MCS. This implies that the definition of the
adjudication function may often be application-specific, making it difficult to create a standard
adjudicator.

As a consequence of the above considerations, a number of support mechanisms could be
provided in Delta-4 to allow the application programmer to include appropriate adjudication
procedures in standard Delta-4 components.

14.3. Support Mechanisms and Features 361

1) MCS-level adjudicators: used only when identical results are specified for the
variants, and/or with self-checking variants capable of sending abstention messages;

2) Deltase-level support: the user is given means to embody his own voting procedures
into Deltase run-time support code, by using templates available in system libraries;
3) Application-level support: a software component generation tool able to
automatically expand a software component into its redundant modules plus the
adjudicator module is provided. A library of adjudicators should then be set up, at
least for the basic objects available in a given system. To simplify the process, a
generic template of adjudicator objects could be designed; a specific adjudicator
would be built by linking a user-supplied voting routine to the template.
Self-checking software components require some discussion. In a typical configuration,
two such components run concurrently as a replicated Delta-4 component. In the absence of
faults, the results of both of them are correct: it is sufficient to choose one of them, e.g., on the
basis of a record of past errors. When a fault occurs, the affected component either aborts, or
sends an <ABSTENTION> message. In either case, the task of choosing the (unique!) correct
value is indeed trivial, disregarding the different time performance. However, when an
integrated approach to hardware and software fault handling is taken, the adjudication task may
present subtle problems, as will be shown by an example in section §14.3.2.6. Anyway, the
decision function can be expressed in a simple table form, where the table contents depends
only on the system hardware and software configuration; this allows the implementation of the
adjudicator at the MCS level.

14.3.2.3. Application-Level Adjudicator. A possible structure for a software-fault
tolerant application in Delta-4 is shown in figure 1.

All the modules shown are standard Deltase objects, whose corresponding software
components are produced using the Deltase software component generation system,
Deltase/GEN. Both client and server replicated objects are presented to the rest of the system as
non-replicated (but software fault-free!) ones. This is obtained by hiding replicated objects
behind adjudicator objects (CA.adj, CB.adj, S.adj in figure 1). The adjudicator objects should
be protected from hardware faults by means of standard, transparent Delta-4 replication.

The ordinary client-server interaction between client CA and server S through, say, the
RSR primitive, sketched as:
CAEEp g
becomes:
CA.1 BB CAad

CA.2 BB CAadj
CA.3 BB CAqdj

CA .adj adjudges requests
CA.adj BB § q4j,
Sadj BBe g
S.adj BBe 52
S.adj adjudges replies
S.adj replies to CA.adj
{CA.adj repliesto CA.1 }

’

CA.adj repliesto CA.2
CA.adj repliesto CA.3

362 14, Software-Fault Tolerance

(i) A DELTASE CLIENT-SERVER CONFIGURATION

CLIENT A - 3 VARIANTS SERVER - 2 VARIANTS

Ol |19] 1O

HHF

W]] =
dj
1]
| |

T CA.adij

Identical Clone

B.1 L

CB.ad]

! :
|

CB.2

CLIENT B - 2 VARIANTS

(i) REDUNDANT CLIENTS AND SERVERS
Fig. 1 - Separate Client and Server Adjudicators

Each server is accessed through a single adjudicator object (S.adj in figure 1), independent
of the number of clients. The adjudicator should issue replicated service requests, avoiding the
interleaving of requests coming from different clients. For this purpose there is no necessity of
using atomic multicast; for better performance S.adj and CA.adj could use simple bi-point
transmission to send messages to S./, 5.2 and to CA.I, CA.2, CA.3.

In this solution, there is no need for special architectural support. However, a software
component generation subsystem able to automatically expand a software component into its
redundant modules plus the adjudicator could be very helpful to the application programmer. A
library of adjudicator objects should be set up, at least for the basic objects available in a given
system. Further, a generic template of adjudicator objects could be designed; a specific
adjudicator would be built by linking a user-supplied adjudication function to the template.

No special restriction on software modules is assumed, i.e., divergent, non-self-checking
components should be accommodated. Inexact voting procedures, which heavily depend on the
specific application, can be provided.

The above configuration suffers some drawbacks:

1) The performance penalty imposed by the two added message levels between client
and server.

14.3. Support Mechanisms and Features 363

2) The fairly large number of objects, considering that (as shown in the figure) the
adjudicators need to be replicated to mask hardware faults.

3) The facilities already provided by the Delta-4 architecture, notably the atomic
multicast communication protocol, are not exploited.

14.3.2.4. Adjudicator as a Unique Deltase Object. In this second solution, the
adjudication of replicated client requests, as well as that of replies from replicated servers, are
accomplished by a special Deltase object $* (see figure 2). $* is interposed between clients and
servers by the Deltase subsystem for software component generation and installation
(Deltase/GEN). A different adjudicator object 5* is required for each client-server pair.

Synchronization among replicas and error reporting are also implemented in this object.

S* has a number of identical interfaces to the replicated clients; the number N of such
interfaces, i.e., clients, actually linked to S* can be dynamically changed. In a similar way,
multiple interfaces to the replicated servers are provided.

For protection against hardware errors, $* should be specified as a standard Delta-4
replicated object obeying the validate-before-propagate paradigm.

A template of a generic adjudicator object, including the communication interfaces, can be
set up in a library, leaving to the application programmer the task of providing the procedures
implementing specific adjudication algorithms. In the software component generation phase, the
generic template should be linked with these procedures.

s

ADJUDICATOR

L UTeae
[i |
1
]
w
-

Fig. 2 - Combined Client-Server Adjudicator: Principle

The adjudicator implemented as an object has the advantage of allowing quite sophisticated
fault-tolerance techniques.

An example is depicted in figure 3. Each client replica is associated to a specific server
replica. Each service request is immediately forwarded to the associated server replica, without
waiting for the other requests, therefore without going through the adjudication process.
Adjudication is executed on the reply messages; the adjudged values are multicast back to
clients.

On the request side, when all the replicated requests are available, $* may compare them
for error detection only.

364 14. Software-Fault Tolerance

cs J. "I '_@

Fig. 3 - Combined Client-Server Adjudicator: Example

The advantages of the structure in this example are:

» It allows a high degree of diversity between the implementation of the clients (since
their requests are not required to be compared). It is even conceivable that the
formats of the RSR primitives are not the same for all the S;-C; pairs.

+ The time to get through a chain of multiple clients and servers is approximately equal
to the sum of the average execution and transmission times on the “request” path,
instead of the sum of the worst times. Besides, the voting operation on requests can
be executed concurrently with the main computation.

The price to be paid for this performance increase is the vulnerability to multiple software
errors, namely in successive object along the computation path. Moreover, the recovery process
is more complicated, since it is not immediately clear which component failed, and whether the
interactions passed from client to server were correct. A further problem arises from the
propagation of errors if the server is also allowed to act as client for a third object.

14.3.2.5. Adjudicator embedded in Stubs. In Deltase, stub modules are used to map
the language-level view to the communication-level view. In a client-server interaction using the
Remote Procedure Call (RPC) or Remote Service Request (RSR) language primitives, the stubs
pack and unpack the procedure parameters to and from messages.

As an added function, the adjudicator is included in the Deltase stubs, both in the client and
in the server replicated objects.

The adjudication procedures supplied by the user, according to a specific format, should be
linked at component generation time to a modified Deltase stub module.

In figure 4, a subsystem composed of a 3-replicated client and a 3-replicated server is
depicted. As all components are standard Deltase objects, communication among them takes
place by means of RPCs or RSRs. The basic stub functions sketched out in [Powell 1988]
should be complemented by: a) multicast of the message carrying the service request to all
replicated servers; b) at the server input port, execution of the adjudication procedure on the
data coming from the client variants. The same considerations apply for the handling of reply
messages from the servers to the clients.

This configuration effectively distributes the adjudication service among the message-
receiving modules. The consistency of servers, with regard to the sequence of input messages
from different, replicated clients, is ensured by using the atomic multicast protocol. All the
clients (even non-replicated ones) sending messages to a replicated server should use this
facility.

Another source of inconsistency of servers can be the time-out mechanism, used to avoid
hanging up while waiting for a message from a faulty client. In fact, whatever length of waiting

14.3. Support Mechanisms and Features 365

time is chosen, it is possible that some replicas time-out whilst others do not. Since this
problem is bound to the independence of decisions in the replicas, it can be avoided only by
some form of agreement between replicas on the decision itself.

Fig. 4 - Adjudicator embedded in Stubs

If there are no specific safeguards, a slow replica can increasingly lag behind the other
peers. It is conceivable to let faster replicas proceed, setting up a list of missing messages from
the slower one(s) paired with the correct (adjudged) values. This allows safe discarding of late
messages, as well as checking their correctness, for error detection purposes. This solution
allows tolerance of temporary slowdown of a replica. After a given threshold in time or in the
number of listed messages from an object, this one should be considered faulty, and the
standard recovery procedure should be started (see also §6.5.2).

To avoid the possibility of erroneously declaring faulty a slow replica, some
synchronization technique should be used. The cost is that the speed of progress of a replicated
object over any given time interval is that of the replica that is slowest during that interval.

14.3.2.6. Communication-Level Adjudicator. If the application can be given
specifications that reliably guarantee identical results, software-fault tolerance can be easily
achieved using the N-Variant Programming model, as an extension of the N-modular
redundancy already specified for hardware-fault tolerance. The MCS session-level, signature-
based, IRp adjudicator can be used (cf. sections 6.5.2, 6.5.3 and 8.1.2.1). For example, a
1-fault-tolerant system would require 3 variants running on 3 hosts; to tolerate two
simultaneous faults several configurations are available: i) 3 variants running on 9 nodes can
mask 2 hardware faults, or 1 hardware plus 1 software fault; ii) the same result is obtained by
using 4 variants on 7 nodes: more design effort traded against less run-time resources; iii) 5
variants on 5 hosts can also mask 2 software faults. The latter result stems obviously from the
fact that each host equipped with a diverse variant is a fault-containment region (cf. chapter 4).

To allow wider use of software-fault tolerance, divergent variants are supported. Since
application-dependent adjudication procedures, normally required in this case, cannot be
included in the low-level communication software, the adopted solution, discussed in [Strigini
1988], is to use self-checking software components. The majority, signature-based, voting is
of no use here; the adjudicator only has to choose among several correct results

366 14, Software-Fault Tolerance

The use of the <ABSTENTION> notification generated by failing self-checking
components allows better performance, by i) reducing the use of time-outs in case of error, and
ii) improving the adjudication process [Ciompi and Grandoni 1990]. As an example of the
usefulness of this mechanism, consider the case where an application-level acceptance test
shows that an individual output is erroneous. The programmer knows that this output is
computed from the values of a data structure that is continuously updated with data from
outside the software component. It is reasonable to send an abstention message instead of the
output that was found to be erroneous, and to the same destination, but not to alter the normal
execution flow of the component, since the internal state of the component may soon correct
itself.

A simple example is depicted in figure 5: two self-checking variants, A and B, run on three
hosts, with A replicated in two copies AI, A2. A straightforward adjudication policy is the
following: i) if Al or A2 send an abstention or differing results, then choose the result from B;
ii) if A] and A2 generate the same result, then choose this one. This configuration can tolerate
one hardware or one software fault. Now, let variant A be faulty. Without the use of the
abstention message, neither AJ nor A2 would send a message, and the value produced by B
would trigger an adjudication round. After a proper time-out, this value would be considered
valid and forwarded to destination. However, if the host where B is running fails by outputting
an undue or “impromptu” message, this message would be considered valid and then
erroneously forwarded. If abstention-messages are used instead, the adjudicator should expect
to get, after the message from B, at least one message from AJ and/or A2. No more than one
host can fail, and if the variant A has a bug, it sends an abstention notification message. This
allows the discrimination of the above erroneous condition.

In summary, at the MCS level non-divergent variants with exact comparison, and self-
checking variants, are supported. In both cases there is a need for new adjudication procedures
(other than the present majority rule); in the second case the possibility of notifying an
abstention is also required.

N\ MCS N\

Fig. 5 - Communication-Level Adjudicator

The above illustrative examples of adjudication functions are based on fault hypotheses
expressed in terms of number of faults. It is of course unrealistic to exclude the possibility of
higher number of faults, and to treat all possible failures as though they had the same
importance. Adjudicators that take into account the expected probabilities of all fault patterns
can be designed as described in [Di Giandomenico and Strigini 1990].

14.3.3. The Problem of State Recovery of Variants

Once an error (or even a disagreement between correct variants) has been detected in some
result, the first problem is how to mask the error and give the user (of the result itself) a correct
result; once that is solved, a second problem is what to do with the failed (or disagreing)

14.3. Support Mechanisms and Features 367

variant(s). The internal state of the variant is presumably corrupted. We may therefore expect
subsequent results to be erroneous as well, and thus not only useless but dangerous.

A first choice is to kill the erroneous variant altogether. For short-lived components this
seems advantageous. The component will be automatically “repaired” when its execution
terminates and, at the next execution, a correct redundant module will be instantiated, from the
same code, taking its internal state from an uncorrupted global state (data base, sensor readings,
etc.).

For components with long execution life-spans, this is not appropriate: too many variants
would be needed (the analogous hardware configuration is self-purging N-modular redundancy
without repair). Then, there is a need to recover a variant that erred, so that it can catch up with
the correct variants and carry on its work. Recovery brings with it an inherent problem that we
discuss in the following.

Recovery may be:

1) programmed into the same variant that errs (estimation of approximate correct
values, for instance, or reset to safe values). This is the simpler choice, but is not
widely applicable; in particular, as noted earlier, perfectly healthy variants might
drift apart from each other, with time, if no built-in way exists to recover them to
consistent states.

or,

2) the recovery may use values produced by the other variants. The problems with this
solution, i.e., correcting the internal state of a variant or create a state based on the
states of the others, is that it requires either identical internal representations of those
states (same internal variables laid out in the same way) or a way to translate
between diverse representations.

For Delta-4, the latter solution is proposed. Specifically, a unique representation of internal
state for inter-variant exchange, not necessarily for internal use, must be given in the object
specification. Each variant must be equipped with special Input_State, OQutput_State routines;
the latter should be able to be started, in pre-defined computation points, upon receiving a
specific signal from System Administration (SA).

Assuming that the redundant configuration is made up by three variants CI, C2, C3, and
that C2 has to be re-instantiated, the state cloning operation can be outlined as follows:

a) SA loads new C2 code;

b) SA activates C2 on the Input_State routine; C2 starts, waitin g for the state
information from SA;

c) SA sends CI and C3 signals to enter the Output_State routine, which should be
bound to SA;

d) At proper times, C! and C3 output their state to SA, after executing some
synchronization protocol, then they wait for a Continue signal from SA;

€) SA sends C2 the state received (options: send the first received; send all copies, with
the number thereof as an additional parameter);

f) C2 sets internal state (option: checking validity if multiple copies received), then
waits for the Continue signal (option: an acknowledgement signal to SA can be
needed before beginning to wait);

g) SA sends all variants the Continue signal.

The state cloning operation describer above should be considered as a complement to the
present cloning process.

368 14. Software-Fault Tolerance

14.4. Specifying Software Components for Software-fault
Tolerance — Tradeoffs in an Object Environment

Any software-fault tolerance paradigm using redundant components needs to tradeoff between
the conflicting needs: i) establish the minimum number of design constraints to allow diversity;
the design manager can then force diversity among programmers, issuing individual constraints
(e.g., development environment, language, etc.); ii) issue specifications that are tight enough to
insure some pre-defined “homogeneity” among the diverse results.

As a simple example of the problem, consider the component A implemented as three
variants A.1, A.2, A.3. If no specific restrictions are given to the variant designer, it can
happen that, say, A.J and A.2 are both programmed to import a service interface from the same
component B, while A.3 uses services from another component C or, possibly, no external
resources at all. The following problems arise:

a) A design fault in B can cause a failure in both A.J and A.2; in this case, it is likely
that the correct result computed by A.3 will be outvoted, leading to a catastrophic
failure.

b) The variants exhibit different communication patterns. This makes it difficult to
determine where and how to place adjudication mechanisms; for example, are the
service calls to B from A./ and A.2 to be adjudicated?

¢) There may be consistency problems in shared components, like B in the example,
which are quite unusual: in fact, A.J and A.2 are semantically the same component,
therefore for correct behaviour their operations on B should be made idempotent, in
some way.

d) A problem related to the point c) above is that of recovery: if, say, variant A.] fails
after interacting with B, the recovery of A.] mandates recovering B too, and then, in
the classical domino effect, A.2 must be brought back to a consistent state. This
operation, possibly triggered by a single fault, may require undoing preceding
successful adjudications: a much more complex computational model would be
required.

In the object model of computation, the conflict depicted above appears harder, because of
the emphasis put on hiding the internal structure of the object, as well as in the methods used in
implementing the offered services (in particular, which services from other objects are used).

On the other side of the coin, one can wonder if adjudicating results surfacing at the object
boundary is enough: relatively complex, “taciturn” objects may suggest performing cross-
checks among intermediate results, to prevent non-recoverable divergence among variants.
However, this again contrasts the internal information hiding philosophy.

For the sake of simplicity, and as a first step in devising software-fault tolerance structures
in object-oriented systems, like those based on the Delta-4 architecture, it is assumed here that
adjudication is only performed at the level of object interfaces (as accomplished in the validate-
before-propagate paradigm to mask hardware-caused errors). In other words, the scope of the
attainable diversity is limited to the internal implementation of the object specification, since
diverse use of external services is forbidden. Of course, the issue of how to organize diverse
implementations across object boundaries is of great interest. In fact, some simple extensions
can be easily given. For example, concurrent use of services exported by a memory-less object
can be safely allowed to variants, from the point of view of information consistency. Such an
object, is of course a reliability bottleneck. More general methods for wide-scope software-fault
tolerance structures are under investigation.

14.5. Concluding Remarks 369

14.5. Concluding Remarks

Techniques and mechanisms to implement and support software-fault tolerance in systems built
on Delta-4 machines have been described. According to the Delta-4 philosophy, a range of
solutions is envisaged, differing in complexity and cost as well as in the attainable
dependability.

Some tradeoffs presented here are likely to be superseded by better solutions in the near
future. For example, the restriction that variant objects must exhibit identical interfaces may be
relaxed, by introducing higher level structuring concepts that allow wider scope diversity, while
ensuring data consistency and recoverability.

The proposed solutions are based on the assumption of fail-uncontrolled hosts. More
restrictive assumptions may lead to simple solutions for software-fault tolerance.

Recovery blocks, for example, can be easily implemented in conjunction with the passive
replication model for fail-silent hosts. In this model, the backups do not execute recovery
blocks, just like any application code. However, the ordinary checkpoints are not sufficient to
enable recovery from a software error occurring after a hardware fault. In this case, the next
alternate in the recovery block must be executed in the backup host, after restoring the initial
information, which was set at the recovery point in the primary host. The recovery point needs
to be sent to the backup independently of the checkpointing mechanism: successive checkpoints
along the execution of the recovery block supersede the previous one, while recovery point
information must be held until the recovery block is exited.

A possible solution based on the leader-follower model could be the following. The
follower does not maintain recovery points, and does not execute multiple alternates. On arrival
at a recovery block, the followers suspend waiting for instructions from the leader. The leader
runs through the recovery block and, on completion, informs the followers on which alternate
to execute. The followers execute that alternate and the acceptance test. The replica determinism
requirements of the leader/follower model would ensure that the alternate succeeds in the
follower as it did in the leader in most cases. However, if a Heisenbug occurs in a follower, the
acceptance test should fail; in that case, the classic recovery block paradigm would trigger the
execution of the next alternate, starting a state divergence with the leader. The acceptance test
failure should instead cause the abort and successive cloning of the follower. Therefore, a
mechanism to trigger the abort of a follower from the component itself should be added to the
standard leader/follower support.

