
Separating the WHEAT from the Chaff: An
Empirical Design for Geo-Replicated State Machines

João Sousa and Alysson Bessani
LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract—State machine replication is a fundamental tech-
nique for implementing consistent fault-tolerant services. In the
last years, several protocols have been proposed for improving
the latency of this technique when the replicas are deployed
in geographically-dispersed locations. In this work we evaluate
some representative optimizations proposed in the literature by
implementing them on an open-source state machine replication
library and running the experiments in geographically-diverse
PlanetLab nodes and Amazon EC2 regions. Interestingly, our re-
sults show that some optimizations widely used for improving the
latency of geo-replicated state machines do not bring significant
benefits, while others – not yet considered in this context – are
very effective. Based on this evaluation, we propose WHEAT,
a configurable crash and Byzantine fault-tolerant state machine
replication library that uses the optimizations we observed as
most effective in reducing SMR latency. WHEAT employs novel
voting assignment schemes that, by using few additional spare
replicas, enables the system to make progress without needing
to access a majority of replicas. Our evaluation shows that
a WHEAT system deployed in several Amazon EC2 regions
presents a median latency up to 56% lower than a “normal”
SMR protocol.

I. INTRODUCTION

State machine replication (SMR) [20], [27] is a well-
known technique to implement fault-tolerant services. The
basic idea is to have an arbitrary number of clients issuing
requests to a set of replicas in such a way that: (1) all
correct replicas execute the same sequence of requests; and
(2) clients receive a reply for their requests despite the failure
of a fraction of these replicas. This technique is adopted by
many modern distributed systems, ranging from cluster-based
coordination services (e.g., Chubby [7] and Zookeeper [17])
to geo-replicated databases (e.g., Spanner [10]).

The core of a replicated state machine is an agreement
protocol (e.g., Paxos [21]) used to establish a total order in
the messages delivered to the replicas. This protocol, which
usually requires multiple communication steps, is responsible
for a significant latency overhead when SMR is employed for
geo-replication. To mitigate this problem, many SMR protocols
have been proposed for wide area networks (WANs) (e.g., [1],
[23], [24], [30]). These WAN SMR protocols employ opti-
mizations to reduce latency, usually by decreasing the number
of communication steps across the WAN. All these protocols
were evaluated in real, emulated or simulated environments,
showing the proposed optimizations were indeed effective in
decreasing the protocol latency.

However, even though such evaluations generally use com-
parable methodologies, they do not use the same experimental
environments and codebase across independent works. This
lack of a common ground makes it hard to not only compare
results across distinct papers, but also to assess which opti-

mizations are actually effective in practice. This is aggravated
by the fact that these evaluations tend to compare SMR
protocols in an holistic manner and generally do not compare
individual optimizations.

In this paper we present an extensive evaluation of several
latency-related optimizations scattered across the literature
(both for local data centers and geo-replication) using the
same testbeds, methodology and codebase (see §III). More
specifically, we selected a subset of optimizations for decreas-
ing the latency of strongly-consistent geo-replicated systems,
implemented them in the BFT-SMART replication library [6]
(see §II) and deployed the experiments in the PlanetLab testbed
and in the Amazon EC2 cloud. During the course of this
evaluation, we obtained some unexpected results. The most
notorious example is related with the use of multiple leaders
– a widely accepted optimization used by several WAN-
optimized protocols such as Mencius [23] and EPaxos [24].
Specifically, our results indicate that this optimization does
not bring significant latency reduction just by itself; instead,
we observed that using a fixed leader in a fast replica is a more
effective (and simpler) strategy to reduce latency. Moreover,
we also found that adding a few more replicas to the system
without increasing the size of the quorums required by the
protocol may lead to significant latency improvements. These
results shed light on which optimizations are really effective
for improving the latency of geo-replicated state machines, and
constitute the first contribution of this paper.

The aforementioned results showcasing the benefit of hav-
ing extra replicas without necessarily increasing the quorum
sizes required by the system led to the second contribution
of the paper: two novel vote (weight) assignment schemes
designed to preserve (CFT and BFT) SMR protocol correctness
while also allowing the emergence of quorums of variable
size (see §IV-B). By allowing quorums of different sizes, it is
possible to avoid the need of accessing a majority of replicas
– a requirement of many SMR protocols. We introduce two
vote assignment schemes (for CFT [21] and BFT [8] SMR)
and show that they enable the formation of safe and minimal
quorums without endangering the consistency and availability
of the underlying quorum system [22]. To the best of our
knowledge, this is the first work that incorporates the idea of
assigning different votes for different replicas (i.e., weighted
replication) [14], [15], [25] in replicated state machines.

Our third and final contribution is the design, implemen-
tation and evaluation of WHEAT (WeigHt-Enabled Active
replicaTion), a flexible WAN-optimized SMR protocol de-
veloped by extending BFT-SMART with the most effective
optimizations (according to our experiments) and our vote
assignment schemes (see §IV-A). The evaluation of WHEAT –
conducted in Amazon EC2 (see §IV-C) – shows that this



protocol could outperform BFT-SMART by up to 56% in
terms of latency. WHEAT was designed to operate both under
crash and Byzantine faults. To the best of our knowledge,
WHEAT is the first SMR protocol that is both optimized for
geo-replication and capable of withstanding general Byzantine
faults; Mencius [23] and EPaxos [24] tolerate only crash faults
while BFT protocols like EBAWA [30] or Steward [1] requires
either each replica to have a trusted component that can only
fail by crash, or only tolerate Byzantine faults within a site
(i.e., do not tolerate compromised sites), respectively.

II. STATE MACHINE REPLICATION & BFT-SMART

In the SMR model [20], [27] an arbitrary number of
clients send requests to a set of servers, which hosts replicas
of a stateful service that updates its state after processing
those requests. The goal of this technique is to make the
state at each replica evolve in a consistent way, resulting in
a service which is accurately replicated across all replicas.
Since the service state was already updated by the time clients
receive a reply from the service, this technique is able to offer
strong consistency, i.e., linearizability [16]. To enforce this
behavior, it is necessary that: (1) client requests are delivered
to the replicas via total order broadcast; (2) replicas start their
execution in the same state; and (3) replicas modify their state
in a deterministic way.

All the experimental work done in this paper is based
on the BFT-SMART open-source library [6]. BFT-SMART
implements a modular SMR protocol on top of a Byzantine
consensus algorithm [28]. Under favourable network condi-
tions and the absence of faulty replicas BFT-SMART executes
the message pattern depicted in Fig.1(a), which is similar to
the PBFT protocol [8].

Clients send their requests to all replicas, triggering the
execution of the consensus protocol. Each consensus instance
i begins with one replica – the leader – proposing a batch of
requests to be decided within that consensus. This is done by
sending a PROPOSE message containing the aforementioned
batch to the other replicas. All replicas that receive the
PROPOSE message verify if its sender is the leader and if
the batch proposed is valid. If this is the case, they register
the batch being proposed and send a WRITE message to all
other replicas containing a cryptographic hash of the proposed
batch. If a replica receives dn+f+1

2 eWRITE messages with the
same hash, it sends an ACCEPT message to all other replicas
containing this hash. If some replica receives dn+f+1

2 e AC-
CEPT messages for the same hash, it deliver its correspondent
batch as the decision for its respective consensus instance.

This is the message pattern that is executed if the leader is
correct and the system is synchronous. If these conditions do
not hold, the protocol needs to elect a new leader and force
all replicas to converge to the same consensus execution. This
mechanism is dubbed synchronization phase and is described
in detail in [28].

As mentioned before, BFT-SMART can also be configured
for crash fault tolerance (CFT). In this case it implements
a Paxos-like message pattern [21], illustrated in Fig. 1(b).
The main differences are that the CFT protocol does not
require WRITE messages, waits only for dn+1

2 e ACCEPT
messages and requires a simple majority of non-faulty replicas

ACCEPTWRITEPROPOSE

P0

P1

P2

P3

Client

Byzantine Consensus

(a) BFT message pattern.

ACCEPTPROPOSE

Crash ConsensusP0

P1

P2

Client

(b) CFT message pattern.

Fig. 1. BFT-SMART message pattern during fault-free executions.

to preserve correctness (the BFT protocol requires that more
than three quarters of the replicas remain correct).

III. EXPERIMENTS

In this section we present the experiments conducted to
assess the effectiveness of certain optimizations proposed for
SMR in wide area networks [8], [19], [21], [23], [24], [30],
[31] and quorum systems [15], [25]. Before presenting our
results, we describe some general aspects of our methodology.

A. Methodology

The considered optimizations were evaluated by imple-
menting variants of the BFT-SMART’s code and executing
them simultaneously with the original protocol. Our experi-
ments focus on measuring latency instead of throughput, in
particular the median and 90th percentile latency perceived
by clients. This is due to the fact that throughput can be
effectively improved by adding more resources (CPU, memory,
faster disks) to replicas or by using better links, whereas geo-
replication latency will always be affected by the speed of light
limit and perturbations caused by bandwidth sharing.

During the experiments, clients were equally distributed
across all hosts, i.e., a BFT-SMART replica and a BFT-
SMART client were deployed at each host that executed the
protocol. Similarly to other works (e.g., [17], [24]), each
client invokes 1kB-requests and receive 1kB-replies from the
replicas, which run a null service. Requests were sent to the
replicas every 2 seconds, and each client writes its observed
latency into a log file. This setup enabled us to retrieve results
that are gathered under similar network conditions without
saturating either the CPU or memory of the hosts used.

The experiments in which we evaluated optimizations to
the SMR protocol were conducted mostly in PlanetLab.1 This
testbed is known for displaying unpredictable latency spikes
and highly loaded nodes [12]. These conditions allow us to
evaluate the optimizations within unfavorable conditions.

Since our experiments are designed to evaluate solely
the client latency in fault-free executions, we only report
executions in which all hosts were online. However, since
PlanetLab’s host are regularly restarted and sometimes become
unreachable, we could seldom execute each experiment during
the same amount of time [12]. Therefore, we had to launch
multiple executions for the same experiment, so that within
each execution there would be a period in which all hosts
were online. In any case, every experiment reported in this
paper considers at least 24 hours of measurements.

All experiments were configured to tolerate a single faulty
replica. Each experiment was executed using between three to

1http://www.planet-lab.org.



TABLE I. HOSTS USED IN PLANETLAB EXPERIMENTS

Country City Hostname
Poland Wroclaw planetlab1.ci.pwr.wroc.pl
England London planetlab-1.imperial.ac.uk
Spain Madrid planetlab2.dit.upm.es
Germany Munich planetlab2.lkn.ei.tum.de
Portugal Aveiro planet1.servers.ua.pt
Norway Oslo planetlab1.ifi.uio.no
France Nancy host4-plb.loria.fr
Finland Helsinki planetlab-1.research.netlab.hut.fi
Italy Rome planet-lab-node1.netgroup.uniroma2.it

five hosts spread through Europe. The unavailability of nodes
already mentioned led us to use a total of eight hosts through
all experiments (see Table I).

To validate our results in a global scale, two of the
experiments described in the paper were executed on Amazon
EC2,2 using t1.micro instances distributed among five different
regions. We used the same methodology described for the
PlanetLab experiments.

B. Number of Communication Steps

The purpose of our first experiment is to observe how the
client latency is affected by the number of communication
steps performed by the SMR protocol. More precisely, we
wanted to observe how efficient read-only, tentative, spec-
ulative and fast executions are in a WAN. The first two
optimizations are proposed in PBFT [8], whereas the other
two optimization are used by Zyzzyva [19] and Paxos at War
[31], respectively. Since these optimizations target Byzantine-
resilient protocols, we only evaluate them in BFT mode.

The message pattern for each of these optimizations is
illustrated in Fig. 2. Fig. 1(a) displays BFT-SMART’s standard
message pattern. Fig. 2(a) displays the message pattern for
tentative executions. This optimization consists of delivering
client requests right after finishing the WRITE phase, thus
executing the ACCEPT phase asynchronously. This optimiza-
tion comes at the cost of (1) potentially needing to perform
a rollback on the application state if there is a leader change,
and (2) forcing clients to wait for dn+f+1

2 e messages from
replicas (instead of f + 1) [8]. Fig. 2(b) displays the mes-
sage pattern for fast executions. This optimization consists
of delivering client requests right after gathering dn+3f+1

2 e
WRITE messages (before the ACCEPT phase finishes). If such
amount of WRITE messages arrive fast enough, the protocol
can safely bypass the ACCEPT phase. Fig. 2(c) displays the
message pattern for speculative executions. This optimization
enables the protocol to finish executions directly after the
PROPOSE message is received in the replicas, as long as
the clients are able to gather replies from all the replicas
within a pre-established time window. If the clients are not
able to gather all the replies within such time window, at
least one additional round-trip message exchange is required
to commit the requests. Fig. 2(d) displays the message pattern
for read-only executions. This optimization enables clients to
obtain a response from the service in two communication
steps. However, it can only be used to read the state from the
service. Similarly to tentative executions, this optimization also
demands that clients gather dn+f+1

2 e messages from replicas,
even for non-read-only operations, to ensure linearizability [8].

2http://aws.amazon.com/ec2/.

ACCEPTPROPOSE WRITEP0

P1

P2

P3

Client

(a) Tentative execution.

PROPOSE WRITEP0

P1

P2

P3

Client

(b) Fast execution.

PROPOSEP0

P1

P2

P3

Client

(c) Speculative execution.

P0

P1

P2

P3

Client

(d) Read-only execution.

Fig. 2. Evaluated message patterns, besides the one in Fig. 1(a).

 0

 50

 100

 150

N R S T F N R S T F N R S T F N R S T FLa
te

n
cy

 (
m

ill
is

e
co

n
d

s) N=Standard, R=Read-only, S=Speculative, T=Tentative, F= Fast

50th
90th

RomeHelsinkiWroclawNancy (L)

Fig. 3. Client latencies’ 50th/90th percentile for each type of execution.

Setting: We created three BFT-SMART variants to eval-
uate fast, tentative and speculative executions (read-only exe-
cutions were already supported). The replicas were deployed
in Nancy (leader), Wroclaw, Helsinki and Rome.

Results: The values for the median and 90th percentile
latency for each client are shown in Fig. 3. All evaluated
optimizations exhibited latency reduction across all clients,
with read-only executions finishing the protocol execution
significantly faster than any of the other optimizations (i.e.,
90th percentile latency from 43% to 63% smaller than in
standard executions). Moreover, speculative executions also
displayed significant latency reduction, reaching a 90th per-
centile latency 35% lower than standard execution. In the
same way, tentative and fast executions also manage to reach
a lower median and 90th percentile than standard executions,
albeit with more modest differences. Furthermore, whereas fast
executions displayed a latency decrease of about 10%, tentative
executions managed to reduce latency by almost 20% (when
compared to standard executions).

Main conclusion: The lowest latency displayed by read-
only executions were to be expected, since they bypass all
three communications steps executed between sending requests
and gathering replies. Since speculative executions require the
PROPOSE phase, they show higher latency than read-only
executions. The advantage of tentative executions over fast
executions can be explained by the fact that the latter require
gathering WRITE messages from all four replicas, whereas the
former only need it from three.

C. Number of Replies

In this experiment we intended to observe how the amount
of replies required by clients affects the operation latency.
By default, BFT-SMART clients wait for dn+f+1

2 e (BFT)
or dn+1

2 e (CFT) replies from replicas in order to ensure
linearizability. However, this number of replies is required due



 0

 50

 100

 150

3/4 2/4 3/4 2/4 3/4 2/4 3/4 2/4

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

50th
90th

HelsinkiRomeWroclawNancy (L)

(a) BFT Mode.

 0

 50

 100

 150

2/3 1/3 2/3 1/3 2/3 1/3

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

50th
90th

RomeWroclawNancy (L)

(b) CFT Mode.

Fig. 4. Client latencies’ 50th/90th percentile for different numbers of replies.

to the use of read-only executions [8]: if this optimization were
not supported, f+1 matching replies (BFT) or 1 (CFT) replies
would suffice.

Setting: We created a variant of a BFT-SMART client that
waited only for f +1 (BFT) or 1 (CFT) replies, thus satisfying
only sequential consistency (similarly to Zookeeper [17]) if the
read-only optimization is employed. This experiment was de-
ployed on hosts located in Nancy (leader), Wroclaw, Helsinki
and Rome. The modified clients waited for two out of four
replica replies (or one out of three in CFT), while the original
version waited for the usual three out of four (two out of three
in CFT). CFT experiments did not require the Helsinki’s host.

Results: The values for the median and 90th percentile
latency for each client are shown in Fig. 4. It can be observed
that both the original and modified protocols present very
similar performance in BFT mode. On the other hand, the
optimization was quite effective in the CFT mode. For the 90th
percentile, this optimization showed an improvement from 8%
to 11% in BFT mode and from 26% to 36% in CFT mode.

Main conclusion: The lower latency displayed when the
protocol requires less replies was to be expected, but such
reduction was more significant in CFT mode. This can be
explained by the fact that the BFT mode employed one more
replica and required one more reply when compared to CFT.

D. Quorum Size

This experiment is motivated by the works of Gifford [15]
and Pâris [25], which use voting schemes with additional hosts
to improve the availability of quorum protocols. As described
in §II, BFT-SMART’s clients and replicas always wait for
dn+f+1

2 e messages from other replicas to advance to the next
communication step (or dn+1

2 e in CFT mode). More precisely,
BFT-SMART waits for dissemination Byzantine quorums [22]
if operating in BFT mode and majority quorums [14] if
operating in CFT mode. During this experiment, we enable
the system to make progress without waiting for the afore-
mentioned quorum types if spare replicas are present. Notice
that this optimization, which is not employed in any SMR
protocol, might lead to safety violations (discussed below).

Setting: We modified BFT-SMART to make replicas wait
for only 2f+1 (resp. f+1) messages in each phase of the BFT
(resp. CFT) protocol, independently from the total number of
replicas n.3 This experiment was deployed on hosts located
in Aveiro (leader), London, Oslo, Munich and Madrid. The
original BFT-SMART was configured to execute across four
replicas (three in CFT mode) and the modified version was

3If the original BFT-SMART were deployed in five hosts, the quorums
would be comprised of four hosts (in the case of BFT mode).

 0

 50

 100

 150

 200

 250

3/4 3/5 3/4 3/5 3/4 3/5 3/4 3/5 3/5

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

50th
90th

6469 5639

MadridMunichOsloLondonAveiro (L)

(a) BFT Mode.

 0

 50

 100

 150

 200

 250

2/3 2/4 2/3 2/4 2/3 2/4 2/4

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

50th
90th

5856 5650

MadridOsloLondonAveiro (L)

(b) CFT Mode.

Fig. 5. Client latencies’ 50th/90th percentile with different quorum sizes.

configured to execute in five (four in CFT mode). The extra
replica needed for executing the modified version was placed
in Madrid, both for BFT and CFT mode. Experiments for
CFT mode did not require the use of Munich’s host. Since the
modified version waits only for three out of five (3/5) messages
(or 2/4 messages in CFT mode), both versions of BFT-SMART
will wait for the same number of messages, even though the
optimized versions use one additional replica.

Results: The values for the median and 90th percentile
latency for each client are shown in Fig. 5. The results
show that the modified protocols – which used one extra
replica – exhibited lower latency than the original protocols.
This difference is more discernible in the CFT mode for
two reasons. First, the ratio between the quorum size and
the number of replicas (2/4) is smaller than the BFT case
(3/5). Second, it did not use London’s host (which observed
a much worse 90th percentile latency than others). It can be
observed that in the 90th percentile, the optimizations showed
an improvement of 12%-17% in the BFT mode and 4%-72%
in CFT mode, depending on the location of clients.

Main conclusion: The modified version BFT-SMART
was able to experience lower latency because it was given
more choice: since both versions still waited for the same
number of messages in each communication step, the slowest
replica was replaced by the extra replica hosted in Madrid,
thus decreasing the observed latency of the modified version.
In normal protocols this benefit would be smaller, since the
quorum size would normally increase with n.

Even though the use of additional replicas decreases the
protocol latency, this kind of optimization cannot be directly
applied to existing protocols without impairing their correct-
ness. Limiting the amount of messages to 2f + 1 (or f + 1)
regardless of the total number of replicas available n does not
guarantee the formation of intersecting quorums, which are
required to ensure safety in both BFT and CFT modes [8],
[21]. For example, in the CFT mode, our setup of n = 4
and f = 1 did not ensure majority quorums, which could had
lead to safety violations. In order to preserve correctness, it
is necessary to force any combination of 2f + 1 (or f + 1)
replicas to intersect in at least one correct server. In §IV-B we
present a technique that ensures this property and allows the
use of this optimization in SMR systems.

E. Leader Location

The goal of our last experiment is to observe how much the
leader’s location can affect the client latency. This experiment
is motivated by the fact that Mencius [23], EBAWA [30] and
EPaxos [24] use different techniques to make each client use its
closest (or co-located) replica as the leader for its operations.



 0

 100

 200

 300

W M N L W M N L W M N L W M N LLa
te

n
cy

 (
m

ill
is

e
co

n
d

s) W=Wroclaw, M=Madrid, N=Munich, L=London

50th
90th

LondonMunichMadridWroclaw

(a) BFT Mode.

 0

 100

 200

 300

W M N W M N W M NLa
te

n
cy

 (
m

ill
is

e
co

n
d

s) W=Wroclaw, M=Madrid, N=Munich

50th
90th

MunichMadridWroclaw

(b) CFT Mode.

Fig. 6. Client latencies’ 50th/90th percentile when the leader is placed across
PlanetLab hosts.

The rationale behind these techniques is to make client-leader
communication faster, bringing down the end-to-end SMR
latency (see Fig. 1).

Setting: We deployed BFT-SMART in PlanetLab and
conducted several experiments considering different replicas
assuming the role of the leader. The hosts used were located
in Wroclaw, Madrid, Munich and London (not used in CFT
mode). Moreover, the experiment was repeated across Amazon
EC2, using replicas in Ireland, Oregon, São Paulo and Sydney
regions (Sydney was only used in BFT mode).

Results: Before launching this experiment, we expected
that, for any client, its latency would be the lowest when its co-
located replica were the protocol’s leader. However, as seen in
Fig. 6, the median and 90th percentiles of the latency observed
by the different clients do not change significantly when
the leader location changes. In particular, the 90th percentile
latency is, in general, lower when the leader was either in
Madrid or Wroclaw.

Since these results appeared to contradict the intuition of
[23], [24], [30], we repeated this experiment in Amazon EC2,
to find if this phenomenon is due to our choice of testbed.
Fig. 7 shows the results observed in each Amazon EC2 region.
As with the PlanetLab results, the latency observed by the
different clients do not present any significant change as we
change the leader location. However, having the leader in
Oregon results in a slightly lower 90th percentile for all clients,
both for BFT and CFT modes.

Main conclusion: Since the obtained results depict a
similar trend in the two different testbeds, we can assert that
co-locating clients with the leader does not necessarily improve
the latency of replicated state machines. On the other hand,
placing the leader in the host with better connectivity with the
remaining replicas can yield more consistent improvements.
More precisely, the benefit of reaching the leader faster is not
as important as hosting the leader in the replica with faster
links with others.

F. Discussion

The results presented in §III-B indicate that, as expected,
bypassing communication steps reduces client latency in BFT
SMR protocols. However, even though read-only (resp. specu-
lative) executions are up to 63% (resp. 35%) faster than stan-
dard executions, the benefits of tentative and fast executions
are not so impressive: about 20% and 10%, respectively. The
difference, as explained before, is due to the fact that fast
executions requires larger quorums than tentative execution,
which requires waiting for more messages (that can be slow

 0

 200

 400

 600

 800

I S O Y I S O Y I S O Y I S O YLa
te

n
cy

 (
m

ill
is

e
co

n
d
s) I=Ireland, S=São Paulo, O=Oregon, Y=Sydney

50th
90th

SydneyOregonSão PauloIreland

(a) BFT Mode.

 0

 200

 400

 600

 800

I S O I S O I S OLa
te

n
cy

 (
m

ill
is

e
co

n
d
s) I=Ireland, S=São Paulo, O=Oregon

50th
90th

OregonSão PauloIreland

(b) CFT Mode.

Fig. 7. Client latencies’ 50th/90th percentile when the leader is placed across
Amazon EC2 regions.

in an heterogeneous environment such as a WAN). In the end,
tentative execution matches the theoretically expected benefits:
by avoiding 20% of the communication steps (see Fig. 2), we
did reduce latency to approximately 20%.

The results of §III-C and §III-D show that decreasing
the ratio between the number of expected messages and the
total number of replicas can decrease latency significantly,
especially for CFT replication. More specifically, clients that
wait less replies had a 90th percentile latency improvement
of up to 36% (resp. 11%) in CFT (resp. BFT) mode; and
adding more replicas to the system while maintaining the
same quorum size brings improvements of up to 72% (resp.
17%) in CFT (resp. BFT) mode. These results are mainly due
to the performance-heterogeneity of hosts and links in real
wide area networks: if the latency between all replicas were
similar and network delivery variance were small, the observed
improvements would be much more modest. Furthermore, they
are in accordance with other studies showing that using smaller
quorums may bring better latency than decreasing the number
of communication steps (e.g., [18]).

The results of §III-E indicates that having the leader close
to a client will not significantly reduce the SMR latency for
this client. This result is unexpected since several protocols
implement mechanisms such as rotating coordinator [23], [30]
and multiple proposers [24] to make each client submit its
requests to the closest replica. We found two main explanations
for this apparent contradiction. First, the heterogeneity of
real environments such as PlanetLab and Amazon EC2 make
optimizations for reducing latency less effective. In fact, the
authors of Mencius acknowledge that the protocol achieves
lower latency than Paxos only in networks with small latency
variances [23]. Second, in CFT mode, BFT-SMART clients
wait for replies from a majority of replicas to ensure lineariz-
ability due to the use of the read-only optimization. EPaxos,
Mencius and Paxos clients wait only for a single reply from
the leader. This means that client-leader co-location in these
protocols potentially reduce the latency in two communication
steps, while in BFT-SMART this reduction is in only one
(clients still need to wait for at least one additional reply).
Consequently, having a client co-located with the leader should
decrease the number of communication steps 25% in CFT
mode and 20% in BFT mode, while in Mencius and EPaxos
such theoretical improvement can reach 50%. Moreover, its
worth to point out that these benefits appear only in favorable
conditions. For example, EPaxos presents almost the same
latency of Paxos when under high request interference [24].

As a final remark, it is worth noting that our results show
that having a leader in a well-connected replica brings, in
general, more benefits than having clients co-located with



leaders. For instance, we observed that latency was usually
lower when the leader replica was hosted in Madrid, rather than
when the leader replica was placed in the same location as a
particular client. In the same line, adding faster replicas to the
system may significantly improve latency, as shown in §III-D.
For example, the addition of Madrid to the set of replicas
decreased the 90th percentile latency in Oslo and Aveiro by
39% and 72%, respectively (CFT mode). More generally, these
results highlight the fact that not all replicas are the same in
geo-replication and that both the leader location and quorum
formation rules must take into account the characteristics of
the sites being used.

IV. THE WHEAT PROTOCOL

This section describes WHEAT, a WAN-optimized SMR
protocol implemented on top of BFT-SMART. We start by
discussing the WAN optimizations employed in the protocol
and then introduce two novel vote assignment schemes to
use smaller quorums without endangering the safety of SMR.
We conclude the section with an evaluation of WHEAT in
Amazon EC2.

A. Deriving the protocol

WHEAT employs the optimizations that were most ef-
fective in improving the latency of SMR in WANs. The
selected optimizations (discussed below) reduce the number of
communication steps, the number of replies that clients wait
and the ratio between the quorum size and the total number of
replicas. Since the results of client-leader co-location were not
so expressive, and given that its implementation would require
substantial changes in the base SMR protocol (which is already
complex enough [6], [9]), we rejected this optimization and
followed the fixed leader approach. As with BFT-SMART,
WHEAT can be used in BFT or CFT modes, implementing
the message patterns illustrated in Fig. 8.

Reducing the number of communication steps: In BFT
mode, WHEAT employs the read-only and tentative execution
optimizations introduced in PBFT [8]. The reason to support
tentative executions instead of fast or speculative executions is
as follows: (1) during our experiments, tentative executions
displayed slightly better latency than fast executions (i.e.,
they had a lower 90th percentile); (2) speculative executions
are useful in environments were the network is predictable
and stable, which we cannot expect in many geo-distributed
settings. If such conditions are not met by the network (i.e,
not delivering replies from all replicas within the required time
window), clients need to trigger the commit phase and force
the protocol to execute five communications steps [19]; and
(3) tentative executions do not require modifications to the
synchronization phase of BFT-SMART. Fast executions would
required modifications to account for cases where a value was
decided solely with dn+3f+1

2 e WRITE messages, whereas the
rollback operation can be triggered using the state transfer pro-
tocol already implemented in BFT-SMART [6]. Furthermore,
usage of speculative executions would demand the complete
re-implementation of the original protocol, to account for the
several corner cases necessary to preserve correctness under
this type of executions, such as the aforementioned commit
phase. Another advantage of tentative executions is that AC-
CEPT messages can be piggybacked in the next PROPOSE or
WRITE messages, similarly to PBFT [8].

ACCEPTACCEPTPROPOSE WRITE

P0

P1

P2

P3

Client

P4

(a) BFT message pattern.

PROPOSE ACCEPT

P0

P1

P2

P3

Client

(b) CFT message pattern.

Fig. 8. WHEAT’s message pattern for f = 1 and one additional replica.

Reducing the number of replies a client waits: In
BFT mode, the use of read-only and tentative executions lead
WHEAT clients to always gather responses from a Byzantine
quorum of replicas, i.e., at least dn+f+1

2 e replies. This means
that it is impossible to enforce the optimization evaluated
in §III-C without giving up linearizability [16]. However,
single-reply read-only executions can still be used in the CFT
mode as long as clients always contact the leader replica.4
Consequently, in CFT mode WHEAT clients only need to
wait for one reply (from any replica during write operations
and from the leader during read-only operations).

Reducing the ratio between the quorum size and the
number of replicas: As observed in §III-D, it is possible to
significantly decrease latency by adding more replicas to the
system, as long as the quorums used in the protocol remain
with the same size. Both the Byzantine and crash variants
of WHEAT are designed to exploit this phenomenon by
modifying the quorum requirements of the protocol. However,
to avoid breaking the safety properties of traditional SMR pro-
tocols (e.g., [8], [21], [30]), we need to introduce a mechanism
to secure the formation of intersecting quorums of variable
size. In the next section we introduce a voting scheme that
preserves this requirement.

B. Vote Assignment Schemes

Our novel voting assignment schemes integrate the classi-
cal ideas of weighted replication [14], [15], [25] to SMR pro-
tocols. The goal is to extend quorum-based SMR protocols to
(1) rely primarily on the fastest replicas present in the system,
and (2) preserve its original safety and liveness properties.

The most important guarantees that quorum-based proto-
cols need to preserve are (1) all possible quorums overlap in
some correct replica and (2) even with up to f failed replicas,
there is always some quorum available in the system. In CFT
protocols like Paxos [21], quorums must overlap in at least one
replica. Such intersection is enforced by accessing a simple
majority of replicas during each communication step of a
protocol. More specifically, protocols access dn+1

2 e replicas
out of n ≥ 2f + 1. BFT protocols like PBFT [8], on the other
hand, usually employ disseminating Byzantine quorums [22]
with at least f + 1 replicas in the intersection. In this case,
protocols access dn+f+1

2 e replicas out of n ≥ 3f + 1. With
this strategy, adding a single extra replica to the system results
in higher latency, since any possible quorum becomes larger in
size – unlike the weighted quorums strategy we present below.

The fundamental observation that we make, is that ac-
cessing a majority of replicas guarantees the aforementioned

4It is also necessary to use leases on the client, since the leader can be
demoted at any point.



intersection, but that this is not the only way to secure such
intersection. More specifically, if n is greater than 2f + 1
(in CFT mode), it is possible to distribute weights across
replicas in such way that a majority is not always required
to (correctly) make progress. As an example, consider the
quorums illustrated in Fig. 9 (with one extra replica in the
system). Whereas in Fig. 9(a) the intersection is obtained by
strictly accessing a majority of replicas, in Fig. 9(b) we see
that we can still obtain an intersection with a variable number
of replicas (since we can obtain a sum of 3 votes by either
accessing 2 or 3 replicas). In particular, if the replica with
weight 2 is successfully probed, the protocol can finish a
communication step with a quorum comprised by only half
of the replicas. Otherwise, a quorum comprised by all replicas
with weight 1 is necessary to make progress. Notice that for
this distribution to be effective, it is necessary to attribute
weight 2 to the fastest replica in the system.

We now generalize the weight distribution proposed in
Fig. 9(b) to account for other values of f . The objective is to
assign certain numbers of votes (i.e., weights) to each replica
in accordance with their connectivity/performance. This vote
assignment must be done carefully to ensure that minimal
quorums composed by faster replicas will be used under
normal conditions (i.e., when the faster replicas are indeed
faster) and larger, yet available quorums can be used to ensure
that up to f faulty replicas are tolerated (despite their weights).

Let Qv be the minimum number of votes that a quorum
of replicas must hold to guarantee that quorums overlap by
at least one correct replica. A quorum is said to be safe
and minimal (or just minimal) if it is comprised by only
f + 1 replicas that together hold Qv votes. This quorum size
is minimal because if f or less replicas were considered a
quorum, other intersecting quorums would require more than
n − f replicas. These quorums will not be available when
there are f faulty replicas in the system. This means that
having quorums with less than f + 1 replicas implies giving
up consistency or availability, as described in classical quorum
definitions [22]. In a BFT system, for the same reasons, a
minimal quorum must be comprised of 2f + 1 replicas.

Using the above definitions, we consider vote distribution
schemes that satisfy the following properties:

• Safe minimality: There exists at least one minimal
quorum in the system.

• Availability: There is always a quorum available in
the system that holds Qv votes.

• Consistency: All quorums that hold Qv votes intersect
by at least one correct replica.

In the following, we describe vote assignment schemes for
CFT and BFT modes that satisfy these properties.

CFT vote distribution: To calculate the vote distribution
under CFT mode, we start by introducing the parameter ∆,
which represents the number of extra replicas available in the
system. Thus, n can be calculated using ∆ as follows:

n = 2f + 1 + ∆ (1)

We now introduce two additional variables. Nv represents
the sum of the number of votes

∑
Vi that are attributed to

(a) Classical (always a
majority of replicas).

3 votes

3 votes
2 1 1 1

(b) Weighted (from f +
1 to n− f replicas).

Fig. 9. Quorum formation when f = 1 and n = 4 (CFT mode).

each replica i. Fv is the maximum number of votes that can
be dismissed in the system. Having these parameters, we can
apply the standard quorum rules to the votes instead of the
replicas. Hence, Nv is calculated as follows:

Nv =
∑

Vi = 2Fv + 1 (2)

As an example, consider Fig. 9(b): the sum of all votes adds
up to 5, which represents an abstract quorum system comprised
by 5 hosts capable of withstanding 2 faults. Therefore, for this
case, Nv = 5 and Fv = 2.

Since ∆ and f are the input parameters, we need to (1)
find a relation between ∆ and f and values for Nv , Fv and
Vi; (2) use those variables to force the emergence of replica
quorums that intersect by one replica. More precisely, votes
must be distributed in such a way that once Qv = Fv + 1
votes are gathered, quorums always overlap by at least one
correct replica.

If we assume that only two possible values can be assigned
to replicas (e.g., a binary vote distribution), as in Fig. 9(b), we
can introduce variables Vmax and Vmin. However, we need to
find how many replicas are assigned Vmax and Vmin. Let u be
the number of replicas holding Vmax votes and, consequently,
n− u the number of replicas holding Vmin. Since the sum of
all votes must be equal to Nv , we have:

Nv = 2Fv + 1 = uVmax + (n− u)Vmin (3)

In the example of Fig. 9(b), Vmax = 2, Vmin = 1 and
Qv = Fv + 1 = 3. We can observe two cases where 3
votes can be obtained: either by (1) accessing the single Vmax

replica and one of the Vmin replicas, or (2) accessing all Vmin

replicas. Notice that in both cases, the same number of votes
is dismissed, but not the same number of replicas; in case (1)
two replicas are ignored, but in case (2) only one single replica
is left unprobed. Also note that the number of votes dismissed
is 2 – which happens to be the value of Fv (as we pointed
out previously). This indicates that Fv has a direct relation
to Vmax and Vmin. Given this observation, we generalize this
example scenario to represent any ∆ and f :

Fv = (∆ + f)Vmin = fVmax (4)

We derive the relation between Vmax and Vmin as follows:

Vmax =
(∆ + f)

f
Vmin (5)

If we assume Vmin = 1, equations (4) and (5) become:

Fv = ∆ + f (6)

Vmax =
∆ + f

f
= 1 +

∆

f
(7)



Having now more refined formulas for Fv , Vmax and Vmin,
we can return to equation (3) and obtain the value of u:

2(∆ + f) + 1 = u(1 +
∆

f
) + (n− u)⇒ u = f (8)

Knowing that u = f , still by equation (3), there must be
f replicas holding Vmax votes and n − f replicas holding 1
vote (since Vmin = 1). We thus have our CFT vote assignment
scheme: equations (6) and (7) give us the values for Fv and
Vmax respectively, all in function of ∆ and f .

The main benefit of this scheme is that if all the f replicas
holding Vmax are probed faster than any other, then just one
of the ∆ + f + 1 other replicas holding Vmin votes will
be disregarded (like the two-replica quorum of Fig. 9(b)).
However, in the worst case, if f replicas holding Vmax votes
fail (or are slow), then all replicas with Vmin votes will be
accessed instead (as the three-replica quorum of Fig. 9(b)).

CFT proof of correctness: In the following we briefly
outline the proof that our vote assignment scheme satisfies the
three properties described before. The full proof is available
in the extended version of this paper [29].

Safe minimality: Let Smax to be the subset of f replicas
that hold Vmax votes each. By equation (4) these f replicas
will add up to Fv votes. A safe and minimal quorum can be
built using Smax plus one additional replica holding Vmin = 1
votes, making a quorum with Qv = Fv + 1 votes. �

Availability: Let Smin be the subset of n − f replicas
holding Vmin votes each. In the worst case (maximum number
of votes lost due to faults), when all the f replicas holding
Vmax fail, there will be still the n− f = ∆ + f + 1 replicas
from Smin. According to equation (6), ∆ + f account already
for Fv votes. With the additional replica from Smin, we reach
the required Qv = Fv + 1 votes to form a quorum, even with
the fVmax votes lost. Furthermore, any other combination of
Vmax and Vmin replicas will always contain at least Qv votes
(as long there are at least f +1 replicas), since they will either
be a minimal quorum (as proved before), a Smin quorum, or
a hybrid of both (which will result in Qv ≥ Fv + 1). �

Consistency: Any quorum overlaps by at least one correct
replica for the following reason: since a minimal quorum
contains Qv votes (as proved before), it must contain at
least one Vmin replica, which in turn must be a member of
the Smin quorum (which also contains Qv votes, as proved
before). Since any other allowed combination of Vmax and
Vmin replicas will either be a superset of a minimal or Smin

quorum, they will also intersect by one replica (or more). �

BFT assignment: The reasoning here is similar to the CFT
scheme, but with the following differences. First, equations (1)
and (2) become n = 3f + 1 + ∆ and Nv =

∑
Vi = 3Fv + 1,

respectively. These equations still lead to the same values of
Fv and Vmax, but u becomes 2f instead of f . This forces
the system to have 2f replicas holding Vmax and ∆ + f + 1
replicas holding one vote (Vmin). Moreover, it is necessary to
gather 2Fv + 1 votes on each quorum, which makes Qv =
2Fv + 1. Finally, a minimal quorum must be comprised by
2f + 1 replicas instead of f + 1. A complete description of
the BFT voting assignment scheme and its correctness proof
can be found in the extended version of the paper [29].

Additional resilience benefits: Besides the performance
benefits, our voting assignment schemes present three benefits
in terms of resilience. First, it allows the system to tolerate
more than f crash faults in certain scenarios. For instance,
in Fig. 9(b), two of the Vmin replicas could fail by crash and
the protocol would still make progress without violating safety.
However, this is not the case if one of two failed replicas holds
Vmax votes. Second, our assignment schemes could be used to
assign a higher number of votes to replicas on more reliable
and available sites (instead of the faster ones), improving
thus the reliability and availability of the system. Third, when
any of the faster replicas is detected as slow or unavailable,
BFT-SMART’s reconfiguration protocol [6] can be used to
redistribute votes, so that other replicas take the place of the
ones that are no longer the fastest. Notice that this approach is
better than using BFT-SMART’s reconfiguration protocol to
replace unavailable replicas. Such replacement would require
a state transfer, which can be a slow operation for large state
sizes and limited wide-area links. For example, a 4GB-state
will take more than fifty minutes to be transferred in a 10
Mbps network (which is better than most links between EC2
regions). With our approach, the extra replicas are already
active and up-to-date in the system, so the reconfiguration
takes approximately the time to execute a “normal” SMR
operation. Finally, it is worth mentioning that in the event that
the systems experiences a period of high load, it is possible
that the minimal quorum becomes overloaded and unable to
reply faster than other quorums, thus forcing the system to
make progress with different quorums. Nonetheless, any SMR
protocol based on quorum systems is subject to this issue.

C. Implementation and Evaluation

We implemented WHEAT by extending BFT-SMART for
supporting the chosen optimizations (§IV-A) and considering
replicas with different number of votes (§IV-B). Most of the
modifications to the code took into account the vote assignment
schemes that calculate the quorums used in the protocol.

We evaluated WHEAT by running a set of experiments
in Amazon EC2 and comparing the results with the original
BFT-SMART system. As in the EC2 experiments reported in
§III-E, we use sites on Ireland, Oregon, Sydney and São Paulo
(only in BFT mode) for BFT-SMART using also Virginia
as the additional replica of WHEAT. This means that the
original version of BFT-SMART employed 4 replicas in BFT
mode (resp. 3 in CFT mode) whereas WHEAT employed 5
replicas in BFT mode (resp. 4 in CFT mode), with two of
these replicas in North America. In BFT mode, the follow-
ing parameters were employed (obtained through the voting
schemes described previously): Nv = 7, Fv = 2, Vmax = 2
for the replicas in Oregon and Virginia. In CFT mode, the
configuration was Nv = 5, Fv = 2, Vmax = 2 for the replica
in Virginia. We attributed the Vmax values to the these sites
because they were the ones with better connectivity to others,
as shown in Table II.

The median and 90th percentile latencies for each client
location and protocol is presented in Fig. 10. By employing
the selected optimizations (§IV-A) and using an additional
replica in Virginia without increasing the quorum requirements
(i.e., three and two replicas for BFT and CFT, respectively),
WHEAT achieves, when compared to BFT-SMART, a 90th
percentile latency improvement between 21% and 44% (BFT)



TABLE II. AVERAGE roundtrip LATENCY AND STANDARD DEVIATION
(MILLISECONDS) BETWEEN AMAZON EC2 REGIONS AS MEASURED

DURING A 24 HOUR-PERIOD.

Sites Ireland São Paulo Oregon Sydney Virginia

Ireland 0 211 ± 10 171 ± 11 340 ± 11 88 ± 10
São Paulo 208 ± 14 0 217 ± 19 359 ± 4 123 ± 3

Oregon 171 ± 14 217 ± 11 0 205 ± 7 70 ± 12
Sydney 336 ± 26 359 ± 4 205 ± 10 0 255 ± 12
Virginia 88 ± 10 123 ± 4 71 ± 13 256 ± 5 0

 0

 200

 400

 600

B W B W B W B W W

La
te

n
cy

 (
m

ill
is

e
co

n
d
s) B= BFT-SMaRt, W= WHEAT

50th
90th

VirginiaSão PauloSydneyIrelandOregon (L)

(a) BFT Mode.

 0

 200

 400

 600

B W B W B W W

La
te

n
cy

 (
m

ill
is

e
co

n
d
s) B= BFT-SMaRt, W= WHEAT

50th
90th

VirginiaSydneyIrelandOregon (L)

(b) CFT Mode.

Fig. 10. 50th/90th percentile latencies observed by BFT-SMART and
WHEAT clients in different regions of Amazon EC2.

and between 23% and 73% (CFT). Interestingly, the client in
the leader region (Oregon) observed significant improvements,
with median latency values matching the roundtrip times
between Oregon and Ireland (BFT mode) or Virginia (CFT
mode). This is a consequence of the fact that this client is co-
located with the leader in the most well-connected site of the
system. Moreover, upon considering all clients’ measurements
together, we found that WHEAT improved the global 90th
percentile by 35% (BFT) and 28% (CFT). The global median
improvement is even higher: 37% in BFT and 56% in CFT.

The improvements shown in this experiment should be
taken with a bit of salt since they may be due the use of
an additional site with a good roundtrip latency with other
replicas (see Table II). If the new replica used in WHEAT
were added on an hypothetical Amazon EC2 region “moon”
(instead of Virginia), with a higher roundtrip latency with all
other sites, the WHEAT results would be less impressive since
the faster quorums will be the same of BFT-SMART. The
only benefits will be due to the other optimizations (tentative
executions for BFT and single-reply for CFT) implemented
in the system. Nonetheless, our results illustrate the fact that
in a real geo-replication setup there are significant benefits in
assigning different weights to different replicas. Furthermore,
even with the required algorithmic support, it is important to
choose the location of the spare replicas employed in WHEAT,
to ensure the minimal quorums will bring significant benefits.

A note on throughput: WHEAT aims to improve geo-
replication latency, and thus all of its optimizations target this
performance metric. However, the fact it uses ∆ more replicas
than BFT-SMART, implies it might achieve a slight lower
peak throughput than the original system. This happens be-
cause more replicas lead to more message transmissions, which
results in higher CPU and network bandwidth utilization. More
precisely, each consensus instance on BFT-SMART requires
the exchange of 3f + 18f2 (resp. 2f + 4f2) messages in
BFT mode (resp. CFT mode), whereas in WHEAT it requires
3f + ∆ + 2(3f + ∆)2 (resp. 2f + ∆ + (2f + ∆)2) message
exchanges. Although undesirable, this drawback will only
affect a saturated system, which is rarely the case in production
environments. Moreover, as discussed in §III-A, throughput
can be improved by increasing CPU and network resources,
while latency can only be addressed by better protocols.

V. RELATED WORK

The criticality of modern internet-scale services have cre-
ated the need for geo-replication protocols for disaster tol-
erance, including whole-datacenter failures (e.g., [10]). Fol-
lowing this trend, several works proposed strongly consistent
WAN SMR protocols [1], [23], [24], [30].

Steward [1] is a hierarchical Byzantine fault-tolerant proto-
col for geographically dispersed multi-site systems. It employs
a hybrid algorithm that runs a BFT agreement protocol within
each site, and a lightweight, crash fault-tolerant protocol across
sites. Even though Steward is able to perform well in WANs
(when compared with PBFT [8]), that comes at the cost of a
very complex protocol (over ten specialized algorithms that run
within and among sites) that demands plenty of resources (e.g.,
each site requires at least 4 replicas). Although we advocate the
use of additional replicas for improving latency in WHEAT,
our protocol is not radically different from “normal” protocols,
requiring no specialized subprotocols or a specific number of
replicas on a site.

Mencius [23] is an SMR protocol derived from Paxos [21]
also optimized to execute in WANs. Like Paxos, it can survive
up to f crashed replicas out of at least 2f + 1. Replicas take
turns as the leader and propose client requests in their turns.
Clients send requests to the replicas in their sites, which are
submitted for ordering when the replicas become the leader.
EBAWA [30] is a Byzantine-resilient SMR protocol optimized
for WANs. It considers a hybrid fault model in which each
replica uses a local trusted/trustworthy service (that cannot
be compromised) to provide tolerance to up to f Byzantine
faults using only 2f + 1 replicas. Similarly to Mencius, it
uses a rotating leader to allow clients to send requests to the
replicas that are close to them. Egalitarian Paxos (EPaxos)
[24] is a recent SMR protocol also derived from Paxos and
designed to execute in WANs. Unlike most SMR protocols
inspired by Paxos, EPaxos does not rely on a single designated
leader for ordering operations. Instead, it enables clients to
choose which replica should propose their operations, and
employs a mechanism for solving conflicts between interfering
operations. Differently from Mencius, EBAWA and EPaxos,
WHEAT does not employ any mechanism to make clients
use their closer replicas as leaders/coordinators/proposers. Our
decision to avoid this optimization comes from observing that
having a leader in the same site as the client gives less benefits
in terms of latency than using the fastest replica as the leader.

Weighted replication was originally proposed by Gif-
ford [15], and then revisited by Garcia-Molina [14] and
Pâris [25]. While Gifford made all hosts hold a copy of the
state with distinct voting weights, Pâris made a distinction
between hosts that hold a copy of the state and hosts that
do not hold such copy, but still participate in the voting
process (thus acting solely as witnesses). More recent works
confirmed the usefulness of these ideas also for performance
by showing that adding few servers to a group of replicas can
significantly improve the access latency of majority quorums
[5], and the same kind of technique is being used in practical
systems to improve tolerance to slow servers [11]. By contrast,
Garcia-Molina addresses the idea of weighted replication in
[14] for coterie systems, which later evolved into the classic
quorum systems without including vote distribution. Unlike
our approach, none of these works target geo-replication:



[25] and [14] are strictly theoretical contributions and [15]
considers a local datacenter. To the best of our knowledge, we
present the first vote assignment scheme that unpacks a weight
distribution in function of the expected number of faults and
the amount of spare replicas available in the system.

There are empirical studies which evaluate the availability
of quorum systems (e.g., [2], [5]), the latency of distributed
algorithms over the internet (e.g., [4]) and the performance
of different total order broadcast protocols – a fundamental
building block for SMR – over a WAN (e.g., [3], [13], [26]).
Our experiments have a different goal: instead of evaluating the
performance of distinct protocols, we compare geo-replication-
related optimizations employed by different protocols, but im-
plemented in the same codebase, to validate the effectiveness
of these optimizations in real WANs.

VI. CONCLUSION

In this paper we revisited some optimizations proposed in
the literature for improving the latency of SMR protocols in
wide area networks. More concretely, we implemented such
optimizations in an open-source SMR library and compared its
latency with a non-optimized version in the PlanetLab testbed
and Amazon EC2 cloud to assess which of these optimizations
bring significant benefits. Our results indicated that removing
communication steps and demanding less replies from replicas
lead to latency reductions of up to 20%, depending on the hosts
and fault model. Surprisingly, using the closer replica as the
leader held less benefits than what was expected. These results
guided our design for WHEAT, an SMR protocol optimized
for geo-replication that can be configured either for crash-only
or Byzantine fault tolerance. WHEAT was implemented by
extending BFT-SMART with the optimizations we observed
as most effective and implementing novel vote assignment
schemes for efficient quorum usage. Our evaluation showed
gains of up to 56% for certain configurations, when compared
with the unmodified BFT-SMART.

Acknowledgments: We would like to thank Fernando
Ramos, António Casimiro, André Nogueira, Vinicius Cogo and
the anonymous reviewers for the comments to improve the
paper. This work was supported by FCT through the LaSIGE
Research Unit, ref. UID/CEC/00408/2013 and by EU H2020
Program, through the SUPERCLOUD project (643964).

REFERENCES

[1] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage. Steward: Scaling Byzantine fault-tolerant
replication to wide area networks. IEEE Transactions on Dependable
and Secure Computing, 7(1):80–93, 2010.

[2] Y. Amir and A. Wool. Evaluating quorum systems over the internet. In
Proc. of the 26th Int. Symposium on Fault-Tolerant Computing, 1996.

[3] T. Anker, D. Dolev, G. Greenman, and I. Shnayderman. Evaluating
total order algorithms in WAN. In In Proc. of the Int. Workshop on
Large-Scale Group Communication, 2003.

[4] O. Bakr and I. Keidar. Evaluating the running time of a communication
round over the internet. In Proceedings of the 21st Symposium on
Principles of Distributed Computing, 2002.

[5] O. Bakr and I. Keidar. On the performance of quorum replication on the
internet. Technical Report UCB/EECS-2008-141, EECS Department,
University of California, Berkeley, 2008.

[6] A. Bessani, J. Sousa, and E. Alchieri. State machine replication for
the masses with BFT-SMART. In Proc. of the 44th IEEE/IFIP Int.
Conference on Dependable Systems and Networks, 2014.

[7] M. Burrows. The Chubby lock service for loosely-coupled distributed
systems. In Proc. of the 7th USENIX Symposium on Operating Systems
Design and Implementation, 2006.

[8] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions Computer Systems, 20(4):398–
461, 2002.

[9] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live - an
engineering perspective (2006 invited talk). In Proc. of the 26th ACM
Symposium on Principles of Distributed Computing, 2007.

[10] J. C. Corbett et. al. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems, 31(3):8:1–8:22, 2013.

[11] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56:74–80, 2013.

[12] E. Duarte, T. Garrett, L. Bona, R. Carmo, and A. Züge. Finding
stable cliques of planetlab nodes. In Proc. of the 40th IEEE/IFIP Int.
Conference on Dependable Systems and Networks, 2010.

[13] R. Ekwall and A. Schiper. Modeling and validating the performance
of atomic broadcast algorithms in high latency networks. In Proc. of
Euro-Par, 2007.

[14] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed
system. Journal of the ACM, 32(4):841–860, 1985.

[15] D. Gifford. Weighted voting for replicated data. In Proc. of the 7th
ACM Symposium on Operating Systems Principles, 1979.

[16] M. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programing Languages
and Systems, 12(3):463–492, 1990.

[17] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for internet-scale services. In Proc. of the USENIX Annual
Technical Conference, 2010.

[18] F. Junqueira, Y. Mao, and K. Marzullo. Classic Paxos vs Fast Paxos:
Caveat emptor. In Proc. of the Workshop on Hot Topics in System
Dependability, 2007.

[19] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
Speculative Byzantine fault tolerance. ACM Transactions on Computer
Systems, 27(4):45–58, 2009.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[21] L. Lamport. The part-time parliament. ACM Transactions Computer
Systems, 16(2):133–169, 1998.

[22] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed
Computing, 11(4):203–213, 1998.

[23] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building efficient
replicated state machines for WANs. In Proc. of the 8th USENIX
Conference on Operating Systems Design and Implementation, 2008.

[24] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more consensus
in egalitarian parliaments. In Proc. of 24th ACM Symposium on
Operating Systems Principles, 2013.

[25] J. Pâris. Voting with witnesses: A consistency scheme for replicated
files. In In Proceedings of the 6th International Conference on
Distributed Computing Systems, 1986.

[26] N. Schiper, P. Sutra, and F. Pedone. Genuine versus non-genuine atomic
multicast protocols for wide area networks: An empirical study. In Proc.
of the 28th IEEE Int. Symposium on Reliable Distributed Systems, 2009.

[27] F. Schneider. Implementing fault-tolerant service using the state
machine aproach: A tutorial. ACM Computing Surveys, 22(4):299–319,
1990.

[28] J. Sousa and A. Bessani. From Byzantine consensus to BFT state
machine replication: A latency-optimal transformation. In Proc. of the
9th European Dependable Computing Conference, 2012.

[29] J. Sousa and A. Bessani. Separating the WHEAT from the chaff: An
empirical design for geo-replicated state machines (extended version).
Technical Report TR 2015-04, Department of Informatics, Faculty of
Sciences of the University of Lisboa, July 2015.

[30] G. Veronese, M. Correia, A. Bessani, and L. C. Lung. EBAWA: Efficient
Byzantine agreement for wide-area networks. In Proc. of the 12th IEEE
Int. High Assurance Systems Engineering Symposium, 2010.

[31] P. Zielinski. Paxos at war. Technical Report UCAM-CL-TR-593,
University of Cambridge, Computer Laboratory, 2004.


