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Abstract. Advances in sensor, microprocessor and communication tech-
nologies have been fostering new applications of cyber-physical systems,
often involving complex interactions between distributed autonomous
components and the operation in harsh or uncertain contexts. This has
led to new concerns regarding performance, safety and security, while
ensuring timeliness requirements are met. To conciliate uncertainty with
the required predictability, hybrid system architectures have been pro-
posed, which separate the system in two parts: one that behaves in a
best-effort way, depending on the context, and another that behaves as
predictably as needed, providing critical services for a safe and secure
operation. In this paper we address the problem of verifying the correct
provisioning of critical functions at runtime in such hybrid architectures.
We consider, in particular, the KARYON hybrid architecture and its
Safety Kernel. We also consider a hardware-based non-intrusive runtime
verification approach, describing how it is applied to verify Safety Kernel
software functions. Finally, we experimentally evaluate the performance
of two distinct Safety Kernel implementations and discuss the feasibility
issues to incorporate non-intrusive runtime verification.

Keywords: Real-time and embedded systems; Software architectures;
Architecture hybridization; Reliability and safety; Runtime verification.

1 Introduction and Motivation

Advances in sensor, microprocessor and communication technologies have been
fostering new applications of cyber-physical systems, often involving complex
interactions between distributed autonomous components and the operation in
harsh or uncertain contexts. A good example can be found in the automotive
domain, where car makers strive to increase the autonomy of vehicles, exploiting
existing technologies to make them more intelligent. While the state of the art
approach consists in using information collected from local sensors to feed con-
trol loops, future cars will be connected to other cars and to the infrastructure,
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and will cooperate for information exchange. Connectivity introduces additional
security risks and, given that it is enabled by wireless networks, also introduces
temporal uncertainties that conflict with real-time requirements. Additionally,
processing huge amounts of incoming data will require complex processing solu-
tions, which favor uncertainty, not predictability.

A particular challenge is to conciliate uncertainty with the required pre-
dictability, for which hybrid system architectures have been proposed. For in-
stance, Simplex [21] considers that a control system can be composed of a con-
troller executing in a complex subsystem, and a simple but reliable controller
that is used when the complex controller malfunctions, being deployed in a sep-
arate part of the system, to be protected from potential faults in the complex
subsystem.

In the scope of the KARYON project [6], we proposed the KARYON hy-
brid system architecture [7] to build safe cooperative systems with improved
performance. This software architecture encompasses application components
that execute in a complex part of the system and a Safety Kernel (SK) that,
along with critical application components, should be implemented separately
and should be verified to execute in a timely and reliable way. The role of the
SK is to monitor the behavior of complex software components and trigger the
necessary adjustments or reconfiguration actions in the complex part of the sys-
tem, as needed to satisfy a set of predefined safety requirements. Note that an
SK software instance will exist in each node of a distributed system (e.g., on
each car) and hence the paper focuses only on a single node and not on the
distribution aspects of the safety critical application or function.

In this paper we address the problem of how to verify in runtime that funda-
mental properties of the KARYON SK are satisfied. In fact, while it is possible to
use several dependability techniques, such as the replication of software compo-
nents or software verification, to enforce the required properties and raise confi-
dence that they will be secured, these are costly and there is always a probability
that, due to an accidental or even intentional fault, a property no longer holds.
For example, an SK function might not complete its execution within a required
temporal bound or it might produce an erroneous value. Runtime verification
adds another layer of protection that is fundamental for safety assurance.

We propose a hardware-based non-intrusive runtime verification approach,
which is able to detect the violation of well-defined SK properties in runtime. We
describe the approach and how it is applied to verify concrete properties of the
SK. We also provide experimental results that illustrate the performance of the
SK implemented in two platforms, complemented with a discussion on feasibility
issues relative to the incorporation of non-intrusive runtime verification.

The paper is structured as follows. Section 2 briefly reviews the KARYON
hybrid architecture, describing the role of the SK. Then, Section 3 provides
details on the SK design, important for explaining, in Section 4, how the runtime
verification approach is applied to secure design assumptions. Relevant details
of the SK implementation and a comparative evaluation of the SK operation in
two different platforms is provided in Section 5. Sections 6 and 7 respectively
address related work and conclude the paper.



2 Hybrid Architectures

Hybrid distributed system models and architectural hybridization [24] can be
explored as a baseline design principle to address a trade-off between perfor-
mance and timeliness or safety or even security. In essence, hybrid distributed
system models assume that different parts of the system are characterized by
different properties (for instance, each part having different timeliness proper-
ties or different integrity levels with respect to some assumed failure modes), and
architectural hybridization explicitly separates system functions or components
into these different parts, as needed to ensure that each component enjoys the
properties provided by the part of the system in which it is allocated.

When considering the temporal domain, a system with a hybrid architecture
is structured in at least two parts: one that encompasses all complex components,
whose temporal behavior cannot be fully predicted or is hard to enforce, and
another part that usually contains simple but critical components that execute
in a predictable way. Such nice properties, like timely execution, must be enforced
by design and in the implementation. For instance, dedicated hardware may be
used to execute critical components, ensuring that they are temporally isolated
and shielded from failures in the complex part, and that interactions between the
two parts are done through a well-defined interface that preserves the properties
of the part containing critical components.

The architectural hybridization concept was explored in the context of the
KARYON project, which defined a generic architectural pattern for the develop-
ment of sensor-based autonomous and cooperative systems [7]. This architectural
pattern is shown in Figure 1.
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Fig. 1. The KARYON hybrid architectural pattern.

The several components that constitute the autonomous system and perform
the cooperative functions are considered the nominal system components. These
include sensors, actuators, computation and communication components. Each
of these components can be used to support multiple functions. Each function



can be provided with several levels of service (LoS), depending on the com-
ponents that are being used and/or the performance level of each component.
For instance, a function to detect obstacles ahead of a vehicle may be realized
with a higher LoS if implemented using a camera sensor and an associated video
processing component that is able to identify the kind of obstacle, but it may
also be provided with a lower LoS by using just the information provided by a
distance sensor. While it might not always be possible to execute a function at a
higher LoS, namely when some needed complex component is failing to execute
its function timely enough, it is assumed that it can always be executed at the
lowest LoS, given that in this case it is ensured that all the involved compo-
nents (considered critical ones) execute in a timely way. The hybridization line
separates the system in two parts: the one where no temporal bounds can be
assumed, and the predictable part, which contains critical components that are
expected to execute timely and reliably (by design and implementation).

The architectural pattern is based on a Safety Kernel that is responsible for
maintaining the system safe, despite the possible occurrence of faults affecting
components above the hybridization line. Safety conditions are determined at
design time. For each function, it is necessary to determine the safety rules that
must hold to allow the function to be executed with a given LoS, that is, using a
certain combination of components. For instance, the obstacle detection function
can only be run at the highest LoS if the video processing component is able
to timely process a video frame and provide results with good quality (which
may not be possible in bad lighting conditions). The role of the Safety Kernel
is hence to continuously extract information about the timeliness and quality
(or validity) of sensor and processed data, use this information to verify which
safety rules are satisfied, and adjust the system configuration at runtime so that
all the functions are executed with the highest LoS that still secures safety.

To perform its task, the Safety Kernel includes: a Safety Manager component,
a repository containing Design Time Safety Information, and a repository that
is continuously updated with Runtime Safety Information. We highlight the fact
that these components are located below the hybridization line. This is necessary
because the Safety Kernel, as a critical component, must behave in a reliable
and timely way.

3 Safety Kernel Design

Figure 2 provides an overview of the Safety Kernel functional components and
the data flows between them. At startup the eXtensible Markup Language (XML)
Parser reads a local configuration file, builds a Safety Rules repository and ini-
tializes Runtime Safety Information (RSI) structures, which will be continuously
updated in runtime with the relevant safety-related information. The configura-
tion file provides the safety rules and also unit definitions, expressed in XML.
A unit represents a Safety Kernel input (collected data), output (adjustment
data – typically a component performance level, PL) or locally calculated values
(for instance, the acceptable LoS for some function). Each unit has a unique
identifier that is used in the XML specification of the safety rules.



A safety rule is a boolean expression involving combinations of static values
(bounds) and unit identifiers. A safety rule is meaningful for a specific LoS of
some function. For instance, consider that a nominal system (e.g., an autonomous
vehicle control system) is designed to perform some function F (e.g., keep a safe
front distance value to any front object), and this function can be performed in
two different ways (e.g., using different sensors), one way providing a higher LoS,
(e.g., LoS2, allowing a smaller safety distance but requiring sensor data with high
validity, possibly not achievable in some situations), and a default way providing
a baseline LoS (LoS1, imposing a higher safety distance, proved to be enough
even when the validity of sensor data cannot be the highest one). In this case,
a safety rule would be necessary to specify the conditions for function F to be
safely executed in LoS 2. If the condition (a single one, in this example) was the
validity of sensor data, VSens, to be greater that 70, the safety rule would be
expressed as: F (LoS2)→ VSens > 70.
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Fig. 2. Safety Kernel components.

The Input Data Manager receives data inputs from the external (nominal
system) components and updates the RSI.

The Timing Failure Detector (TFD) is responsible for checking if certain data
inputs have been received from external components within predefined tempo-
ral bounds. This TFD executes periodically, during each execution round of the
Safety Kernel. When the TFD detects a timing failure (i.e., when some expected
data is not timely produced at the Safety Kernel interface), it stores this infor-
mation in the RSI unit corresponding to the untimely data. In this paper, as
detailed in Section 4, we propose a design that moves into hardware a significant
part of the TFD operation: the detection of timing failures.

The Data Component Multiplexer (DCM) selects, from two or more data in-
puts (collected from nominal components), one that is forwarded to its output.
This is useful, for instance, when a function can be realized using one of several
components that provide the same data (e.g., a front distance value), but with



different timeliness or different validity. The Data Component Multiplexer se-
lects, among the input values, the one that should be forwarded to the output
(and hence nominal system), according to the permitted LoS for that function.

Finally, the Safety Manager is the central component as it evaluates at run-
time if safety rules are satisfied given the RSI data.

4 Securing Design Assumptions Through Non-intrusive
Runtime Verification

The timeliness, safety and security guarantees of Safety Kernel correct operation
can be strongly enhanced through runtime verification, being of particular rel-
evance the verification whether the design assumptions specified for the Safety
Kernel are being strictly met or, somehow, have been violated.

4.1 Observer Entity

Runtime verification (RV) obtains and analyses data from the execution of a
system to detect and possibly react to behaviours, either satisfying or violating
a given specification. The classical approach to runtime verification implies the
instrumentation of system software components, such as the Safety Kernel. Small
components, which are not part of the functional system, acting as observers,
are added to monitor and assess the state of the system in runtime.
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The usage of reconfigurable logic supporting versatile FPGA-based com-
puting platform designs enables non-intrusive approaches to runtime verifica-
tion [16]. Non-Intrusive Runtime Verification (NIRV), provides high flexibility,
meaning instrumentation with software-based probes is not required, although
it may be used; configurability, which can be performed statically (offline) or
dynamically, while the system is executing; adaptability, in the sense it is able to
accommodate over time a set of different system-level, application-related and
even mission-specific event observations; independence and isolation, in the sense
that being supported directly in hardware, the accomplishment of runtime ver-
ification actions does not disturb nor introduce any overhead in the execution



of system software components, Safety Kernel included. Similarly, the execution
of software components does not ill affect the timeliness and effectiveness of
runtime verification actions.

The Observer Entity is plugged to the platform where the SK software com-
ponents execute, and comprises the hardware modules depicted in Figure 3: Bus
Interfaces, capturing all physical bus activity, such as bus transfers or inter-
rupts; Management Interface, enabling observer entity configuration; Configu-
ration, storing the patterns of the events to be detected; the System Observer
itself, detecting events of interest based on the set configurations; Time Base,
which allows to time stamp events of interest, to establish its occurrence rate
or to register its inter-arrival time and even to check if application-level and/or
system-specific time bounds are being fulfilled; System Monitor, which detects
possible violations to the specified system behaviour. As soon as a deviation
from the specified behaviour is detected, a notification is issued.

4.2 Safety Kernel Design Assumptions and Timeliness Analysis

Let us define TSK as the period of the Safety Kernel process. This process must
be completed within its period, thus defining the relative deadline, DSK :

DSK = TSK (1)

The Safety Kernel process is powered by two threads: a Listener Thread,
assuming the role of Input Data Manager (depicted in yellow in Figure 2), is
activated for every incoming packet; a Periodic Thread, identified as Timing
Failure Detector in Figure 2, runs once every Safety Kernel period. Given that
Clistener thread and Cperiodic thread represent the worst-case execution time, re-
spectively for the Listener and Periodic threads, and that Npackets represents the
maximum total number of input packets received during a single TSK period,
one will have the following timing constraint:

Npackets × Clistener thread + Cperiodic thread ≤ DSK (2)

As illustrated in Figure 2, there are different types of incoming packets,
namely: heartbeat, data validity, multicomponent data or cooperative level of
service. In the design of the Safety Kernel we assume the number of packet
types is upper bounded by PKT TY P . The worst-case execution time for a sin-
gle activation of the Listener Thread, Clistener thread, corresponds to the longest
worst-case processing time of a packet, out of the worst-case packet processing
times for each packet type, Cpkt processing(typ). We also take into considera-
tion the worst-case processing time necessary to read a packet from the corre-
sponding interface (whose location is well known and statically defined), either
through (memory-mapped) I/O ports and/or network interfaces, represented by
Cpkt reading. The maximum value of Clistener thread can be expressed as:

Clistener thread = Cpkt reading +maxPKT TY P
typ=1 {Cpkt processing(typ)} (3)



In contrast with the Listener Thread, the Periodic Thread runs only once
per SK period executing three functions in sequence and in the following order:
a residual software part of the original TFD (Figure 2), that we name herein
Timing Failure Detector Service Function (TFD SF), the Safety Manager (SM)
and the Data Component Multiplexer (DCM). The Periodic Thread worst-case
execution time, Cperiodic thread, is therefore given by:

Cperiodic thread = CTFD SF + CSM + CDCM (4)

The DCM function scans the unit1 array to find out the component data
value to be forwarded and has a worst-case execution time given by CDCM .
The Safety Manager is a more complex function as it evaluates for each unit
the safety rules and determines the new level of service or performance level.
Given the number of items (e.g., number of units, number of safety rules per
unit, etc.) to be processed by the Safety Manager is bounded by design, its
execution time is assumed to not exceed the upper bounded given by CSM .
The Timing Failure Detector Service Function is much simpler: it scans the unit
array to find out if there are updates (e.g., heartbeat, data validity,...) untimely
received and analyses them: a minimum number of required successes and a
maximum number of tolerated failures (both configured at the Safety Kernel,
per input unit), have to be observed in a row to prevent instability and to steadily
declare the corresponding input unit as ”timely” or ”non-timely”, respectively.
This function executes within a time that does not exceed CTFD SF , being
CTFD SF < CTFD, the worst-case execution time of the original Timing Failure
Detector entirely implemented in software.

4.3 Runtime Monitoring of Safety Kernel Operation

Let us define tSK begin,j and tSK end,j , as the real-time instants where the jth

instance (job) of the Safety Kernel process begins and ends, respectively. Ad-
ditionally, we define npkt,j as the actual number of packets received within the
duration of the jth job of the SK process, i.e. during the interval:

δSK,j = tSK end,j − tSK begin,j (5)

Thus, one will have the following RV value and timing constraints:

∀j∈N 0 ≤ npkt,j ≤ Npackets (6)

∀j∈N 0 ≤ δSK,j ≤ DSK (7)

1 A unit corresponds to a Safety Kernel information structure, concerning input (col-
lected data), output (adjustment data) or locally calculated values. The term unit
is coined from the Safety Kernel XML configuration file (§3).



Verifying that no more than Npackets are received during each TSK period, as
given by Expression (6), implies: initializing an Observer Entity counting monitor
with the Npackets value each time an instance of the SK process is started; the
value of the counter is decremented by one whenever a packet is received; if it
reaches a value smaller than zero, a violation is signalled. Detecting when an
instance of the SK process begins is achieved by configuring the address of its
first instruction as an event of interest and linking it to the counting monitor.

Verifying the timeliness of an SK job implies the use of a timeliness monitor,
a specialization of a counting monitor, which is initialized with the job relative
deadline, as specified by Expression (7); the time counter is decrement by one at
each system clock tick; if the time counter reaches zero, a timeliness violation is
signalled; the time counter is stopped/restarted when an SK job is completed.
Detecting when an SK job begins and when it ends is achieved by configuring,
respectively, the address of its first and last instructions as events of interest,
which will trigger the relevant (re)start/stop actions at the timeliness monitor.

The timing failure detection capabilities of the original Safety Kernel TFD
design, described in Section 3, are herein moved to hardware and fully integrated
in the Observer Entity. A timeliness monitor is instantiated for each relevant
data input, being (re)started whenever a data input packet (e.g., heartbeat, data
validity,...) is received by the Listener Thread. If it expires, a timing failure has
been detected and it will be signalled to the Timing Failure Detection Service
Function. For better integration with the software functions the signalling of
timing failures is made through globally accessible memory variables.

The role of the TFD, implemented either in hardware or in software, is to
detect untimely behaviours of components in the nominal system, allowing the
Safety Kernel to act before any harmful effect becomes externally visible, e.g.
by changing the LoS or the PL (see Figure 2). Violation of Safety Kernel de-
sign assumptions is a more severe situation, calling for some form of exception
handling that hopefully will bring the system into a safe state. Since, in general,
these situations were unforeseen in the design of the system, no guarantees can
be provided that the adequate corrective actions (if any) are taken2.

5 Safety Kernel implementation and evaluation

For the implementation of the Safety Kernel, a suitable hardware/software plat-
form must be selected. The functional elements to be provided by the hardware
platform include: Processing Unit, providing the computing resources; Read-
Only Memory (ROM), to store the Safety Kernel software code and the safety
rules; Random Access Memory (RAM), supporting the Safety Kernel execu-
tion; Input/Output (I/O) Interface, to enable the exchange of data between

2 Most probably, there will be little to do anyway, if the design violation happens
during a mission critical phase, such as the landing of a planetary probe. However,
that does not necessarily imply the failure of the mission. For example: multiple
(overload) alarms, occurring during the descendent flight of the first Moon landing,
were advisedly discarded by the Apollo 11 lander crew.



the Safety Kernel and the nominal system components. The software platform
should include fundamental real-time operating system support concerning: pro-
cess/thread management and scheduling; input/output management and access,
e.g. through device drivers.

5.1 Hardware platforms and software implementation

In KARYON, the fulfillment of the requirements was achieved by using a devel-
opment board containing a reconfigurable logic device (FPGA), together with
Intellectual Property (IP) cores from a System-on-a-Chip (SoC) library [1], map-
ping the functional elements into the reconfigurable logic device. The selected
development board (shown on the left, in Figure 4) was a Trenz TE-0600, com-
prised of: Xilinx Spartan-6 FPGA; 256 MiB3 of RAM memory; Ethernet physical
interface; Flash ROM and an Secure Digital (SD) card physical interface.

The Flash ROM (not shown in Figure 4) serves as non-volatile storage for
the Safety Kernel, whilst the SD Card interface supports the Safety Rules, writ-
ten offline to an SD card. The FPGA supports the mapping of the controller
mechanisms for these memory interfaces, together with the processing unit and
Ethernet controller.

The functional elements implemented in the FPGA (shown on the right, in
Figure 4) were provided by the GRLIB SoC library [1], which encompasses IP
cores providing I/O functions, such as Ethernet and serial interfaces, together
with the remaining components needed to implement a fully-fledged embedded
computer, e.g. memory and interrupt controllers. The processing unit was imple-
mented by the LEON3 soft-processor, a SPARCv8 architecture commonly used
in avionics applications by the European space industry.
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Fig. 4. Hardware platform for the Safety Kernel implementation.

Furthermore, this hardware platform is able to support all the resources
required by the runtime verification techniques proposed in Section 4.3. Since the
Observer Entity is essentially composed of a few counting blocks, its complexity
is much lower than any other component in the FPGA (right side of Figure 4)
and therefore uses only a small fraction of the occupied FPGA resources.

3 This corresponds to the prefixes for binary multiples defined in the IEC 60027-2
standard specification [10].



As software platform, we used the RTEMS real-time operating system [15]
installed on the Trenz TE-0600 hardware board. After initialization, when the
configuration file is processed, two concurrent POSIX threads are used to execute
the Safety Kernel functions detailed and analysed in §4.2: the Listener Thread,
which handles incoming information to update the runtime safety information
repository; the Periodic Thread, which is triggered every TSK time units (e.g.,
milliseconds), where TSK is the Safety Kernel execution period. This value can
be changed in the XML configuration file.

To evaluate the concrete impact of using soft-processor cores, a fully-fledged
software-based implementation of the Safety Kernel was deployed on an alter-
native platform, composed of a real-time Linux environment on a Raspberry Pi
Model B Revision 2.0, with a ARM11 processor at 700Mhz [22]. Integration of
non-intrusive runtime verification mechanisms was not possible in this platform,
since the SoC present in the current versions of Raspberry Pi does not include
the ARM CoreSight facilities [3], indispensable to secure non-intrusiveness of sys-
tem observation in ARM-based platforms. The unavailability of reconfigurable
logic devices on the simple Raspberry Pi platform also precludes the implemen-
tation in hardware of SK TFD functions. A Safety Kernel entirely implemented
in software had to be used on the Raspberry Pi platform [22].

5.2 Performance evaluation

To properly configure the Observer Entity it is necessary to know the Safety
Kernel execution period, TSK . Moreover, from a practical perspective, it is also
important to know if TSK is sufficiently small so that the Safety Kernel can
be used in a given application. In fact, this period corresponds to the maximum
latency of timing failure detection and also to the time it may take for the Safety
Kernel to trigger a system reconfiguration.

Therefore, we performed a set of experiments to evaluate the achievable val-
ues for TSK and illustrate the feasibility of the approach. According to Expres-
sions (1) and (2), TSK depends on the worst-case execution time of two threads.
The main thread involves the execution of the Timing Failure Detection (TFD)
component, the Safety Manager (SM) and the Data Component Multiplexer
(DCM). Given that the verification of safety rules is a complex task, the worst-
case execution time of this periodic thread, Cperiodic thread, can possibly be high.
On the other hand, the Input Data Manager task is very simple, just requiring
a input unit to be updated, which means that the worst-case execution time
of the listener thread, Clistener thread, is typically much smaller. Even knowing
that the listener thread wakes up several times per SK period, this number is
usually limited to the number of input units. In fact, each different input unit
is expected to be updated only once per SK period because there is no point in
overwriting the same input unit with indications on the validity of data or on
the execution timeliness of some nominal system component. The overhead of
the listener thread will only become relevant in systems in which the number of
different input units is high. If, for some reason, a nominal system component
starts to send more packets to the SK and waking up the listener thread more



times than expected, the constraint specified in Expression 6 will be violated
and this will be detected by the Observer entity.

Given the above, we focused our experiments on the evaluation of the Periodic
Thread response time, which in this particular case is equal to the Periodic
Thread execution time, upper bounded by Cperiodic thread.
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The first experiment was done using the SK implementation on the LEON3
soft-processor, as described in §5.1. To measure the execution time of SK com-
ponents, we instrumented the SK code using start/stop timer functions provided
by the underlying operating system (RTEMS or Linux), whose temporal inter-
ference on the SK execution is very small and can be neglected. Note that this
instrumentation, despite intrusive, was necessary only for evaluation purposes
and is fully independent from the Observer Entity, whose runtime verification
mechanisms are still non-intrusive. The objective of the experiment was to de-
termine the influence of the number of safety rules on the execution time of the
periodic thread. Therefore, we created SK configuration files implying the con-
struction of a number of safety rules varying between 1 and 100. As explained
in §3, a safety rule is a Boolean expression whose value evaluates to true or false
depending on input data received by the SK (through the Input Data Manager
task). The safety rules we used in the evaluation involve one input unit, one out-
put unit and a single comparison. The complexity of the safety rules evaluation
algorithm stems from the need to parse a tree-like data structure, initialized at
startup time and containing the input and output units, as well as the logical
operations and bounds. The details of this data structure and the executed al-
gorithm are out of the scope of this paper and can be found in [26]. For each
configuration we measured the contribution of each of the three executed com-
ponents (TFD, SM and DCM) for the overall execution time. The experiments
were repeated 100 times and the average values were collected (the standard
deviations are very small, in the order of a few microseconds, and therefore we
do not show them).

The results of the first experiment are show in Figure 5. They clearly show
that both the TFD and DCM components have a constant execution time, in-
dependent of the number of rules to be checked. On the other hand, the SM



component execution time increases linearly with the number of safety rules.
Therefore, it is possible to conclude that the SK execution time is mainly and
linearly dependent on the number of safety rules, that is, on complexity of the
application. However, the absolute value, which reaches 6ms for 100 safety rules,
is significant. In systems requiring a reaction time of less than 60ms, at most
1000 rules would be acceptable, which seems limited. The reason for such high
execution time is fundamentally due to the fact that the SK is running on a
soft-processor infrastructure.

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Ex
ec
u
ti
o
n
 t
im

e 
(
s)

Safety rules

Safety Kernel implementation on Raspberry PI

TFD

SM

DCM

Fig. 6. Periodic thread execution time on a Raspberry PI.

To understand the concrete impact of using a soft-processor, we performed
a second experiment by deploying the SK on a real-time Linux/Raspberry Pi
platform. The same experiments were performed and yielded the results shown
in Figure 6.

The most important observation is the significant reduction of the execution
time, as expected. Instead of 6ms, processing 100 safety rules takes no more
than 300µs, which is 20 times less. The approach seems thus feasible for most
applications, provided that a reasonably good processor is used.

5.3 Effectiveness and feasibility analysis

The Safety Manager has, in general, a worst-case execution time, TSM , which
largely exceeds those of the Timing Failure Detector, either of the entirely
software-based solution, TTFD, or of the hardware/software co-design introduced
in section 4, TTFD SF . Since, TTFD SF < TTFD << TSM , the performance im-
provement due to a smaller TTFD SF value is not significant in terms of the
overall Safety Kernel operation. Methods to reduce the value of TSM , allowing
a significant performance improvement, will be addressed in future work.

At this point, the main benefit provided by the non-intrusive runtime veri-
fication mechanisms is to secure the Safety Kernel design assumptions. Instead
of resorting to classical code instrumentation, which is inherently intrusive, our
approach relies on independent, isolated and non-intrusive runtime verification
mechanisms, easily integrated in reconfigurable logic supporting soft-processors
(e.g., LEON3), such as the Trenz TE-0600 platform (see §5.1). Integration of



non-intrusive runtime verification mechanisms in platforms based on ARM pro-
cessors is dependent on the availability of ARM CoreSight facilities [3].

Detecting a violation of SK design assumptions may significantly contribute
to enhance the overall system dependability. For some usages, a special-purpose
exception handler could be programmed within the SK context to activate exist-
ing safeguard functions, e.g. for the safe stop of a terrestrial/maritime unmanned
autonomous vehicle. In general, such functions may not exist (cf. §4.3).

6 Related Work

A novel perspective on distributed systems’ architecture was settled by the no-
tion of hybridization in [25] and [23]. The concept of architectural hybridization
and its diverse advantages were further discussed in [24]. System parts with dis-
tinct synchronism [25] or security [8] properties can take advantage of hybrid
distributed system model approaches. Hybrid system modeling has also been
previously applied to autonomous control systems [2]. The hybrid nature of sys-
tems was also acknowledged in [14], which developed a component-based generic
platform for embedded real-time systems.

Both offline and online runtime verification (RV) approaches have been pre-
viously studied, with online RV receiving increased attention due to its many
benefits regarding safety and performance [4]. Furthermore, non-intrusive run-
time monitoring has been previously applied in embedded systems [27, 17] and,
more specifically, in safety critical environments [11], presenting an RV archi-
tecture for monitoring safety critical embedded systems using an external bus
monitor connected to the target system. A novel System Health Management
technique was introduced in [18] which empowers both real-time assessment
of the system status with respect to temporal-logic-based specifications and
supports statistical reasoning to estimate its health at runtime. Configurable
non-intrusive event-based frameworks for runtime monitoring have been devel-
oped within the embedded systems’ scope [13], employing a minimally intrusive
method for dynamic monitoring. Additionally, the RV concept has been applied
to cyber-physical systems [28], autonomous systems [5], avionic systems [20, 19]
and to an AUTOSAR-like real-time operating system, aiming the automotive do-
main [9]. [12] describes a runtime monitoring approach for autonomous vehicle
systems requiring no code instrumentation by observing the network state.

7 Conclusion

This paper addressed the problem of hardware-based non-intrusive runtime ver-
ification, considering its application on a system with a hybrid architecture.
Hybridization allows separating the system in at least two parts, making strong
assumptions (on the temporal and/or security domains) only for one of the parts,
typically a small one. It is thus important not only to verify in design time that
these strong assumptions are effectively satisfied, but also to verify them in run-
time, particularly when the operational conditions cannot be fully anticipated.



We described an approach for non-intrusive runtime verification and ex-
plained how it is applied in a concrete case: to verify a set of assumptions under-
lying the design of a Safety Kernel, also described in the paper. The approach
was used to verify timing assumptions and also assumptions on the maximum
number of events occurring in a time interval.

Finally, the paper also provided experimental results to illustrate the per-
formance that might be expected from two implementations of a Safety Kernel:
one running on a soft-processor and another running on a real ARM processor.
The results show that with a hardware processor it is possible to use a Safety
Kernel in complex applications. On the other hand, we described some feasibility
constraints for applying our verification approach on ARM processors. We plan
to address these constraints in future work in order to take full advantage of the
proposed non-intrusive verification approach.
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