CYBERTHREAT DISCOVERY IN OPEN SOURCE INTELLIGENCE (OSINT) USING DEEP LEARNING TECHNIQUES

Eunice Branco Pedro Ferreira Alysson Bessani

MOTIVATION

Security Information and Event Management systems help monitor infrastructures and correlate the obtained events in order to discover possible threats to the organization

Open Source Intelligence Data Fusion and Analysis

An increasing need to process large amounts of data regarding new emerging security threats

STATE OF THE ART

STATE OF THE ART — PROBLEM STATEMENT

Monitored IT Infrastructure

OSINT

Data Sources

STATE OF THE ART — APPROACHES

STATE OF THE ART — LIMITATIONS

Shallow learning methods rely on **searching** and **specifying the input features** to define a model

ENVISIONED SOLUTION

ENVISIONED SOLUTION

Deep learning models learn concepts and features directly from raw data and work on huge data sets

Works with non-trained parameters

It is not problem specific oriented

More layers equal more functions

OBJECTIVE

Process large amounts of OSINT data using deep learning techniques with a high degree of accuracy regarding cyberthreat discovery

ONGOING WORK

ONGOING WORK

CYBERTHREAT DISCOVERY IN OPEN SOURCE INTELLIGENCE (OSINT) USING DEEP LEARNING TECHNIQUES

Eunice Branco, Pedro Ferreira, Alysson Bessani

1. MOTIVATION

The increasing need to process large amounts of data regarding new emerging security threats

2. STATE OF THE ART

Text based filters

Statistical approaches

Shallow Neural Networks, SVMs

3. LIMITATIONS

Shallow learning methods rely on searching and specifying the input features to define a model

ENVISIONED SOLUTION:

Deep learning models learn concepts and features directly from raw data and work on huge data sets

4. OBJECTIVE

Process large amounts of OSINT data using deep learning techniques with a high degree of accuracy regarding cyberthreat discovery

5. Ongoing Work

We will consider complementary approaches while making use of **Deep Neural Networks**

- Input Cell
- Convolution
- Hidden Cell
 - Output Cell

Supervised Network

