Machine Learning with Big Data

Specialized distributed systems for machine learning purposes
Overview

- Why distribute machine learning?
- Systems
 - Map-Reduce – Hadoop
 - Resilient Distributed Datasets (RDD) – Spark
 - Parameter Server
 - Tensor Flow
- Evaluation
WHY DISTRIBUTE MACHINE LEARNING?
Why distribute?

- Machine learning? The more data, the better
 - But, required resources increase constantly

- Big companies gather *bytes of data per day
 - Processable for data mining, not machine learning

- Not all tasks are eligible for data mining, such as classification
Distributed approach

- Machine learning is typically a sequential task
 - The “model” is a centralized object
 - Each item it learns affects its state

- Crunching this data is unfeasible in a single machine – use a distributed approach

- How to distribute machine learning?
Systems

HADOOP
Map-Reduce architecture
Map-Reduce ideas

- Split “splittable” problem to workers (map)
- Gather results from workers (reduce)

- Main innovation is on the algorithm itself
 - Particularly good for text processing, but not thought for a very specialized task
Resilient Distributed Datasets

- “Formally, an RDD is a read-only, partitioned collection of records.” [1]
- RDDs can only be created through deterministic operations on (1) data in storage or (2) other RDDs
- Operations include map, filter, and join
- Operations are stored in RAM
- An RDD has enough information to be reconstructed after a failure
- Persistence on disk automatically or on demand
RDDs vs Map-Reduce

- Allows data reuse for (e.g.) iterative machine learning and graph algorithms
- Recovery after failures is faster
- Requires more RAM (expensive machines)
Systems

PARAMETER SERVER
Parameter Server

- Specific for machine learning
- Assumes features are already extracted
Map-Reduce

- For one job
 - One master
 - N slaves
- Master tracks job state
- Jobs advance in map-reduce rounds

Parameter Server

- For one job
 - K masters
 - J slaves, $j > k$
- State is shared among servers
- Features are learned continuously, in a distributed fashion
Architecture

Server 1 (MASTER) Server 2

STATE

Feature Feature Feature Feature
Architecture

Server 1 (MASTER)	Server 2
Feature | Feature | Feature | Feature

STATE
Architecture

Server 1 (MASTER) Server 2

STATE

Feature Feature Feature Feature

Worker Worker Worker Worker
Architecture

Server 1 (MASTER) Server 2

STATE

Worker Worker Worker Worker
Architecture

Server 1 (MASTER) Server 2

STATE

Worker
Worker
Worker
Worker
Architecture

Server 1 (MASTER) Server 2
STATE

Merge Replication

Worker

Worker

Worker

Worker
Job attribution

- Job attribution and result gathering can be sync or async
 - Sync: learning converges in fewer steps
 - Async: more steps can be performed vs sync
- Effectively, it parallelizes learning at cost of converging the state
Fault tolerance

- Fault tolerance through rescheduling jobs
- Replication by duplicating k neighbors

Figure 7: Server node layout. [2]
Systems

TENSOR FLOW
Tensor Flow

- Specific for machine learning
- Similar to/based on parameter server, but adds efficiency mechanisms
 - Plans required jobs
 - Jobs are distributed to the most adequate hardware available
 - Uses specialized, efficient software

- How?
Job attribution

- Transform algorithm (task) into a graph format
- Evaluates the available resources
 - CPUs
 - GPUs (for acceleration)
- Attributes the nodes (jobs) of the graph to the resources
Job attribution

- Each job is a set of operations
- Operations are mathematical, such as matrix addition
- Each operation is implemented in a kernel
- A large set of kernels is available
 - The set is expansible
Architecture

Algorithm

Transform

Kernel
Architecture

Algorithm

Transform

Kernel

Deploy

Param server

Param server

Param server

Param server

CPU

GPU

CPU

GPU

CPU

GPU
Architecture

Communication
Synchronization
(as parameter server)

Param server

CPU
GPU

Param server

CPU
GPU

Param server

CPU
GPU

Param server

CPU
GPU
EVALUATION
Hadoop and Spark

- Amazon EC2 m1.xlarge machines
 - 4 cores
 - 15GB RAM

(a) Logistic Regression
Parameter Server

- Sparse Logistic Regression
 - Ad click prediction dataset with 170 billion examples and 65 billion unique features
 - This dataset is 636 TB
 - Parameter server on 1000 machines:
 - 16 cores, 192GB DRAM, connected by 10 Gb Ethernet
 - 800 workers, and 200 parameter servers
 - The cluster was in concurrent use by other (unrelated) tasks during operation.
Parameter Server

- Sparse Logistic Regression

Figure 9: Convergence of sparse logistic regression. The goal is to minimize the objective rapidly.
Parameter Server

- Sparse Logistic Regression

Figure 9: Convergence of sparse logistic regression. The goal is to minimize the objective rapidly.
Tensor Flow

- Google’s Inception-v3 model (Google image recognition system using neural networks)
- 17 Param. servers, each with 8 IvyBridge cores
- Variable number of workers, each with
 - NVIDIA K40 GPU (12GB GDDR5, 1.43 double-precision Tflops, 4.29 single-precision Tflops)
 - 5 IvyBridge cores
Tensor Flow

(a) Training throughput

<table>
<thead>
<tr>
<th>Images/second</th>
<th>Number of workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
</tr>
<tr>
<td>1500</td>
<td>200</td>
</tr>
</tbody>
</table>

- Asynchronous
- Synchronous
Conclusions

- Map-Reduce covers a large set of problems, but...
- Specific problems require specialized approaches
- Parameter Servers and Tensor Flow specialize in math-based problems, with clear benefits
Bibliography

Appendix

- Spark
 - https://github.com/apache/spark
 - Built with Maven

- Parameter server
 - https://github.com/dmlc/ps-lite
 - Built with Make build system

- TensorFlow
 - https://github.com/tensorflow/tensorflow/
 - Install with python package manager *pip*