How to do Research in the Navigators@LASIGE

Alysson Bessani
(with contributions from Antonio Casimiro, Paulo Verissimo)
Faculdade de Ciências da Universidade de Lisboa

https://navigators.di.fc.ul.pt/
https://lasige.pt/
Academia
Academia
(if you move in the first division)

- Highly competitive environment
 - Funding
 - Publishing
 - Impact

- Good researchers are high-competition athletes
Main issues
Define your Objectives
(Different Objectives at Different Levels)

<table>
<thead>
<tr>
<th>Level</th>
<th>Publication</th>
<th>Quantity/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergrad</td>
<td>Meetings, soft pubs</td>
<td>1</td>
</tr>
<tr>
<td>Masters</td>
<td>Nat. Conf. A</td>
<td>1 or 2</td>
</tr>
<tr>
<td></td>
<td>Nat. Journal A or Int. Conf. B</td>
<td>0 or 1</td>
</tr>
<tr>
<td>PhD/Pos-Doc</td>
<td>Int. Journal A or Conf. A</td>
<td>1+</td>
</tr>
<tr>
<td></td>
<td>Int. Conf. B</td>
<td>1+</td>
</tr>
</tbody>
</table>
Read a lot!

• Which are the confs and journals on your field?
 – When you have the relevant list, go to the internet and read the title (and maybe the abstract) of most papers published there over the last ten years
 – Download the ones you think are interesting (in accordance with your advisor) and read them
 – Periodically, go to the conference/journal website to see what is new

• Find the key researchers and follow their work!
Read a lot!

• How many papers per week?
 – there are no magic figures, but, when you are starting, be prepared to, *on average*:
 • explore 5 to 10 per week (abstract, intro, concl.)
 • read 3 to 5 per week
 – this includes course assignments, your advisor suggestions, your initiative
 – it depends on the phase of your research
Read a lot!
(Don’t worry if you don’t understand everything)

• For each paper you read:
 – Ask yourself whether you understood it:
 • can you explain it in your own words?
 – Exercise your critical view!
 • Is the problem relevant?
 • Are assumptions realistic? Is the model sound?
 • What are the contributions? How practical the solution?
 • Is the provided evaluation/proof fair and/or rigorous?
 • Are experiments repeatable and comparable?
 • How could you improve this work?
Choosing a Research Topic

• Try to find a problem/topic that you care about…
 – Or, at least, find one whose importance you can explain
 – You NEED to know how to sell your idea as a worthwhile research topic:
 • to your advisor
 • to the Thesis Committee
 • to the community when you publish later
The Advisor(s)

• Your advisor will help you, but it is YOUR Masters/PhD

• It is your responsibility to make your advisor be excited about your work and work on it with you
 – The environment is informal, but we are professionals!

• Golden rules to respect his/her time and effort:
 – Be responsible with deadlines
 • Every deadline you miss, you lose the respect of your advisor
 – Be careful with the quality of what you deliver
 • Before delivering something to your advisor(s), ask yourself: “Is this the best I can do (given the time constraints)?”
Doing Research
The Idea

• Always ask the following questions:
 – What is the main contribution?
 – What are the benefits/merits (selling point) of the approach?
 – Why is it different from previous works?
• That’s when you’ll thank yourself for having read enough to answer these questions with some confidence
Formalization

• Problem definition
 – Define your problem and show why solving it is important
 – A solution in search of a problem is just the wrong way

• System model
 – Define your constraints and assumptions
 – You should characterize unambiguously both the problem and the environment where the proposed solution is valid

• Use the formalization approach that is understood and accepted in your community/field
Formalization

• Presenting the solution: Algorithm, Mechanism, Protocol
 – Intuition: give an intuitive overview of the solution
 – Self-containedness: choose the level of abstraction that fits the paper size
 – Pseudo-code: use good latex packages like algorithm2e to enhance presentation, use line numbers

• Formalizing the solution:
 – Operation: describe the operation of your solution concisely but precisely, referring to the pseudo-code (refer to line numbers)
 – Proofs: no protocol/algorithm is correct until proven so
 – Metrics: prototype or simulation may be useful ways of showing your point, whether you have made a proof
Implementation

• If your work requires implementation, try first to modify something that is already done/used

• Advantages:
 – Well-written (maybe) code but above all it’s tested
 – You (automatically) gain a base for comparison
 – Makes the work more interesting for reviewers or thesis committee members

• Disadvantages:
 – Code from others is (generally) more complex than our toy examples and prototypes
 – The code may not work as expected
Evaluation
(Be honest and critic but don’t be dumb!)

• Two attitudes to avoid
 – Being too smart: evaluate only the cases that you know are advantageous for your approach; ignore negative outliers
 – Being too critic: over-evaluate, -discuss and -justify the cases in which your approach is not the best one

• Common mistakes:
 – Not defining the questions that the evaluation aims to answer
 – Not giving enough detail so that experiment is reproducible
 – Not justifying experiment’s parameters and workloads
 – Not comparing the proposed approach with others
 – Not interpreting, explaining and justifying obtained results
The Papers
Writing Papers

• Writing well is very hard!
 – First step to writing well is reading a lot
 – Then: practice, practice, practice
 – Every good paper is the result of many successive refinements

• Each paper has a “champion”
 – He/she is the owner of the paper, responsible for splitting the work among authors, asking for their parts and integrating the results in a single paper
 – Never work on a paper without a champion!
Writing Papers

• General philosophy:
 – Tell people about the problem you are going to solve
 – Tell people how you solve the problem
 – Tell them you solved it!
Writing Papers

• TODO list:
 – Description of the problem
 – Make contribution and significance clear
 – Related work
 – Describe environment and model
 – Describe the solution
 – Validate your solution
 – Lessons learned (Why is your paper worth reading?)
Writing Papers

• What writing a good scientific paper is about
 – it must: (i) not only be correct; but (ii) perceived as useful by the community; and (iii) interesting to read
 – papers with just (i) count for your curriculum but they are write-only papers, i.e., papers that no one reads, ergo no one cites
 – papers with (i) and (ii) are ok, specially for Calvinists
 – papers with all three, readers will: love you for that, cite you a lot more, be willing to read your next one
Writing Papers

• Steps to writing a paper:
 1. Write the storyboard for yourself and other authors: a paper should be a good story
 2. Build a structure (sections and sub-sections)
 3. Each section must be filled with a bulleted list
 - You are telling a story, each argument needs to be linked…
 - A scientific text is an algorithm in itself (hence LaTeX 😊)!
 4. Add figures, tables, and informal references
 5. Consolidate bullets into paragraphs
 6. Collect formal references and related work
 7. Reiterate by successive refinement until done
Writing Papers (wrap-up)

• **The introduction needs to be perfect**
 - Most reviewers can decide to reject your paper after reading the introduction

• **Same for the presentation and style (text, figures and general appearance)**
 - Remember, we don’t do write-only papers

• **Ask for feedback from your colleagues**
 - Sometimes better if some don’t work in the same area (like reviewers); *feedback is fundamental!*
 - Include a couple of outside experts
Submitting Papers

• Workshops
 – Very good for
 • disseminating early results
 • discussing a problem
 • getting feedback
 • meeting other people working on your area
 – Counts little for CV evaluation
 – Some of them are very good (and competitive): HotOS, HotNet & HotStorage
Submitting Papers

• Conferences
 – The good conferences in CSE may be harder and have more prestige than the best journals
 • TYP acceptance rate less than 20%
 • Papers with 12-16 pages (longer than some top journals)
 – These are what we call *heavy-weight conferences*
 – PCs in each community expect a particular style of papers, so before submitting to a top conference, try to learn their style (i.e., read a lot!)
Submitting Papers

• Some Excellent and VG confs (not complete):
 – Distributed Systems: ICDCS, IPDPS, Middleware
 – Distributed Syst. Theory: PODC, DISC, OPODIS
 – Dependability: DSN, SRDS, ISSRE
 – Networks: SIGCOMM, NSDI, INFOCOM, CoNEXT
 – Systems: SOSP/OSDI, EuroSys, USENIX ATC
 – Real-time: RTSS, RTAS, EuroMicro
 – Machine Learning: NIPS, ICML, ECML-PKDD
Submitting Papers

• Acceptance rate
 • A good half of the papers submitted to a top conference don’t stand a chance even before the PC show starts
 • From the remainder, bottom half have little chances

• If you follow the rules presented, you have:
 • a good chance of staying out of the sudden-death half, right from the beginning
 • Getting to the top quarter and fighting for an accept is another thing…
Submitting Papers

• As you build experience, you should aim to *systematically* be in the top 25%
 – You get to know you’re there because reviews get better
 – Getting there implies keeping on reading reviews with self-criticism and scrupulously analysing constructive criticism
 – Above a certain standard, fair English is an obstacle --- not making mistakes is not enough, you need style.
 • Improve!
 • Rely on senior co-authors, their touch may make the difference

• Still, you paper may be accepted or not 😊
 – Everyone has rejected papers! Especially if you aim high!
Submitting Papers

• Journal
 – Disadvantages:
 • “arguably” less immediate visibility, which may be counterproductive in a lively field as CSE
 • to overcome this, consider first submitting to conferences and evolve best works to journal
 – Advantages:
 • Science bureaucrats love it, gives substance to your CV and plus it makes sense, it’s an archival grade work, read below
Submitting Papers

- Papers in the best journals are **substantive** and **archival grade**
 - Clear and complete contribution in a subject
 - Rigorous in the formalization, proofs or metrics
 - Carefully evaluated, no loose ends
- Reviewers are generally more responsible and accountable
 - You have a chance for a dialogue and rebuttal
 - (this is the case also in many top conferences)
Submitting Papers

Revising and Responding to Reviewers

- Always show that you took reviewers’ comments into account, through the response letter.
- Consider politely challenging the review points with which you don’t agree, the editor is an arbiter between you and the reviewer.
- A good method to prepare both your revision and your response, is to pass all reviews to a text processor and exhaustively comment all significant remarks in-line in different colour, proposing what to do to address or challenge.
Submitting Papers

- Some good journals and magazines (far from complete) in no special order:
 - IEEE Transactions on …
 - ACM Transactions on …
 - Journal of ACM
 - Distributed Computing (Springer)
 - Computer Networks
 - IEEE Security and Privacy Magazine
 - Journal of Computer Security
The Reviewer

• Often (though not always) reviewers are very smart and have good intentions

• However,
 – They don’t have time
 – They expect fair amounts of scientific and engineering work
 – They may not be experts in your topic
 – Some (rare) may not have good intentions
The Reviewer

• Keep these things in mind:
 – Don’t make it easy for them to reject your paper
 – Try to finish it up as sphere (no place to grab)
 – Citations are (typically) free, certain people don’t like not to be cited
 – Don’t belittle past work that you are advancing from:
 • you should step on others’ shoulders, not on their toes
 • you may be next…
Navigators’ Publishing Policy

• Submit preliminary work early to a *good* workshop
• Submit a finished paper to a *good* conference
• If accepted, great!
 – If it is worthwhile, prepare an extended version (at least 25% of new content) and submit to a journal
• If rejected, ask yourself:
 – Some problems or just unlucky? Solve them and try again
 – Misunderstood? Under fire? Improve and send to a journal
To Conclude…

• What you get for staying in the academia:
 – You don’t need to work under direct orders
 – You get to participate in defining what you work on
 – You get to know the world and meet the smartest people
 – You have substantial freedom to manage your time

• What you must give:
 – Reciprocate with top quality, self-responsibility, team spirit
 – **Work hard! Be better than you were yesterday!**
 – Love what you do and be proud of how good you are
 – Don’t be afraid to have ideas, ask questions, criticize
 – Be your greatest critic but accept constructive criticism
Some References

• Randy Pausch. The Last Lecture.
 – Video: http://www.youtube.com/watch?v=ji5_MqicxSo

• Strunk & White. The Elements of Style. 4th edition. Longman.
 – Book about the style of written English, highly recommended.

• Phil Guo. The PhD Grind - A Ph.D. Student Memoir. 2012.
 – http://pgbovine.net/PhD-memoir/pguo-PhD-grind.pdf

• Levin & Redell. How (and how not) to write a good systems paper.
 – http://www.usenix.org/event/samples/submit/advice.html

• John Wilkes. How to write a good [systems] paper (things I wish my mother had told me), EuroSys 2006 Authoring Workshop

• Material in the pages of professors Priya Narasimhan and Mike Dahlin