Chapter 8
Open System Architecture (OSA)

The aim of Delta-4 Open Systemy Architecture (OSA) is to offer the whole range of the Delta-4
distribution and dependability techniques in an environment in which heterogeneity must be
accommodated. OSA is open 1o heterogeneous hardware and local executives. In particular, it is
able 1o accommodate off-the-shelf host computers that have not been specialized for fauli-
tolerance and have a priori no built-in mechanisms for that purpose. The Delta-4 OSA
infrastructure therefore provides error-processing techniques that do not require restrictive
assumptions concerning the fuilure modes of individual nodes (OSA can accommodate fail-
uncontrolled host computers). OSA implements all Delta-4 replication techniques (active,
passive and semi-active replication),
The basic components of the Delta-4 Open Systems Architecture are:

* A communication system, the Multipoint Communication System (MCS), which
was designed according to the 150/0SI philosophy. MCS includes at any level of
this model either new communication protocols, or extensions to existing 1SO
protocols, in order to achieve the communication requirements implied by the Delta-
4 dependability models. MCS provides support for error-processing and basic
reconfiguration mechanisms for fault-treatment.

* An administration system that provides a complementary set of mechanisms to
handle the system’s complexity from the administrative point of view, to support
planning and system integration, 1o essist in daily operations and to help with fault
treatment and maintenance. Complying with 1SO management framewaork, it covers
the areas of fault-, performance-, configuration- and security management, including
ull system components and the application itself.

In OSA, applications can be built either directly above these two basic components or
preferably above an Applicarion Support Environment that will provide the application
programmer with o higher level of abstraction and with powerful tools for building his
application. Deltase (see chapter 7) is of course a good candidate as such an environment and is
available in OSA. Other computational models can be used; in particular, OSI application layer
protocals such as MMS (Manufacturing Message Specification) are also available

8.1. Multipoint Communication System (MCS)

8.1.1. Introduction

This section provides a presentation of the Delta-4 Muitipoint Communication System {MCS).
The communication requirements specific to Delta-4 systems, both for fault-tolerance and
distribution aspects, are expressed. A multipoint communication model, taking no account of
consideration of fault-tolerance, is then defined. An implementation of this multipoint

166 £, Open System Architecture (O5A)

communication model, the Delta-4 MCS, is finally presented, with the addition of fault-
tolerance aspects, The architecture of the MCS is described, and an overview of naming and
mapping within the MCS is provided,

8.1.2. Delta-4 Communication Hequiremenis

8.1.2.1. Requirements for Distribution. In the Delta-4 architecture, a distribured
application is seen as a set of run-time components communicating amongst themselves by
means of messages (and only by these means). Even without considering the problem of
replication, it may be uncomfortable (although not impossible) to build such distributed
applications above point-to-point communication using physical designation, as il is offered by
O51-based systems.

It is often the case within distributed applications that a function is performed by
interzctions among more than two application entities; these interactions involve
communications among the application entities. Current communication standards only allow
point-to-point communication, and such multi-peer interactions must be mapped onto a set of
peer-to-peer interactions. Furthermore, if some of these interactions must be linked together o
fulfil some global requirements (global order, atomicity, consistency,...), protocols must be
added to restore this global view.

It is possible within a distributed application to group entitics according to the function they
execute or to the service they provide together, It would therefore be natural to map such
application groups onto similar communication instances, such as associations allowing
communication between more than two entities.

Here are some examples of communication between more than two entities within
distributed applications:

* In client-server models (Deliase, the Delin-4 Application Support Environment, uses
such a model, see chapter 7), a service can be used by many clients. Even if the
client-server interactions are point-to-point interactions for every pair (client, server),
it is useful to group all interactions related to the same service within a single
communication instance associated to the service. This allows communication
resources to be economised and decreases the overheads due o communication
resource allocation and release every time a new client wants to use the service (this
is required only on the client side). It allows the server to have a global perception of
all communications related to the same service, and according to the quality of the
communication service (order, atomicity,...), 1o have more facilities in the
management of global events affecting the service (e.g., locks, stamps,...). In
addition, with such a use of multi-peer communication, the dynamic aspects of
communication group membership are important: clients must have the opportunity
1o join dynamically the communication instance associated with the service when
they need to use the service, and to leave it when they do not need it any more,

+ Distributed ransactions and dismbuted database management are examples of
applications where some operations need to be coordinated in a global way among
all entities. The possibiliry of multicasting some information during certain phases in
an atomic way (e.g., commit phase) iz of major help, and is rather expensive 1o
implement by means of point-io-point interactions.

*» In many applications, data produced at one node can be used by several components
residing on different nodes. Alarms and incidents that affect global distributed
processing can be forwarded to several nodes for different purposes (archiving,
processing, reporting, ...). In this case, the same information must be transmitted

8.1. Multipoint Communication System (MCS) 167

towards multiple receivers and even in an OS1-based system that uses a physical
medium allowing data multicasting, high level protocols are not able o take into
account such requirements.

* Load balancing within distributed systems often requires the migration of software
components from nodes 1o others and then messages 1o be delivered to a dynamic,
time-varying set of receivers with no a-priori knowledge of their physical location.

All these considerations have led the Delta-4 project 1o work intensively in the field of
multipoint communications, and to define some new communication models, services and
protocols, which are described in this chapter and in chapter 10,

8.1.2.2. Requirements for Fault-Tolerance. The implementation of host fault-tolerance
techniques based on software component replication leads to important requirements on the
communication system. The communication system must provide services that are amenable to
communication between replicated software components. The Delta-4 objective of providing
transparent fault-tolerunce management implies that the programmer of these components must
be able to ignore the redundancy invelved. This means that the visibility that is given to the
application programmer when he programs & communication interaction — a source entity
forwarding a message to a destination entity — is that of one single message being sent by the
source entity and one single message being received by the destination entity (whatever the
degree of replication of the interacting entities) (figure 1),

Communication from & rephcated
source must detect and mask
armonecus communication bahaviour

SN 515 12 7)

Fig. 1 - Communication between Replicated Application Entities

To preserve this mutual ignorance of replication by the code of interacting replicated
entities, the communication system has therefore to take into account the replicated nature of
these entities, and perform some actions that are made necessary by this replication:

* The communication system has to manage the redundancy of information sent by
replicated sources. Every time the application programmer invokes a “send"
primitive in a program, the replicated execution of this program results in the
delivery of this message to the communication system on as many stations as there
are replicas. According to the failure assumptions that are made on the concerned
host computers, and to the error detection strategy that was selected for the
concerned application entity, the communication entities located on these stations
then have to reach an agreement to determine the message that will be forwarded to

166 K. Open System Architecture (O5A)

the destination. This agreement may include some mechanisms (o detect erroneous
communication behaviour resulting from faults in the host environment. Such
detection should be associated with error reporting to administration entities, and as
far as possible must achieve masking of errors (o application entities. This agreement
is a distribuled agreement, and thus it involves some additional protocol as compared
to standard communication protocols; this additional protocol is referred in this
document as Inter Replica protocol (IRp) (fgure 2).

To reach agreement, the IRp entities must exchange some protocol data units; a
distributed agreement is considerably easier if these exchanges can rely on
underlying transmission protocols that provide atomicity and order. For example, a
distributed vote among three values that are sent onto the network by three different
IRp entities is quickly performed if these three entities are assured to receive all three
values in the same arder. In the same way, when the agreement is reached, one IRp
entity has to propagate the value to the destination (eventually replicated), together
with un indication to the peer IRp entities that this propagation has taken place. This
set of actions (propagate the value to the destination, inform the peer entities) must
be atomic, and it is highly beneficial if it can be done by using a single atomic
mialticast primitive.

+ The communication system has also to preserve the consistency of all copies of a
replicated entity when it forwards some messages to this entity. As the application
programmer must not be aware of replication, the provision of messages by the
communication system to the component when “receive’ primitives are invoked
must not introduce any deviation in the behaviour of some replicas with respect to
others. If the program excludes some constructs that may preclude replica
determinism (1.e., the same inputs applied to the replicas produce the same outpuls),
a sufficient condition to ensure that consistency is maintained is to provide to all
replicas with the same ordered set of messages (figure 2). This service is provided
by & protocol referred 1o in this document as the Atomic Multicast protocol (AMp).

Distriouted agreament on which
es mus! be propagatad
towards the destination

Distributod agresmant an
mussage dolivory 1o destinations

—I-E I | LA I—i

Fig. 2 - Distributed Agreement Protocals.

It therefore appears that the communication requirements of inleracting replicated
components can be fulfilled by an inter replica protocol, which relies on the services provided
by an underlying atomic multicast protocal,

8.1 Multipoint Commaunication System (MCS) 168

§.1.3. Multipoint Communication Model

8.1.3.1. Introduction and Definitions. The aim of this section is to define a multipoint
communication model that covers the requirements expressed above for multi-peer
communication between different application entities within distributed applicarions. It refers 10
existing standards, in purticular the Open Systems Interconnection Reference Model [1SO 7498-
1] and related standards, and to the work that was carried out in ISO/TC97/SC21 about mult-
peer data transmission before this item of study was suspended (this work had produced a
working draft addendum to ISO 7498-1 on Multi-Peer Data Transmission [ISO N2031]),

Some terminology from the latter document that was found convenient to use in this chapter
and following ones is repeated here:

instance of communication

multi-peer data transmission

multi-peer group

defined group
partially defined group

undefined group

statie group

dynamie group

invoked group

active group

sub-group
ceniral entity

centralized communication

a single instance of a connectionless transmission

or a single instance of a connection

transmission of & data unit to onc or more

destinations

a group of peer entitics which are mutually willing

and able to be senders or receivers of multi-peer

data transmissions with other members of the

Rroup

a multi-peer group whose total membership is

known members of the group

a multi-peer group whose total membership is

known to some of the members of the group

a multi-peer group whose total membership is not

known 1o any members of the group

a multi-peer group whose membership can only be

altered outside the operations of an instance of

communication between the entities of the multi-

pecr group

a multi-peer group whose membership may be

controlled and aliered by some or all members of

the group

the sub-group of a multi-peer group with which

communication is atmempted in an instance of
R

the sub-group of a multi-peer group which is

participating in an instance of communication

some or all of the members of a group

an entity that is able within an instance of

communication to transmit data to all other

members of the active group. An entity that is not a

central entity can only send data to the central

entity.

a type of communication where, within an instance

of communication, there is only one central entity

and it cannot change.

17 ¥, Open System Architecture (O5A)

roving centralized a type of communication where, within an instance

communication of communication, there can be many central
entities but there can only be one central entity at
any one ome.

multi-cenired communication a type of communication where, within an instance
of communication, there is more than one central
entty.

decentralized communication a type of communication where, within an instance

of communication, all entdries of the invoked group
are ceniral ennnes.

8.1.3.2. Multipoint Communication Model, The objective is to allow groups of
communications entities to communicate amongst themselves within a multi-peer
communication instance. An instance of communication is defined as either a single instance of
a connectionless transmission or a single instance of a communication.

Connectionless communication, as defined in [ISO 7498-1], allows the ransmission of
copies of & data unit to several (more than one) destination addresses. However in that case,
every data unit is transferred independently from others by the laver (or layers) that provides the
connectionless service. All information that is necessary 1o transmit a data unit (destinarion
address, quality of service, options,...) is presented to the connectionless service provider
together with the data unit to be ransmitied, in a single access w the service. The service
provider does not have to establish a relationship between this access and others. This means
that some important characteristies that may be required by applications (e.g., order) are not
provided. This chapter does not therefore consider the connectionless case and concentrates on
the definition of a multipoint communication model that would provide s service similar to
connection-ornented communication, as defined in the OS] Reference Model [1SO 7498-1].

According to [ISO 7498-1], a connection is an essociation that is established for
transferring data between two or more peer entities, This association is established between the
peer entities themselves and between each entity and the layer that provides the connection-
oriented service. The use of the connection-oriented service by peer entities has three distinet
phases;

1} connection establishment;

2) data mransfer;

3) connecoon melease.

An OS] connection has the following fundumental churacteristics;

@) it implies the establishment and maintenance of & three or more party agreement
concerning the data transfer between the concerned peer entities and the service
provider;

b) it allows the negotiation, between all concerned parties, of the parameters and
options that will be used during data transmission;

¢) it provides the connection identifier which is the means to avoid, during
transmission, the overhead due w address tansmission;

d) it provides a context in which all successive data units ransferred berween peer
entities are logically linked, and it allows sequence preservation und flow control for
these transmissions.

These definitions, if smictly applied 10 multi-peer groups, would not give the sufficient
flexibility to meet the requirements of some distributed applications:

£.1. Multipoint Communication System (MCS) 1m

+ Respecting phases 1), 2) and 3) only allows communication to take place among
members of static groups. The membership of & communication instance cannot be
changed during the lifetime of the connection. All members that want o participate to
the instance of communication must agree on the connection establishment during
the same phase, and all members must release the connection together.

= Characteristics a) and b) imply that the negotiation 1o establish the communication
instance (the connection) takes place among all the members of the group. According
to the number of group members, this can be the cause of a considerable overhead.
To allow & more dynamic scheme in the case of multi-peer connection-oriented
communication, it seems that these general definitions should be slightly extended; these
extensions are proposed here.

8.1.3.3. The Multi-Peer Connection (or Association)

8.1.3.3.1. Main Features, A multi-peer connection iz an association that is established for
transferring data between two or more peer entities. This is exactly the OS] definition; but
whereas in O8I a connection only exists if the peer entities have decided to establish it and have
negotiated 1o do so, and ceases to exist as soon as one of these entitics releases it (thus the three
phases: establishment — data transfer — release), it is possible 1o define more phases in the
lifetime of a mulli-peer connection.

The mare general case to be considered is the one of dynamic multi-peer connections. In
such communication instances, members of the communication group are allowed to join and
leave the connection dynamically during the life of the connection. The consequence is that a
multi-peer connection exists as soon as one entity has decided 1o join it. In other terms, the
connection establishment primitive, which in the OSI case means “1 want to communicate with
entity X", simply means in this mult-peer context "I want 1o join (1o participate in)
communication instance 1",

This dynamic aspect avoids the necessity for a new negotiation to take pluce between all
active members of the communication group every time a new member wants 10 join the group.
Apart the fact that such a negotiation would be a non negligible performance penalty, it appears
impossible o change communication parameters and options of an instance of communication
during its life, However, there is still the need that all peer entities participating in the same
communication instance use the same communication parameters and optons. Several
possibilities exist to ensure this:

13 All passible members of & multi-peer communication instance have means to a-prior
agree on these parameters und options; this implies that these parameters and options
are defined before the actual instantiation of the connection. In that case, the
negotiation when joining the muld-peer connection can be reduced mw a check that the
new member wants to use the right parameters and options for the connection it
wanis to join. This check can be carried out either by the service provider, orby a
particular entity that coordinates the multi-peer connection. The first case assumes
that the provider has some means of knowing these parameters and options at the
very beginning of the communication instance (when the first member joins it). The
second case implics that the first member 10 join the connection must be the
coordinator, that the provider knows that there is a coordinator and knows its
identity, and then again has some means to get this knowledge at the very beginning
of the connection life.

2) The new members get the knowledge of communication parameters and options
when they join the connection. This knowledge can be obtained from the provider or

172 B, Open Sysiem Architsctin (D5A)

from a coordinating entity. It still implies, as in 1), that the provider has some means
of knowing some options at the very beginning of the connection life. However this
cuse does not seem very realistic, because it would make it rather difficult o
program such entities (which get all communication parameters and options only
when they want to start communicating),
In any case, it appears that dynamic multi-peer connections must have some exisicnee
before the actual instance of communication: the main operations that can occur during the
lifetime of a multi-peer connection are then:

1} create s mult-peer connection;
2) open a mulb-peer conneetion;
3) join o multi-peer connection;
4) multi-peer data transfer;

5) leave a mult-peer connection;
6) close a multi-peer connection;
7) delete a multi-peer connection,

8.1.3.3.2. Create & Multi-Peer Connection. This operation consists of creating an
administrative view of a multi-peer connection before the actual use of the corresponding
communication instance. This administrative view includes all parameters and options that will
be used when communicating with this multi-peer connection. Some of these parameters can be
used for membership control (access rights, restricted membership,...). A minimum
membership can also be defined, that is to say a list of members that must join the connection
before any data transfer service is available on the connection.

No assumprion is made on how this administrarive view is represented and where it is
stored. It is simply assumed that application entities have means to access this information, and
that the service provider is also able to get them when needed.

8.1.3.3.3, Open a Multi-Peer Connection, It is conceivable that several peer entities
located in the same end system use the same multi-peer connection (an end system is & node of
the distributed system where upplicstion entities exceute and use the eommunication system), In
that case, the service provider must not allocate several times the resources it needs to manage
the mulri-peer connection (connection context). Opening a multi-peer connection therefore
consists in allocating the resources that are necessary to instantiate the connection in an end
system. The open operation also consists of creating the necessary underlying means to allow
communication between the end system and all other end systems where the connection is
ulready open. These means need to be created only once in the lifetime of the connection in a
particular end system, and this operation has not 1o be repeated every time a new entity joins the
connection on this end system.

The open operation can be implicitly invoked when the first entity wants to join the
connection on the end system, or can be explicitly invoked before any entity joins it

During the opening of the connection, the service provider gets the parameters and options
of the connection from the administrative view that was created by the creare operation,

8.1.3.3.4. Juin a Mulli-Peer Connection. A peer entity can join a multi-peer connection
at any time in its lifetime. The entity provides to the service provider the communication
parameters and options, and the provider checks that these parameters and options correspond
to those of the connection, or transmit them 1o some coordinator that will perform the checking,

8.1. Multipoint Communication Sysiem (MCS) 173

If the parameters and options proposed by the entity do not fit with those of the connection, the
join openition is rejected by the service provider.

If a minimum membership is necessary for the data transfer services w be available on the
connection, the join confirmation from the provider to the joining entity can be delayed until all
required members have joined the connection.

According to whether the multi-peer connection is u defined group, the join operation may
be notified to the other active members of the group. If the group changes are not notified to
other members, and if the connection is already open on the end system, the join operation can
be a locel operation that consists only in checking parumeters and options and allocating some
additional resources for the enrity that joins the connection,

8.1L.3.3.5. Multi-Peer Data Transfer. As soon as one entity has successfully joined a
multi-peer connection, multi-peer data transfer services are available to this entity to
communicate with other entities,

Several modes of multi-peer data transfer can be defined;

* Broadeaxt trangfer: a data unit transferred on @ multi-peer connection uxing this mode
is delivered 1o all entities that have joined the connection. The sender of the data unit
can even be included in the broadcast group,

» Multicast transfer: a data unit ransferred on a multi-peer connection using this mode
is delivered 1o all entities that are explicitly specified by the sending entity. This
specification can take the form of a list of addresses of entities, or of the address of &
sub-group of the active communicating group.

Data trunsfer can be decentralized, cenmalized, roving centralized or multi-centred. If the
communication is roving centralized, some service primitives must be associated with the data
transfer services to allow the communication centre to change.

The quality of service of multi-peer data transfer is a parameter of the mulii-peer
connection. Important properties can be defined in this parameter, such as order properties,
priority criteria, etc.

8.1.3.3.6. Leave a Multi-Peer Connection. An entity can decide to leave a multi-peer
connection at any moment of its lifetime. This departure can be notified to other members of the
connection, according to connection options. If a minimum membership is required for the
connection, the provider can decide to force a leaving of all other members and a closing of the
conneetion on all end systemns when this minimum membership is no longer available,

Closing the connection on an end system can be performed automatically by the provider if
all entities have left it on this end system, Conversely, an option of the connection can be to
keep it open, to avoid further re-opening when entities re-join it later on.

Twao types of connection leave can be defined:

* Normal leave: this is requested by the members and must be done while preserving
some properties of on-going datn transfer.

« Abnormal leave (or abort): this can be requested by the members or provoked by the
provider on some abnormal events, and which can be done with loss of some data
trunsfer properties.

8.1.3.3.7. Close a Multi-Peer Connection. This operation deletes the instance of a
multi-peer connection on an end system. According to options, if some entities had joined the
connection on this end system, they can be forced to leave the connection, or the close

174 8. Open System Archilecture (05A)

operation can be rejected. The close operation also relinquishes the underlying means that were
used 1o allow communication with other end systems where the connection is open,

8.1.3.3.8, Delete a Multi-Peer Connection. This operation deletes the administrative
view of a multi-peer connection created by the create operation. This deletion is only possible
when no communicution instance of the multi-peer connection exists in the distributed system,

8.1.4. The Deita-4 Communication System

8.1.4.1. Communication models. The Delta-4 Multipoint Communication System (MCS)
is a layered communication system designed 1o meet the Delta~4 communication requirements as
expressed in section 8.1.2, for diswributed applications running on host computers
interconnected by Local Area Networks,

The Delta-4 MCS proposes an implementation of the multipoint communication model that
is introduced above, by defining multipoint communication protocols at the appropriate levels
of the O8] reference model.

The Delta-4 MCS meets the Delta-4 requirements for fault-tolerance by including at the
bottom of the session layer an Inter-Replica protocol (IRp). This protocol is able to handle
communication from and to replicated applicarion entities and hides from them the management
of this replication. The application entities communicate between themselves either by using the
multipoint communication model, or by using the ISO bi-point communication model (figure
3.

Fig. 3 - MCS Communication Models

Above services provided by IRp, high layers implement either the multipoint
communication model or the more classical OS] bi-point communication maodel (thus allowing
applications designed with this last model to take advantage of replication facilities offered by
IRp).

The inter replica protocol is bullt upon multipoint communication services that are provided
by multipeint communication protocals in layers 2 to 4 of the Reference Model, When no
replication has to be managed, the IRp scts as an inactive protocol, and allows both high layers
multipoint and bi-point model to use multipoint services of low layers.

The low layers multipoint protocols use multicast facilities provided by standard Local Area
Networks, such as Token Ring [150 8802-5], Token Bus [1S0 8302-4] and FDDI [ISO 9314],

8.1, Multipoint Communication System (MCS) 175

There are two functional parts 1o MCS: the Multipoint Communication Protocol stack
(MCP) and the Network Administration System, or Multipoint Communication Management
(MCM) which manages these protocols. The latter is dealt with as part of the more general
notion of system administration that is covered in section 8.2, This section presents the MCP
stack, the services it offers and its architecture,

8.1.4.2, MCS Multipoint Communication Model

8.1.4.2.1. Definitions. In the following, an end system within a Delta-4 distributed
system is termed a sration,

An application process is an clement within a real open sysiem that takes part in the
execution of one or more distributed Information processing tasks. An application entity is that
part of an application process that deals with the communication system. An application entity
represents a particular communication activity of the application process.

The application entities have access to the MCS through M-SAFs (MCS Service Access
Polnts): the M-SAP is an individual access point 1o the higher-level services offered by the
MCS.

At the high level (ACSE!/presentation) a multi-peer connection is termed a multipoint
associarion, The application entities are linked by associarions and communicate between them
by using the data ransfer services available on these associations. When an application entiry
joins an association through an M-SAP, MCS creates an endpaint to that association, which is
fully identified by the couple (M-SAP name, association name) (figure 4).

Fig. 4 - Muin MCS Commumication Objects

L Assocation Control Service Element

176 £, Open System Architecture (O5A)

8.1.4.2.2. Create and Delete an MCS Multipoint Association. A multipoint
association represents a group of communicating application entitics. The creation of such an
association is an administrative operation that can be requested by a single application entity, or
by a human operator, On creation, the characteristics of the association (name, available
services (sequencer, token,...)) are defined and stored in a global administrative data base, the
glohal Management Information Base (MIB). The name of the association can be obtained from
a global name server, because association names must be unambiguously allocated in a single
naming space within a Delta-4 system.

MCS multipoint associations have a dynamic membership, which is not controlled by any
coordinating eniry. There is no minimum membership for MCS associations. According Lo an
association option, the changes to the sssociation membership are notified 10 the association
members.

8.1.4.2.3. Join and Leave, Open and Close an MCS Multipoint Association.
Application entities can unilaterally join or leave MCS multipoint associations. When joining an
association, the application entity must provide the parameters and options related 1o thix
association, which are checked by the ACSE provider (figure 3). If the association has not yet
been opened on the station where the application entity wants to join it, the ACSE provider
automarically opens the corresponding association and session connection. To do so, it obtains
the administrative view of the association using support from the System Management
Application Process (SMAP).

Asspciate requast

Associale indications
opticnal)

Rglpase request

Relsaseindications
Redpase oconfirm '

Association kept untll
last mesmiba losnvies i

Fig. 5 - MCS Association Joining and Leaving

8.1, Multipoint Communication Syseem (MC5) 1M

When all application entities have left an MCS multipoint association on a particular station,
the association is automatically closed by the ACSE provider.

If the association has the defined membership option, join and leave operations are notified
to all active members of the multipoint association. New members joining such an association
also get the knowledge of the current active membership,

8.1.4.2.4. Data Transfer on Multipoint MCS Associations. There are three different
maxdes for transferring information over an MCS multipoint association:
* Inclusive multicast; the information is sent to all members of the association
including the sender.

+ Exclusive multicast: the information is sent to all members of the association except
the sender.

» Selective multicast: the information is sent to & sub-set of members of the association
designated either by their logical names or by a common sub-group identifier.
Ordering of message delivery over a multipoint association is such that two application
entities receiving two messages from un association receive them in the same order,
All entities connected 10 a multipoint association may both send and receive messages, A

multipoint association is characterized by the tvpe of dialogue that manages the internctions
between the members of the association:

« Decentralized dialogue: all the entities are simultaneously able to initiate message
transmissions.

* Roving centralized dialogue: only one entity at a time is able to send data (i.e., the
one that possesses the data token of the association). Primitives are provided 1o
allow the association token to circulate among essociation members.

Multipoint associations also provide a sequencer service that allows the members of the
ussociation to get consccutive positive ticket values, This enables the application to stamp and
thus to order detected events that modify the state of the distributed applicaton. Up to two
sequencers can be used on an MCS multipoint association.

8.1.4.3. Concepts for Faull-Tolerance

B.1.4.3.1. Error Detection and Masking. The Delta-4 communication system meets the
requirements created by the replication of application entities on different host computers of a
distributed system. It is able 1 handle communication between replicated application entities in
a way that is transparent to the programmer of these entitics. This transparency is sometimes
termed invisible multicasting.

The inter replica protocol (IRp), which acts as a bottom sub-layer of the MCS session
layer, handles this type of communication. It includes error detection and masking mechanisms
for replicated communication issued from application entities actively replicated on fail-
uncontrolled hosts. These mechanisms also allow error masking for replicated application
entities (either active replication, or pussive, or semi-active, see chapter 6) running on fail-silent
host computers; in this case, the error detection mechanisms are located in the host fail-silent
environment,

The inter replica protocol relies on the services provided by the low layers of the MCS,
essentially the atomic multicast service, and the notification of station failures,

178 8, Open System Architecturs (OSA)

8.1.4.3.2. Impact on Communication Objects. A replicated applicarion entiry is one
that has been replicated on different stations for the purposes of fault-tolerance. When such a
replicated application entity uses MCS services, it does so through an M-SAP (MCS Service
Access Point). Generally, Service Access Points have only a local significance, in the station
where the service is accessed. However, in the case of replicated entities, the zservice is
accessed by the same application entity in several stations in the system. This is the reason that
leads us to consider in MCS that M-5APs used by replicated entities are themselves also
replicated. In the same way, all endpoints that would be created by a replicated applicarion
entity through & replicated M-SAP are also considered as replicated endpoints (figure 4).

8.1.4.3.3. Services for Fault-Tolerance. As M-5APs can have a global significance,
they must be known and defined in a global way. M-SAPs are defined by adminizrative
primitives before being used, and this administrative view of M-SAPs is stored in a “Global
Management Information Base™ or “Global-MIB™, M-SAPs have some atriburtes that are used
by IRp to coordinate the replicas of the M-SAP (and then to control the replicated behaviour of
the comesponding AE). Some of these attribules are:

« the degree of replication of the M-SAP:

« the replication domain of the M-SAP (the list of stations where a replica of the M-
SAP exizts);

» the allowed desynchronization deliy of data transfer request issued through this M-
SAP,

+ the type of emor detection mechanism 1o be used;

e

The IRp provides to administration entities some means to manage fault treatment and
reconfiguration:
= error reporting (voling disagreement between replicas, early or late timing errors,
abnormal overflow of one replica....);

« primitives allowing dynamic reconfiguration of M-SAPs (dynamic creaton or
deletion of M-SAP replicas), transparently to the replicated AE.

As explained previously, the IRp fully relies on the atomic multicast services that are
offered by low layers, and which are built on the basic atomic multicast protocol (AMgp). In
particular, the AMp is able 1o detect and signal, both to upper layers {and thus, IRp) and 1o
administrative entities (SMAP), the failure of stations in the Delta-4 distributed system. This
property is intensively used by error recovery and faull-treatment mechanisms,

In addition, IRp uses the AMp facilities 1o provide to replicated AEs a global order for all
date units received from several associations through the same replicated M-SAP. This
property, termed “deterministic receiving”, is an attribute of the M-SAP and can maintain
determinism of a replicated AE communicating through the same M-SAP on several MCS
AREOCTANONS.

8.1.4.4. Structure of the Multipvint Communication Protocol Stack, The MCP
stack is a communication stack that follows the layering principle of the OS1 Reference Model.
Mo miandardized multipoint protocols yer exist. Consequenty, Delta-4 proposes a hierarchy of
specific protocols for providing the multipoint communication services. Despite the specific
nature of these protocols, there is a tolal compatibility with 150 standards for the physical layer
and mediuvm access control protocols, thus allowing the coexistence of the MCS and 150
protocols on the same LANs. High layer 150 standards can also work on top of IRp (with a

£.1. Multipoint Communicatinn System (MCS) 1

logical addressing scheme). This allows applications using such stundurds to be poried on 1o
the MCS stack and to benefil from the fault-tolerance techniques provided by Delta-4.

Figure 6 shows the layering of the Delta-4 MCS; those prowcols that were designed and
developed within the Delta-4 project are put in bold characters, those protocols that follow
existing standards are put in italic characters.

Multipoint Multipoint Q8| lavers
CMISE MMS
Multipoint ACSE
Mﬁe‘ IS0 8645-8650 7
Multipoint presentation |Pmmhﬂm IS0 Ba22-8823 6
Multipoint sassion Session IS0 8326-8327
5

Intar Raplica Protocol

Multipoint Transport 4
{Inter-Link Protocol)
Atomic Multicast Protocol >
T:;lhn
Standard MACs "
Physical Layer of Standard LANS 1

Fig. 6 - MCS Layers

The services and protocols for every layer are described in the MCS section of the Delta-4
Implementation Guide [Delta-4 1991]. The services and protocols are not deseribed in detail
when they conform to existing standards. The reader can refer to these standards. The
communication profiles that are selected for these protocols are inherited from the ESPRIT
project 2617 (CNMA), and are described in detail in the CNMA Implementation Guides.

The protocol and the service provided by the bi-point session conform to 150 standards
8326 and 8327 (FU kernel and FU duplex).

As an exercise to port application entities using 150 communication, and to let these AEs
benefit from the Delta-4 fauli-tolerance techniques, the use of the application level
Manufacturing Message Specification [1SO 9506] by replicated Application Entities was
prototyped during the Delta-4 project, A multipoint MMS, using MCS multipoint facilities, has
also been specified and implemented [MP MMS].

The MCP stack uses standard communication mediums and the physical layer conforms
fully with these standards. The atomic multicast protocol, which is one of the main Delta-4
specific protocols, constitutes the basis for the management of multipoint communication and

180 #. Open System Architzcture (05A)

communication between replicated entities. Two versions of this protocol have been specified
within the Delta-4 project:
* The “generic” atomic muliicast protocol is a software implementation of AMp. It is
medium-independent, and is built upon standard implementations of MAC protocols
for Token Ring [ISO 8E02-5], Token Bus [IS0 8802-4] and FDDI [1S0O 9314)
Local Area Networks. It allows the use of commercially aveilable chipsets for these
LANz without any modification.

The genernic AMp provides a confirmed service of atomic multicasting of a single
data unit between groups of stations interconnected in a single LAN medium, It
manages the membership of these groups, and notifies upper layers of significant
group changes (among them station failures).

The data transfer service offered by generic AMp is similar to the acknowledged
single frame transmission of LLC type 3, but extended to multiple destinations. The
other difference is that generic AMp cannot be considered as connectionless, but
follows the definition of multi-peer connections given in this document,

Selection and grouping facilities are built upon the service provided by generic AMp,
to provide efficient suppon 1o higher layers for mapping selective multicasting onto
AMp groups, These faciliries also allow IRp 1o propagarte efficiently and atomically
grouped data units to different sub-groups communicating in the same high-level
communication instance.

+ The enhanced atomic multicast protocol (or “Turbo-AMp™) is a version of AMp
specially targetted to the 8802-5 Token Ring. It uses special properties of the Token
Ring structure and protocol (in particular, the ability of “on the fly"
acknowledgements) 1o implement AMp in a very efficient way (atomic multicast in
one round trip in the normal case). It involves development of hardware and
firmware around commercially aveilable chipsets. Nevertheless, Turbo-AMp
preserves compatibility with the standard ar the medium level and allows the
coexistence on the same medium of stations using ISO stacks on standard
implementations of [ISO 8302-5].

Selection and grouping facilities are inherent to Turbo-AMp.

On 1op of AMp and selection and grouping facilites, the Inter-Link protocol extends the
service to interconnections of LANs. The transport protocol is a light connection-oriented
protocol that edds 1o underlying services functionalities for segmenting and reassembling, and
data flow control,

8.1.4.5. Addressing and Mapping of Commumication Objects. The MCP stack uses
at any level a logical anddressing: communication objects are identified by a logical address that
is allocated in a space of 2 power 20 possible addresses.

The communication ohjects thar are visible to the user have a logical address in that space;

» An M-SAP is identified by a unique logical address; if this M-SAP is replicated, all
the copies of this M-5AP have the saume address (even though they are located on
several distinet physical stadons),

* An association is identified by a unique logical name; when an association is opened
on several stations, the identification of this association is the same in any one of
these stations,

« An endpoint is fully identified by the couple (M-SAP logical address, association
logical name) constitured by the logical name of the association to which this

8.1, Multipoint Communication Sysiem (MCS) 11

endpoint is related and the logical address of the M-5AP through which it was
created.

The atomic multicast protocol manages logical gates: a gate defines a group of stations
within a single LAN segment

‘The wansport layer manages multipoint transport connections: there is at most one endpoint
of a trinsport connection on one station. There is a one to one mapping of transport connection
endpoints onto logical gates. Every time a transport connection endpoint is created on a station,
the cormesponding AMp logical gate is also opened.

There is a one to one mapping of associations onto transport connections, When an
association is opened on a sttion, the corresponding transport endpoint is created on the
station, and therefore the logical AMp gate is opened.

Because of this one to one mapping of associations to transport connections, and to AMp
gates, all these communication objects have the same name,

When an M-SAP is replicated, IRp entitics that manage this M-SAP need sometimes to
communicate among themselves, out of the control of AEs. A replicated M-SAP is therefore
mapped onto a transport connection, and then onto an AMp logical gate, which has the same
name s the M-SAP address,

It therefore appears that association names and M-SAP addresses are allocated in a unigue
naming space,

The selection and grouping facilitics provided above AMp are used to give to the low level
the visibility of high level endpoints and sub-groups, to allow a more efficient implementation
of selective multicasting (figure 7). This means that joins and leaves within MCS multipoint
associations are made known to transport and to underlying facilities, which offer services 1o
maintain consistent views of sub-groups of atomic multicast groups.

8.2. System Administration

The Delta-4 mullipoint communication protocol system, described in section 8.1, which
provides the basis for dependability, and the Deltase support of its high-level ransparent usage
by programmers, described in chapter 7, are supplemented by a third concept, the Delta-4
System Administration. The properties of the envisaged application areas and the fault tlerance
approach of Delta-4 require powerful mechanisms to handle system complexity from the
administrative point of view, to support planning and systemn integration, to assist in daily
operations and 1o help with fault-treatment and maintenance. The set of such facilities is referred
to here as system administration,

This section outlines the main functional requirements of system administration, the applied
structuring concepts and the derived architecture. Within OSA, the Delta-4 approach to system
administration follows the ISO/OSI related work on systems management.

8.2.1. Functional Requirements

The management of distributed systems is currently under intense discussion in the academic
ficld as well as in the immense 1SO standardization work, international multi-vendor initiatives
(MAP, CNMA, OSI/Network Management Forum) and network management product
developments (IBM’s Netview, HP's OpenView, DEC’s EMA — Enterprise Management
Architecrure),

The functional view of Delta-4 system administration goes beyond the scope of these
activities as a consequence of the sophisticated fault tolerance approach, This consequence also
implies that sdminizmration is not limited 1o the management of communication resources, but
encompasses all kinds of data processing resources.

[k 8. Open System Architecture (OSA)

o - i AR

VR WS, Wk waws
P-Bi B3B8 P=£1 82 8K P= 81,83 55 P =51 52 55
=581 58 B8 L= 31 25 38 Q=31 495 5968 QO=51,55 58
«

Loww-direwl groupe: WMII.HHIHJ.-"-
[gale A

Fig. 7 - Communicution Groups Mapping i MCS

8.2.1.1. The System Administration Space. This section aims to structure the
functional view of system administration in a fault-tolerant open distributed system. Figure 8
shows the main dimensions that streich the administration space and categorize the requirements
for building an integrated adminismation system.

The dimension "“Functions” eorresponds to the management functional areas, which are
used to structure the OSI-Management related 1SO work. OF particular interest within the
Delta-4 approach are fault and configuration management and 1o some extent the evaloation of
the performance of a system, but the project also investigates specific topics on security
munagement (see chapter 13),

A second dimension is dedicated to the components o which the management functions are
applied. This is of course the MCP-stack itself. The fault tolerance approach based on replicated
software components implies the need for fault and configuration management for replicated
files and processes or general Deltise applications.

The different life cycle phases that a Delwe-4 system may follow constiture a third dimension
for categorising administrative requirements, There are design, planning, installation and
commissioning phuases, normal daily operation, and phases where the configuration changes
with respect 1o station fallures or system evolution,

8.2,1.2, Administrative Tasks. In the following a general view is given by defining three
overall administrative tasks (ATs) along the life cycle phases of a Delta-4 system.

ATI: Plunning and integration of redundancy and distribution;
AT2: Monitoring of system behaviour;

8.2, System Administration 183

AT3: Fault treatment and maintenance

The illustration of the ATs is restricted here to the main topics of the Delta-4 approach. The
overall management model and the implementation principles are however designed to provide
support for all aspects of system administration.

The requirements of the Administrative Tasks identified below are concerned with the
Delta-4 anributes “fault tolerance” and “distribution™,

Functions
auc:uurrmg —
sacurity —

performance —

fault —

cenRaaon = Components

| | | |
design / plan MCP-stack Flles Processes Deltaso-
install Applications
operate
malitin Life-
Cycle

ove Phases

Fig. 8- The Sysiem Administration Space

8.2.1.2.1. AT1: Planning and Integration of Redundancy and Distribution. The
first step to configuring a distributed application is that of identifying application-specific
characteristics such as:

* topological configuration (e.g., process control interface constraints);

* services to be made dependable (replicated software components);

* degree of possible redundancy (software component replication domains);

* error-processing modes dependent on host fault assumptions and required

dependability anributes;

« contngency plans for application-specific reconfiguration strategies.

The system designer’s experience is usually supported by simulation tools. Actual
measured management information, derived from comparable configurations, can provide a
quality of simulation significantly berter than when using parameters derived only from the
equipments lechnical data,

The system integration phase in the real or a simulated application environment is used to
validate the design decisions and to tune the system's operating parameters. In particular,
administrative information and actions are required to support the following:

154 £. Open System Architecture (OSA)

= Testing the fault wolerance mechanisms by using performable actions (on-line faulr
injection) to stimulate the use of available redundancy (passive replicas, cloning of
further active replicas). Stimuli should cover all expected operational conditions such
as failures of host and communication resources, buffer overflows and general
overloading. This simulation of operational gituations must also be carried out to
demonstrate the system's capability for evolution.

» Performance evaloation of hosts and the communication system requires actions o

initate time-based measurement to obrain appropriate statistical data of a real or
simulated workload under different operational (fault) conditions.

+ Dimensioning the system parameters such s communication buffer and window
sizes, priorities and schedule frequencies derived from the offered statistical data is
an important and difficult task, OFf particular interest is the first rough layout of the
time-out parameters required by the various error-processing protocols. This must
be done on a per replication-component basis (real-time constraints, workload
conditions) and is an iterative process that ean be performed with human interaction
or automatically by sysiems muanagement. In either case, during the system
integration phase, *slow™ hosts are reated as being non-faulty until time-outs have
been tuned 1o an acceptable compromise berween spurious error detection and
scceptable real-time responsiveness.

8.2.1.2,2. AT2: Monitoring of System Behaviour. By the nature of the Delta-4 fault-
tolerance approach, the required human interactions to preserve the expected system behaviour
should be minimized. The emor-processing protocols of the communication system must be
supplemented by powerful system administration facilifies for fault treatment.

AT2 provides the essential input for AT3 to carry out successful fault treatment and
maintenance by gathering appropriate system information such as actual configuration data
(redundancy used, current allocation of replicas, ete.), performance statistics and the numbers
of (reccovered) errors. The monitoring activily may be carried out by periodic polling, event-
triggered polling, and/or by counting events such as error reports from the error-processing
protocol entities.

Additional rests might be used 1o check the ahsence of faults within unused redundant
system components. For example, a dual-ring LAN may require that the current inactive
transmission direction be periodically tested in case a failure of the active one should accur.

8.2.1.2.3. AT3: Fault Treatment and Maintenance. The traditional “network
management” view of AT3 is that of providing long-term management functions for system
maintenance staff. Within a truly fauli-tolerant distributed sysrem environment this task is much
miore critical since it pertains to the prevention of serious consequences when faults sccumulate.
It should thus be sutomated as far as possible.
Fault reatment is achieved by supporting:
= fault diagnosis:
« foul passivation:
= system reconfiguration; and
+ sysiem mAnCnance.
Fault disgnosis is necessary to decide if o fault is permanent (e.g., judging the significance
of time-out occurrence within the assumed and actual workload profile) and to assist in fault
localization (e.g.. by evaluation of error repons from error-processing protocol entities), If fault

8.2, System Administration 185

diagnosis should conclude that a permanent fault has occurred, then fault passivation must be
carried out and system reconfiguration envisaged.

Fault passivation of fail-uncontrolled hosts must be done automatically by the integrated
sdministration system, i.e., manual intervention should not be required. Note that fail-silent
hosts, by definition, carry out automatic and autonomous fault passivation.

System reconfiguration can be envisaged if there are sufficlent redundant resources. It
entails re-allocation of the software component replicas that were resident on failed hosts to
restore the level of redundancy required for the emor-processing protocols to funcrion correctly
despite further faults. If re-allocation is not possible, then some software components may
cither have to be abandoned in favour of more critical ones. Alternatively, fault-wlerant
operation is degraded to fail-safe operation 1o ensure safety and/or integrity of the distributed
application(s).

Re-allocation of software component replicas is achieved by means of a cloning operation
that creates a new replica on a specified node. Three sub-operations can be identified:

« Creation of a template of the software component at the new location. This can be
done in advance of an actual cloning request according to application-specific
contingency plans specified by AT1 (e.g., localization of passive replicas,
designation of degraded modes,...).

+ Creation of a copy of the component’s persistent data or “stare” at the new location.

+ Activation of the new replica whilst ensuring replica-consistency. This involves the
automatic management of the dynamic, configuration-dependent associations
between replicated components,

Two techniques for cloning with different performance characteristics can be considered;
they are termed recursive transfer and snap-shot transfer,

Recursive transfer requires the continuous identification and tagging of structures that are
modified in the active replica(s) while a state transfer is atempted. The state transfer sub-
operation ix then repeated using only the tagged datn. This is carried out recursively until no
dam structures are tagged during state transfer,

Snap-shot transfer involves the creation of a local copy (or “snap-shot™) of the
component's state on the host of the active replica(s). While this snap-shot is transferred to the
new location, a log of messages sent 1o the software component is constructed (at the new
locarion). When the snap-shot transfer is complete, the new replica processes the stored
MESEAECE,

Other optimizations may be possible in the cloning operation; for instance the partitioning
of the state of a software component into independently-lockable sub-structures,

The basic fault treatment adminisirative facilities outlined above are supplemented by
fucilitics for configuration and maintenance management,

Configuration management facilities include remote initialization and loading of nodes,
node passivation, version control, ete. These functions are necessary 1o assist in normal Eystem
evolution,

Maintenance management facilities are provided to minimize repair time. Such facilities
include tools for post mortem analysis, remote access to the host's local operating system
diagnostics and support for remole initialization or loading of off-line tests. In an ideal case, the
maintenance staff is provided with Information concerning failed boards (in stations) and failed
ransmission medium segments,

186 8. Open System Anchitecture (O5A)

8.2.2. Structuring Concepls

This section presents a general structuring model for designing management systems (see
£8.2.2.1) and its application to Delta-4. The model is supplemented by an enumeration of
features of a formal management description language (see §2.2.2.2) that enables a
specification of a management system structured according to the model’s design guide-lines.
The derivation of general architectural components from the model is given (see §8.2.2.3) and
this forms the basis for the architecture of the Delta-4 management system (see §8.2.3). The
relationship between the object model and the management of distributed applicarions is used as
an example of the model’s application (see §8.2.2.4).

8.2.2.1. Structuring Model. The inherent complexity of the various administrative tasks
outlined in the previous section requires the development of a structuring model. This model
should provide unified design principles and support a stepwise implementation strategy aimed
1o conform and coexist with related (draft) standards. This model should provide an abstraction
of the system to be managed that is based on the viewpoint of a system administrator and which
allows the system to be viewed coherently despite its complexity. The proposed model
encompasses the following structuring principles:
1) manageahle components;

2) management domains (or simply “domains™).

§.2.2.1.1. Manageable Components. The basis for the model is to treat o system as
consisting of a set of (interacting) typed components. A manageable system consists of a set of
manageahle components. These are an abstraction of normal components of some granulanty
with extensions relevant o management. In addition to the designed normal functionality,
manageable components are characterized by their;

« sraric and dynamic management-relared auributes such as version identification,
operational state and parameters, error and performance-related statistical
information, designed fault-tolerance behaviour, various management relationships
to other manageahle components etc.; and

* performahle management operations such as create, delete, clone, reset, change
stale, get'sel attributes or wail for events triggered by the manageable component.

Note: In the ISO/OSI Management standards, an abstraction of a physical or logical resource
for managing this resource is called a managed object. An [SO managed object is defined by:
* the attributes visible at the managed object boundary;
« the management operations that can be applied to the arributes or the managed ohject
itsell:
» the behaviour exhibited by the managed object in response o management
operations; and
» the notifications thar can be emined by the managed object.
A Delta-4 manageable component may be described as an [S0) managed object. Thus, when the
term managed object is used in the following to describe the management view of a Delta-4
resource, the IS0 management view is applied with the above described properties.

Examples of manageable components in Delia-4 are stations, communication objects or
software components. A survey of manageable components that are currently under
implementation is given in §8.2.4. Note that software components (capsules) pencrated from
Deltase objects form one type of manageable component (this is further illustrated in §8.2.2.4).

8.2, Sygtem Admintration 187

8.2.2.1.2. Domains, In the literature various definitions of a domain can be found. In
[Sloman 1987] a domain identifies a sphere of influence of management. A more concrele
definition can be found in [Robinson 1988]: here a domain identifies a “set of managed objects
that share a common atribute; in particular, it i the set of managed objects to which the same
management policy applies”.

A commaon attribute of replicated objects in Delta-4 is that replicas can be dynamically
placed on a given set of stations. Such a set of stations is termed a replicarion domain. Common
management policies are applied to sets of replicated objects that have the same replication
domain, for instance:

» restoration of the replication degree of objects which had a replica on a failed station
by cloning them to stations offering spare redundancy; and
+ migration of all objects from a station that is due for maintenance,

Various houndaries of domains can be considered, e.g., physical, organizational or
security boundaries. For example, in a distributed system the components which conform o a
communication standard form a domain. Manageable companents encapsulating management
informarion accessible through management operations may also be seen as u domain,

As illustrated in [Sloman 1987], it is possible 1o conceive of four relationships between
domains: they can either be disjoint, interacting, overlapping or nested. These relarionships
indicate how the management entities that are responsible for the management of respective
domains must cooperate to fulfil 8 common management policy.

8.2,2.2, Managemen{ Description Language (MDL), A management description
language (MDL) can serve as a basis for a formal deseription of the structure and the
functionality of & management system. In Delia-4, the development of such a language is under
way; it should enable a system adminisiration designer to specify formally the administration
policy of a Delta-4 system.

The following language requirements have presently been identified:

* facilities to specify the domains and their interrelationships;

» [acilities 1o specify the manageable components and their integrated management
mechanisms;

« facilities 1o specify the transparency anributes of management services;

» facilities 1o specify decisions about the invocation of management services;

« facilities o specify possible system states — the system state is necessary to specify
the conditions on which the above-mentioned decisions are based.

The current emphasis of our work on MDL is on the specification of the structure of the
management system and the decision aking mechanisms, Sructuring elements are derived from
the structuring model given in the previous section; decisions are based on system monitoring.

The architectural components that make use of these specifications are not included in the
language themselves. A classification of architectural components is given in the next section. A
complete architecture includes more than this; it encompasses the set of architectural
components as well as the set of relationships between these compeonents according to a setof
rules for their establishment [ANSA 1989]. The architecture of the Delta-4 management system
is given in §8.2.3. Modelling the architecture in MDL is currently not an area of investigation.

8.2.2.3. Architectural Components. Having defined the structuring concepts and
specification technigues, guide-lines for the development of the management system
architecture can now be established.

164 §. Open System Archilectune (05A)

Architectural components of & management system can be divided into two major classes:
1) domain managers;
2) (domain) manager applications,

8.2.2.3.1. Domain Managers. A domain manager can decide about, and carry our,
management operations on the set of managed objects that constimte a domain,

A domain manager comprises a single domain manager process, or a set of peer domain
manager processes that cooperate within the domain to curry out & domain-specific management
task. A domain manager process may be replicated to meet the Delta-4 dependability
requirements. However, the various interrelationships and interdependencies of domains mean
that not all management tasks can be performed within a specific domain. Thus, inter-domain
interaction is needed between domain manager processes across domain boundaries as well as
intra-domain Interaction between peer domuin manager processes. Cooperation is carried out by
u sequence of management interactions, For a partdeular interaction, a domain manager process
may take either the role of an agent or a manager:

* A domain manager process taking the role of an agent (shortly: an agent) is
responsible for performing the munagement operations upon managed objects within
its domain, and for forwarding event notificutions triggered by munaged objects to a
MHNAFET.

* A domain manager process taking the role of a manager (shortly: a manager)
conveys management operations on managed objects to the responsible agent, and
receives event novifications from agents.

Manager and agent roles are either statically or dynamically assigned to domain manager
processes. In a static role assignment, one domain manager process takes the agent role and the
other takes the manager role during the whole domain manager cooperation. In a dynamic role
assignment, 4 domain manager process may take the agent role in one interaction and the
manager role in o separate interaction during the period of the domain manager coaperation, The
role assignment is dependent on the given relutionship of the domains (Ggure 9) that the domain
MANUZET POCCESCS are part of:

o} For intru-domain cooperation berween peer domain manager processes the roles are
assigned dynamically (e.g., SMAP-SMAP cooperation, sec §8.2.4.3.4).

b} There is no cooperation at all between the domain manager processes of two disjoint
domains.

¢) For cooperation between domain manager processes of two interacting domains the
roles are assigned dynamically.

d) Two overlapping domuins A and 8 have a domain intersection A8 in which a
comman management task is 1o be performed. There are (at least) two approsches to
muinage the managed objects within AS:

. AB is itself regarded as a new domain. In this case, the cooperation between
the domain manager processes that are responsible for the domain intersection
is an intra-domain cooperation with dynamically assigned roles (cf. (a)
above),

2. Instead of regarding AB as a new domain, a new higher-level domain C is
built that containg domain A as well as domain 8 (thus forming two nested
domains, cf. (¢) sbove). To synchronize management operations on the
managed objects within AB, cooperation between the domain manager
processes of domain C and those of A and 8 is necessary,

B.2. System Administration

In such interactions, the domain manager processes of C always take the
manager role, whereas those of A and B take the agent role. There is no direct

cooperation between the domain manager processes of A and B,

¢} Domain manager processes residing within nested domains interact using static role
assignment where the domain manager processes of the containing domain take the

manager role, and those of the contained domain take the agent role.

Domain Relation | Role Assignment Rlustration
D?ﬂﬂﬂ'ﬂ'ﬂ r“‘// Fa
ll
I Inter-domain |
Disjoint s
et x N
Intaracting Dynamic éﬁ% %\&é}
Overlapping
1. with domain inter- G
sackon < ncw Dynarmic @i‘;;{:g:;:@:g@
2. with new Stai * o
tatic P2 o, -
et OAIELEND
Nested Static
- ;u“r::;marmar [(A"] agent
[W) manager [WK] manageriagont <———a=_cooperaion

Fig. 9 - Manager/agent Role Assignment Dependent on Domain-Relationships

190 B, Open System Architecture (OSA)

8.2.2.3.2. (Domain) Manager Applications. As outlined in the previous section,
domain managers may not be able to carry out a particular (higher-level) common management
pelicy without cooperating with domain managers of ather domains, If the domain relationship
berween two domains M and A is of type “nested”, and M contains A, then the domain manager
of M is said to be a “(Domain) Manager Applicarion” of the domain manager A. In this case, the
domain manager processes of M always take the manager role when interacting with domain
manager processes of A. Thus, the management policy is guided and synchronized by the
(domain) manager application with the support of its agents in a containing domuain. Note that
this definition of & Manager Application is a genemalization of the basic architectural components
defined in [MAP] ("agent”, “manager”, “manager application™) ar [CNMA].

8.2.2.4. Example: Management of Distributed Applications. Figure 10 integrates
the structuring concepts, the specification technigues and the generic and invariant archirectural
components that apply 1o distributed applications and their support environment (Deltase) on
one side, with the management of distributed systems on the other. In this section, the
management of disuributed applications serves as a case study for illustrating the concepts
introduced in the previous sections. This will be continued on the architectural level in §8.2.3,

On the “administrator side”, figure 10 represents an overview of what has been introduced

distributed systems has been introduced In chapter 7. Object-oriented programming is
characterized by the concepts of data typing, data encapsulation and the inheritance of certain
properties of typed objects o particular instances of them. On the specification level, the types
and instantiation mechanisms can be specified in an Object Description Language (ODL), along
with the parallel entities (threads) and the interfeces of objects. One of these interfaces is the
“management interface” (see §8.2.3.2) that expons the management operations applicable 1o an
object. This is related to the management description language (MDL) where software
components (capsules) generated from objects can be described as manageable components
{note that hardware components can also be described as manageable components),

While ODL scripts represent the “normal” functionality of a distributed system by
describing the distributed computation, MDL soripts represent ils administrative view by
describing the integrated sutomatic management functions.

The generic architectural components shown in figure 10 may be generated from the scripts
in ODL and MDL respectively. They make use of the invariant components that form the
nucleus of a system, The software components that form an application are divided into an
object part and an object envelope par. One part of the envelope is the Object Manager Entity
(OME) performing the operations of the management interface,

Creation and deletion of managed objects ure performed by a domain manager. The create
operation supplies management information about the object to the domain manager. The
domain manager is assisted by local factories that generate new object instances from a
template. Local factories ane also responsible for terminating object instances.

The cooperation of all the architectural components shown in figure 10 is necessary to
perform certain management functions. The architecture in section 8.2.3 describes how the
management information contained in these components (referred to as the “Management
Information Base™ (MIB)) is exchanged to perform management funcrions.

Both of the models illustrated in figure 10 are generic enough to incorporate the other as
one particular instance, As the management system itself is a distributed application, its
architectural components may be realized as objects: they could also be integrated into particular
software components that form domains for them,

8.2, System Administration

191

User's View: Administrator's View:
“Nomal® Application Managamant of a
of o (distributod) Sysem {distributed) Systam
Struchring:
Objact Modal Managemant Modal
mﬂm rruunipoalshe
[rhamtunce companants
Spacilication
QoL MDL
ki S e
iripriaces — . i-q-qlm
® 7 T
SYEHHT Slatee
L e Ganeralion: - eecmsces=see====
Balwarne cimgansn Wanagar -
Lacal
object | oObjeat |
2 - oo |um-|n |umm]
Envelops | Ensity -
---------------- =+ Usageol: »===ecmmmm e mmmn
[T E T arigEranl
Kinmal | LEX | Frnd

rssasssdlassscasssandoacsans s o e s . e e e e e

Fig. 10 - User's and Administrator's View of a Delta-4 System

8.2.3. Management System Architecture

The design of the Delta-4 OSA management system architecture in this section is described by:

+ specifying the manageable components considered in Delta-4 OSA, including the
management information, i.c., the representation of the atributes contained within
the manageable components, and the management interface to the manageable

components;

* specifying the domains considered in Delta-4 OSA, the respective domain managers,
the management information contained in domain managers. the services and
protocols for the exchange of management information, and the management

services provided by domain managers;

» specifying the cooperation between manager applications, domain managers and
manageable components that is necessary to perform management tasks.

8.2.3.1. Template Architecture. The generic architeciural components of a management
system as defined in secrion 8.2.2.3 must be correlated to get an architecture of the
management system. These correlations are expressed in terms of service interfaces and

cooperation fypes.

A manageable system consists of a sel of manageable components. Manageable
components are characterized by the fact that they possess integrated mechanisms for
management purposes (figure 11). These must be specified and implemented in addition to the
“normal” functionality of system components. These integrated management mechanisms

comprise anributes, operations and events:

192 8. Open Sysiem Architectare (OSA)

= anributes are represented by component integrated management information;

* operarions allow access to and manipulatdon of componeat attributes;

* gvenis are a means by which the component delivers management information
asynchronously (events are a special form of attribute).

Operations are offered to domain managers by & manager entity al a dedicated mariagement
interface. This management interface forms the functional division of management mechanisms
that are specific to the manageable component and domain-specific management mechanisms,

W-Mrﬂ

| Menegement Intertace (M1}

Compaonent-integrated Managemen

Mpachanisms;

- affributes (reprosembed in MIB)

- imvmrits {spcial mtiritmdian)

- opinantions. (paerfosomod by
Managar Entity)

{psart af tha MIB)

{Domain) Manager Process

Donﬁnldmrlmrfﬂ

o other domain
(e.g. Manager ﬂp“;lm:l-

Fig. 11 - Manageahle Components, Doman Manoagers and Ueir Interfoces

The management tasks that are dedicated 1o a management domain are performed by a
domain munager and may be categorized aceording to the five functional management areas (cf,
§8.2.1.1). These tasks are offered to other domuin managers at dedicated Domain Manager
Interfaces (DMI) in form of management services:

« DMI_EM: DMI for fault management services;
DMI_CM: DMI for confipuration management services;
» DMI_FM: DMI for performance management services;
DMI_AM: DMI for accounting managernent services;

= DMI_SM: DMI for security munagement services.

MCS supports these functional-area-specific management services in form of the Multipaint
Common Management Information Service Element (M-CMISE). M-CMISE is part of the
MCS upplication layer and offers basic multi-point services for the exchange of all types of
management information between domain managers. The M-CMISE services enable the access
to management information that is either encapsulated within the domain managers themselves
or within the manageable components. In addition, they allow a domain manager to request

§.2. Sysiem Administration 193

other domain managers to perform a management operation upon manageable components and
to send event notifications triggered by manageable components to other domain managers. As
the M-CMISE services are mapped upon the MCS Session services, an M-CMISE service-user
may also benefit from the multicast facilities of MCS. In ISO Systems Management,
corresponding management services for the ISO/OSI bi-point environment are standardized in
the application service element CMISE [IS0O 9595].

Munagement information residing within the domain manager is information about the
manageable component, e.g., the minimurn, the current and the maximum number of replicas
of the manageable component, On the other hand, management information integrated within
the manageable component itself is information that is closely related to the “normal”
functionality of the component, e.g., the context of file in the case of a file server. This type
of management information can be automatically generated from a dedicated MDL description
(cf. §8.2.2.2) Both kinds of management information are conceptually summarised under the
term Management Information Base (MIB) which is thus per definition distributed.

A domain manager may consist of a sel of cooperating domain manager processes.
Cooperation is needed for instance:

* 10 exchange management information between domain manager processes;

* to fulfil 4 common management task that was requested at & domain manager
inierface by a manager application: or

* to execute a distributed control or consensus algorithm,

8.2,3.2. Manageable Components

8.2.3.2.1. Objects. Objects that behave according to the strong object model, as described
in chapter 7, encapsulate abstract data structures that can only be accessed and affected by
operations via defined object interface(s).

This section discusses general aspects about managed objects as one type of manageable
component. In subsequent sections these are applied to certain objects investigated in Delia-4.

a) Objects as Manageable Components

To be managesble, an object must have an Object Management Interface (OMI) at which
management specific operations can be invoked. These allow access to management
informarion that is encapsulated as object data within the object. The functional part within the
object that performs the management operations is called an Object Manager Entity (OME),
Thus the OMI and the OME, together with the object-integrated management information,
comprise the additional part of an object that is necessary for the object to be manageable.
Under the management view this kind of object is called a managed object.

b) Object-Integrated Management Information

Items of object-integrated management information are attributes that define static or dynamic
properties of the object. The “object version identifier” is one example of a smrtic object
altribute. There are various types of dynamic atributes, e.g., counters, gauges, state
information, logs, events, etc. Counters can be used for instance o indicate the number of
invocations of “normal” object operations. Events can be seen us “special® attributes that are
asynchronously generated by the OME if a defined object-internal situation occurs. They might
bcmpmadmﬂmdmminmgwwmﬁmﬂyauﬂyfuﬂmingmmpﬁoﬁmquhy.

194 &, Open System Archilecture (O8A)

¢) Interface to Domain Managers

The variety and complexity of management tasks require uniform basic architectural
management mechanisms and a clear mapping of management functions onto the components
of the management architecture. This is the major motivation for the identification of the Chhject
Management Interface (OMI). 1t is sitnated between the domain manager and the (replicated)
managed object. The OMI should provide a clear division between those management functions
that are integrated within the managed object (and performed by the objecr manager enriry), and
those that are carried our by the domain manager. This functional division should be made both
independently of the object type o be managed and of the domain manager type. As an object
may reside within more than one domain, the OMI may be imported by several domain
TNANAZETS.

The OMI offers & variety of management operations 1o be performed on the object. On the
one hand, their semantics should be generic enough to keep the number of management
operations small, on the other hand they should cover all object types and their associated
management information. Management operations are of two kinds: those which can be seat 1o
an object to be applied to its atributes, and those which apply directly 1o an object itself.

Examples of the former are “get attribute” to read the current value of an attribute, or “set
atribute” 1o modify the value of an armribute.

Examples of the latter are “create object” to direct the object manager enlity to create an
object, or “test object” 1o direct the OME to perform a specified test operation on the object.

8.2.3.2.2. Objects al the Application Level. The architectural approach is applied w
the following objects on the application level:
= Processes: Processes form the basis on which (existing) applications are built. In the
present Delta-4 implementarion, a Deltase capsule is represented by a UNIX
Pmﬁ!{.
+ Filex: Global files may be useful in certain applications, so a server for managing
replicated global files also been implemented.
For these components of different nature cloning techniques are investigated. Cloning of
higher level objects, for instance file servers or dambases, may be based on the cloning
mechanisms of these components,

a) Application Objects as Manageable Components
For specifying the management of application objects the following approach is taken:
» the application objects are modelled as objects according 1o the strong object model;
* 1o describe these objects as managed objects, their integrated management
information and the abjecr management inteiface are specified.
The emphasis placed on the investigation of application objects as manageable components
is o relinquish modifications in the Local Execurive Environment (LEX). A precondition of this

15 that the object-integrated management information, which is obtained through services
offered by the LEX, is sufficient to make the object manageable.

b} Application Object - Integrated Management Information
Management information related 1o application objects is represented in two ways:
= The LEX context: this is information that represents the state of the application object
in a LEX-dependent way. This information may either be part of the application
object (e.g., the loaded code of & process or the content of a file), or it may be

82, System Administration 195

established by the LEX when operations are applied 1o the application object (e.g.,
object descriptors). This information is not held within the application object, but is
kept within the LEX, whence the term the “LEX context™ of an application object.

s The global context: this is information that represents the state of the application
object independent from the LEX. To generate this information, the LEX context
must be transformed into an abstract notation. This is & precondition for domain
munagers to be able to interpret the context. If an application ohject is replicated, the
global context is the same for all replicas, whereas the LEX context may have a
different representation for different replicas. At cloning, the global context is
transferred in voted packets over the network to the location of the new replica,
where the LEX context is to be reconstructed from the global context.

¢) Interface to Domain Managers

In Delta-4, domain managers are primarily investigated for the management of replication, A
replication domain manager manages a set of objects; it determines the stations on which
replicas of these objects should reside. To execute management tasks, it is assisted by Objecr
Manager Entities (OMEs), which perform management operations on a particular object that is
part of the domain. These operations are invoked by the domain manager. The assignment of
management tasks to either the OME or the domain manager in Delta-4 is such that the OMEs:

* assist the domain manager in instantiation and termination of a replicared application
object; and
« perform instantiation of new replicas (i.e., cloning) and termination of a replica on
request from the domain manager.
Thus, the OMEs maintain both the LEX context and the global context of an applicarion
object; at cloning time, they transfer the global context to the location of the new replica.

8.2.3.2.3. Communication Object Management. The management of communication
systems and their communication objects is subject to standardization by 150 under the term
OS] management. The concepts and the terminology that are elaborated in the OS] Management
Framework [ISO 7498-4] and the Systems Management Overview [1SO 10040] fit natrally
into the generic Delta-4 management model.

a) Communication Objects as Manageable Components

The management view of o communication system abstracts from the “normal” communication
facilities and concentrates on those communication objects that need management suppaort,
and/or can supply management information. These communication objects are, for example,
layer entities, protocol state machines, connections, service access points, or representations of
physical devices,

To become manageable, communication objects are extended as described in §8.2,3.2.1
(a), i.e., management operations are invoked at a dedicated management interface to affect the
communication object and its integrated management information.

Applying the OS] management terminclogy, a communication object that is regarded with
such a management view is called a managed object. Instances of managed MCP objects that
shure the same management operations, altributes and notifications are said o be of the same
managed object class [1SO 10163-1], The set of managed object classes that have been defined
for the MCP management is hierarchically organized. This hicrarchy resolts in a so-called
registration tree that is used for the identification of managed object classes. Figure 12 shows

19 B. Open System Architecture (O5A)

the current Deltn-4 registration ree. One particular managed object clasy is identified by a path
within this tree, e.g., the *“MCP Session Endpoint”™ is reached by the path “Delta-4 152 1",

Delta-4
m—] m——————Network Management
1 Layer
-------- l=—e=—t—=Phaical
l——1I50 B80Z.4 (Token Bus)
—2— 150 8802.5 (Token Ring)
2 Data link
e ey 71 F]
4 ===MCP LIT !
,I. 1 Gate
——mme——el ——— MAC sub-layer
----- ——— § ====T50 2802.4 (Token Bus)
——— § =150 BA02.5 (Token Ring)
=——=r—— T ———=phgtract Network
———————— § ——=Turbo-AMp (Tokeén Ring)
—————a feseseescs Traneport
3 MCP Transport
5 Sagsion
——meseee] —eee MCP Sesaion
== MCP Inter-Replica protocol
1 =—MCP Session Endpoint
------ 2 m——=CE Zession Connection
i T e Application
] ------ 4 ====MCP ACSE
e e e System
I 4 Service Recess Polnt
= T——M=-3AP

Fig. 12 - Delta-4 Managed Object Class Registmbon Tree

The current Delta-4 MCP managed object definitions, together with their attributes, events
and actions, are specified within the MCP protocol specifications. Delta-4 communication
obfect management has 1o manage MCP-specific communication objects to support fault-
tolerant applications. Examples are;

* Delta-4 Mulricast Service Access Points (M-SAPS), and
= Delta-4 Multipoint Associadons,

These types of MCP communication objects are represented by two different managed
objects, The first managed object represents the local-to-station management view of this MCP
communication object. This managed object is locally kept on the station where the
communication object exists. It contains, for example, management information that represents
the local-to-station usage of the communication object. The second managed object represents
pre-defined management information that is of global significance. The access to this managed
object is essential for the instantiation of new instances of the communication object. It is
therefore stored within the (replicated) “Global-MIB" that is itsclf a manageable component (cf,
§8.2.3.2.4),

B.2. System Administration 191

b) Communication Object Integrated Management Information

Management information that is integrated within managed communication objects is closely
related to the communication activities of the communication objects. It consists of those types
that are identified within §8.2.3.2.1 (b) and is specified in an abstract notation within a
managed object definition. IS0 is proposing such a notation in [150 10165-4].

Examples of Delta-4-specific management information within MCP are the attributes
“number of session Protocol Data Units (PDUs) sent/received” of the managed object “MCP
Session Entity"”, and the event “newStation™ that is automatically generated by the SMAP (see
below) when a new station has been attsched o the network.,

¢) Interface to Domain Managers

All management operations upon layer-specific managed objects and their associated
munagement information are performed by a Layer Management Entity (LME) that exists within
each MCP layer. The interface type to this LME is the same for all layers and corresponds to a
subset of the standardized object munagement interface as described in the management
architecture. The domain manager process that accesses the communication object integrated
management information through this interface is called the Systems Management Application
Process (SMAP). The SMAP is described in section 8,2.4.3.1.

8.2.3.2.4. Global-MIB Management. The templute architecture in figure 11
distinguishes two types of management information:

a) component integrated management information;

b) domain manager integrated management information.

There are several reasons why parts of the management information of type o) in real
implementations are not encapsulated by the component; the LEX context of application objects
is an example. In some cases, a practical solution can be 1o keep such munagement information
within the domain manager.

As further explained in the implementation section (§8.2.4), there are also reasons for
which parts of the management information of type b) are not encapsulated by the domain
manager,

Management information that (in the implementation) is neither encapsulated by a
component nor by a domain manager is assumed 1o be stored in an object called the Global-
MIB. Conceptually, it is still seen as information of type a) or b) respectively.

a) The Global-MIB as a Manageable Component

As other objects, the Global-MIB is a type of manageable component and offers an Object
Management Interface (OMI) to domain managers (see (c) below).

b) Global-MIB-Integrated Management Information

The statements of §8.2.3.2.1 (b) apply unchanged. As the Global-MIB needs management
support (e.g., enhanced dependahility), it has integrated management information. Two special
situations may occur in practice:

1} The Global-MIB's integrated management information (i.e., information of type a))
is stored in the Global-MIB itself. It can thus be accessed both via OMI and via
normual object interfaces.

2) The Global-MIB is managed by a domain manager that also has its integrated
management information (i.c., information of type b)) stored in the Global-MIB,

198 8. Open System Architecture (OSA)

c) Interface to Domain Managers

The statements of §8.2.3.2.1 (¢) apply unchanged for the Global-MIR object. The functionality
of the standardized OMI is sufficient to handle the two situntions described above conceming
the storage location of management information as well. However, there are further
requirements for the design of domain managers managing the Global-MIB over and above
those for domain managers concerned with ordinary objects. The domain primarily investigated
is a replication domain for the Global-MIB (cf. §8.2.3.3).

8.2.3.3. Domains

8.2.3.3.1. Replication Domains. A replication domain of an instance of a sofrware
component is the set of stations on which replicas of thar instance may reside. A common
management policy is applied to a set of software components that have the same replication
domain, The architectural component that executes this policy is called the replication domain
manager. It reacts on changes of the station or node group (cf. §6.8) that constitutes the
replication domain, for instance, due to station failure or shut-down. It reconfigures replica
groups, for instance, by cloning software components that had a replica on a failed station 1o
another station offering spare redundancy. The reconfiguration strategy is not only dependent
on this particular software component, but also on the group of software components that
execute in the replication domain.

a) Domain Manager - Integrated Management Information
Domain specific management information is mainly the reconfiguration strategy and information
abaut the objects and the stations of the domain that is necessary to execute the strategy, e.8.

« the minimum, the current and the maximuwm number of replicas of an object;

* the desired and current location of replicas;

= the assigned communication ohjects, eic;

« the maximum and current load of stations;

= the current state of stations (up or down, attached to the network), ete.

The update of this management information is in the responsibility of the manager of the

communication domain ($ee next section); as the communication domain manager keeps this
information in the Global-MIB, it can be retrieved from there. Significant changes of

management information (e.g., station failure) are reported to the domain manager by
spontancous evenls.

b) Interface to Manager Applications
The replication domain manager offers a set of operations to its manager applications. Two
different kinds of manggement operations can be distinguished:

+ generic domain operatdons, independent of the domain type, e.g.:

- create/delete managed objects: these services creatc/delete entries for objects in
the domain managers information hase;

- instantiate/terminate managed objecis: for instance, process
instantistion/lermmination;

- list managed objects: this service allows information abour managed objects of
the domain to be retrieved;

« operations that are specific to a replication domain, e.g.;

£.2. System Administration 194

- reconfiguration strategy: this service supplies the domain manager with the
reconfiguration strategy it should adopt for a subset of objects, which is to be
applied if a certain sitwarion should ocour {e.g., station failure, station shut-
down, cte.).

8.2,3.3.2, Interaction Manageable Component — Domain Manager. To perform
its services, the domain manager makes use of the operations offered at the OMI of cach
application object.

At instantiation/termination of a process, the domain manager may be supported by the
OME, which for instance performs some initializadon and notifies the domain manager thar all
replicas have been instantiated/ierminated successfully.

During cloning, the domain manager and the OME interact in the following way:

+ Having decided that an object is to be cloned, the domain manager first instantiates a
temmplate of the object (and an OME for it) at the new locarion,

» When the new OME indicates that the (template) instantiation is complete, the
domain manager instructs the OME of the already existing replices 1o build and
mransfer the global context 1o the new OME.

* The new OME substitutes the current local context of the object with the one
resulting from the received global context, It synchronizes the input and output
message streams of the new replica with those of the existing replicas, while
ensuring replica consistency. Having performed this sub-operation, the instantiated
template has become & new replica, and the OMEs are now also replicas of each
other.

* The OME responds to the domain manager to indicate that the context transfer is
complete.

8.2.4. Implementation

A management system whose design is described in §8.2.3 is currently under implementation.
This section gives a description of the architectural components and the managed objects chosen
for that implementation.

8.2.4.1. A Replication Domain for UNIX System V Processes. The
implementation comprises a prototype for the management of UNIX System V processes,
Figure 13 illustrates the architectural components involved and how they interact.

Two replicated processes A and B are shown, which interact via an MCS (multi- or bi-
point) association (other inleraction, e.g., local inter-process communication, is disallowed to
ensure replica determinism). These processes may include the Deltase run-time support system
(Deltase/XEQ) which makes use of the MCS services offered on the host.

To make processes munageable, they include an Object Manager Entity (OME) as a library.
The invocations of the MCS services are passed through the OME, which is thus able 1o control
the complete input and owrput message stream of the process. Domain management is
implemented by a Replication Domain Manager (RDM), which consists of one replicated
domain manager process. Cooperation between RDM and OME is via a specific association, the
RIDM aszzociation,

To perform the instantiation/termination service, the RDM invokes via the RDM association
the services offered by the factories. A factory is a manager of & domain nested within the
replication domain; it is implemented as a non-replicated entity present on each host on which a

200 8. Open System Architecture (OSA)

process of the replication domain may have a replica; it uses the local UNIX fork/exec
dircetives o instantiate a process.

OME

Replication Replication Replication
Domain Domain Domain
Manager Manager Manager
Factory Factory Factory Factory
Host 1 Host 2 Host 3 Host 4
Multi-point Association @ FReplicated Endpoint
- — « — Bl-or Multi-point Association O Single Endpoint

Fig. 13 - Archiieciural Components for Process: Management

8.2.4.1.1. The Replication Domain Manager (RDM). The Replication Domain
Manager offers the generic services as described in section 8.2.3.3.1:

= Create Managed Objects;
* Instantiate/Terminate Managed Objects; and
+ List Managed Objecis.

There are additional services that are speeific to a replication domain, e.g., the
reconfiguration strategy service mentioned in section 8.2.3.3.1. A precondidon for such a
service is the definition of 2 Management Description Language (MDL, cf, §8.2.2.2), which
enables the deseription of reconfiguration strategics, Certain strategies are directly implemented
within the RDM.

An example of such a strategy is the RDM's reaction to station failure and station
reentrance. Recognition of station failurefreentrance is in the scope of the Communicarion
Domain Manager (CDM, cf. §8.2.3.3.2), If such an event occurs, the replication domain
manager is notified. At station failure, it searches in its information base for processes that had
a replica on the failed station, and updates the value of the atiribute that determines the actual

£.2. Symem Adminismration 2m

replication degree of this process. If the desired replication degree of a process (an attribute set
by the Create Managed Objects service) is higher than the actual replication degree, the RDM
searches for a “free” station, i.¢., a station that does not hold a replica of this process. It
instructs the Jocal factory on that station to instantiate a template of the process, including an
OME, and starts the cloning service provided by the OME. At siation reentrance, the RDM
again searches for processes that have fewer replicas than desired and instantiates replicas on
the reentered station. In addition, all replicas that had earlier been cloned to another station, are
maved back to the reentered station,

As the RDM itself must also be dependable, it is implemented as a replicated object. When
a station fails, not only the application objects’ degrees of replication are to be reestablished, but
also that of the RDM. Thus, the RDM has a built-in OME that it instructs w clone itself,

8.2.4.1.2, The Object Manager Entity (OME). The Object Manager Entity (OME)
offers services at the Object Manager Interface (OMI) to the Replication Domain Manager
(RDM):

= it assists the RDM in instantiation and termination of a replicated process;

* it performs instantiation of new replicas (i.e., cloning) and termination of a replica
on request from the RDM.

The OME library not only supports cloning of actively replicated processes. Cloning is also
useful for semi-active and passive replicas, for instance when a station is reinserted a new
leader or primary may be required. However, the description here concentrates on cloning of
active replicas,

As illustrated in figure 13, in a replicated process, each replica contains an OME library,
The process and its OME use one replicated M-SAP. The process establishes endpoints on that
M-SAP in order to communicate with other processes; in addition, the OME establishes an
endpoint to the RDM association,

The OME acts as a replicated instance whose Finite State Machine (FSM) is always in the
same state in each replica. Incoming evenls are generated:

a) when the process reaches an MCS communication statement (send/receive a
message, establish/release an endpoint); and

b) when the OME receives a message, which is only possible when the process has
reached a receive statement.

To preserve replica consistency, ull incoming events are ordered identically at all replicas of
the OME.

Outgoing events of the FSM depend on the current state. For instance, if the OME is
executing a cloning protocol with several steps of context ransfer, the process may reach a
communication statement between two transfer steps, which may lead o a phase in which the
process must be blocked.

The phases of the cloning protocol described helow start from the assumption that the DM
has created a template of the process with an OME library at the new location.

The new process's OME establishes the same M-SAP on the new station and receives all
messages on the DM Association that the existing process/OME receives, but the new OME's

FFSM does not generate the same outgoing events, The RDM invokes the Instantiate Replica
service of the OME,

Phase 1: Reestablish Communication Context

The context of all endpoints the process has currently established is wansferred to the new
location. The new OME re-connects to all associations on which the process has endpoints.

2 . Open System Archilecture (O5A)

Finally, the input message sireams of the existing replicas and the new replica are
synchronized. Should the process Ty to establish/release an endpoint during further phases of
the protocol, it is blocked.

Phase 2: Take a Snapshor af the Compurarional Context;

The LEX (UNIX) context of a process comprises:
» the data sepment (initialized, vninitizlized and dynamically allocated data);
+ the stack segment, including the UNIX environment;
+ the process registers.

The UNIX context is obtained by normal system calls. Modifications of the operating
system kernel and libraries were not required.

Unlike checkpointing with passive replicas under a fail-silent regime (cf. section 6.6),
cloning with active replicas requires that the snapshot be taken at the sume execution checkpoint
by each active replica. Furthermore, since the active replication technique is applied in a fail-
uncontrolled environment, the context transfer messages must be able to be voted. This means
that the context data in each active replica must be mnde bitwise identical; this is carried out in
phase 3,

Phase 3: Generate the Global Context:

The system libraries (UNIX-, MCS-, Deltase- and OME libraries) may use local services that
generate values that may be different berween replicas. For example, local file descriptors,
mailbox identifiers, context identifiers significant on the NAC, etc., can be found in the local
context that are different for each replica. The OME builds the global context for which all local
descriptors are equal in each replica, which is a precondition for starting phase 4.

Currently, application programmers must not use local resources for inter-process
communication (signals, semaphores, pipes, shared memory, mailboxes). Only global files
may be used (cf. §8.2.4.2). A reduction of these restrictions is planned such that local files may
be used by the application.

Phase 4: Transfer the Global Contexr:

The global context is transferred in voted packets. During the transfer steps, the currently active
replicas are allowed to continoe execution; the new replica then avoids sending messages that
have already been sent in the context transfer phase,

Phase 5: Conrinnarion ar the Execution Checkpoint:

Having received all context packets, the eomputational context of the new replica is substimted
by the transferred context. The local resources needed by the communication and management
entities (see Phase 3) are then estblished. The process now continues at the execution point at

which the snapshot was taken. All replicas now synchronize their outpur message stream, ie.,
the new replica is built and the RDM is informed.

8.2.4.2. A Replication Domain for UNIX System V Files, The architectural design
outlined in section 8.2.3 has also been validated by a prototype for the management of
replicated UNIX V Files. As in the case of the prototype for UNIX System V processes, the
implementation architecture does not imply medifications 1o the UNIX kernel or libraries; the
local UNIX file servers are used unchanged,

8.2, System Administration 203

8.2.4.2.1. Management Services. As opposed to processes, files do not execute any

computation and do not interact with each other. Operations for local file management

{open/close, read/write, etc.) have defined semantics and are performied by a Jocal file server.
To enable replication of files, the following suppont is provided:

* Global file server: this offers a subser of the UNIX System V file management
operations, Applications using the global file server send requests for file operations
as messages; if a requesting application is replicated, then its request-messages are
voled,

« Domain managemens: The following peneric domain management operations are
provided:

- Createldelete managed objecr: This delivers management anributes (e.g.,
degree of replication) 10 the RDM,

- List managed objects: Instantiation/ftermination services are not provided; it is
assumed that local copies of a file are present at each station as soon as the
create service is invoked. The reconfiguration strategy for station
failurefreentrance described in the previous section is also applied 1o files.

» Object management: Instantiation/termination services for new replicas of a file are

provided,

8.2.4.2.2. Implementation. The functionality described above is implemented by a
software component residing on each station of the replicution domain. This software
component is termed the File Manager (FM). The file manager offers service access by way of
its FM-Association and comprises several sub-components, which are described below.

FM - Domain Manager (FM-DM)

This offers the domain management services listed above, It consists of one RDM Process with
as many replicas as the replication domain has stations. A manager application of the FM-DM
executes a reconfiguration strategy, which attempts to restore the replication degree of files in
case of station failure and reestablishes the initinl configuration when o station is reinserted,
This manager application together with the FM-DM forms a replication domain manager
(RDM)

FM - Application Entity (FM-AE)

The FM-AE offers the UNIX System V compatible remote access to replicated files. AEs are
automatically instantiated by the replication domain manager when a new file is added to the
domain (Create Service). This involves the generation of a file specific M-SAP and an endpoint
on the FM-Association with the same number of replicas as the file.

FM - Object Manager Entities (FM-OME)
In a similar fashion o the AEs, OMEs are automatically instantiated by the DM when a new file
is added to the domain (Create Service).

The object manager interface (OMI) between File-Manager-DM and the File-Manager-
OMEs is an internal interface of the FM.

The file-cloning protocol starts with the generation of an OME and an AE (by the Domain
Manager) and the establishment of the file’s M-SAP and endpoint to the FM-Association on the
new location, The new OME and AE from now on receive all messages on the FM-Associadon

204 £, Open System Architacture (OSA)

that the existing AE and OME receive. The OME then establishes the global context from the
local context (as described in section 8.2.4.1),
The local comext of a file comprises:
* the content of the file; and

» the file context muintained by the LEX, e.g., the file descriptors.

The global context is then transferred in voted packets. During the transfer steps, the
services of the global file service continue 1o be provided. Having received all context packets,
the content of the file is substituted and the file descriptors are reestablished at the new location
(by local UNLX System V open calls). Finally, the output message stream of all file replicas is
synchronized.

8.2.4.3. Management of the Mullicast Communication Protocol Stack

B.2.4.3.1. The Systems Management Application Process (SMAP). The
Communication Demain Manager (CDM) is the domain manager for the Mulricasr
Communicarion Protocol (MCF) stack. The CDM is implemented as a set of cooperating
domain manager processes, called Systems Management Applicarion Processes (SMAP). As
the set of MCP communication objects and their associated management information is not the
same on each Delta-4 station, SMAPs are individual, non-replicated processes, and exist one
per station. For dependability reasons, a SMAP mainly resides on the fail-silent Nerwork
Attachment Controller (NAC). The current structure and interfaces of a Delta<4 SMAP are
shown in figure 14 and are further explained in the following sub-sections.

HGST Sm‘Hm
NAC A : -

LMI

Fig. 14 - Structure and Interfoces of a SMAP

8.2.4.3.2. The SMAP-Host Interface. The SMAP-host interface allows management
processes on the host o access the services of the SMAP, Whereas most of the SMAP software
resides on the NAC, the implementation of the SMAP-host Interface also has some software
components on the host. These are:

* two UNIX processes that handle the data transfer between host processes and the
SMAP on the NAC (one for each direction);

8.2, System Administration 205

« @ set of C-language procedures that can be linked ro any application process and
allow the SMAP-host interface to appear as ordinary procedure calls to the
application,

8.2.4.33. The Layer Management Interface. The Layer Management Interface (LMI)
is the boundary berween the SMAP and the MCP layers. The services thar are offered ar this
interface are used by the SMAP to access the MCP managed objects. It currently offers the
following services:

« LM_GET VALUE to read management information;

+ LM_SET_VALUE to write management information;

« LM_ACTION o require operations 1o be performed upon MCP managed objects;

+ LM_EVENT_NOTIFY to report events spontaneously generated by MCP managed

objects.

On the one hand, the LMI services are used by the SMAP to retrieve management
information from the MCP layers. On the other hand, the MCP needs management support for
“normal” MCP communication. This support is also given by the SMAP at the LML The
following example illustrates the interactions berween the SMAP and the MCP layers when an
association endpoint 15 o be established:

When an application process issues an A_ASSOCIATE service request to the MCP ACSE
sub-layer, the MCP ACSE generates an event at its local SMAP. This SMAP then checks if the
association concerned is “open” (“open™ means that all communication resources in layers 1-5
that enable the endpoint esmblishment on that association are allocated). If it is not, the
concerned SMAP sends a request to the Global-MIB (cf. §8.2.4.4) 10 obtain the necessary
parameters for the particular association (such as the services available on this association, the
association context nume or iks amount of credit). Then the SMAP issues an action invocation (o
the LME of the MCP ACSE sub-layer to instruct it to continue with the A_ASSOCIATE
service. The event and the action that follows it are transparent to the application (it is
meaningless to perform the action alone, only the correct sequence leads to the desired result;
generally, the correct sequence of such invocations is guaranteed by the SMAP).

B.2.4.34. Communication between SMAPs, SMAPs on different stations must
communicate to perform their management task within the MCP communication domain. For
this purpose they use the Multipoint Commaon Management Information Service Element (M-
CMISE): this is an application service element within the application layer of MCP. M-CMISE
is an extension of the 150 Common Management Information Service Element [1SO 9595] and
provides generic multipoint services for the remote access to managed objects of all kinds.

As the SMAPs need dependable communication, M-CMISE is also implemented on the
fail-silent NACs. Ir is mapped onto the MCP session services, and offers the MCP ACSE
services or association control as pass-through services at the M-CMISE interface. Thus,
management communication may also exploit the MCP multipoint communication facilities for
18 own FIH'PIW

M-CMISE is used by the SMAP in the following way. The SMAPs use a single multipoint
association that connects all SMAPs in the system. Each SMAP creates an endpoint on a
dedicated multipoint association during its startup phase and keeps that endpoint throughout its
lifetime. SMAP 10 SMAP communication then only requires a single M-CMISE service call in
which the receiving SMAP is identified by its endpoint (or M-SAP address), thus saving the
overhead of association endpoint establishment and release. Furthermore, by changing a
parameter in the M-CMISE service call, a multicast or broadcast of o message from a SMAP to

206 8. Open System Architecture (OSA)

several or all SMAPs in the Delta-4 system is possible (which would be difficult using point-to-
point connections),

8.2.4.3.5. Communication with the Global-MIB, Apart from the communication
channel between the SMAPs, each SMAP communicates with the replicated Global-MIB.
Communication between SMAPs and the Global-MIB is carried out by way of a dedicated
multipoint association (the “Global-MIB-association™) whose members are the Global-MIB and
all Global-MIB users. The “Global-MIB-Manager” handles this communication and performs
the required Global-MIB access protocol. See also §8.2.4.4.2 for a description of the Global-
MIB contents and operations,

8.2.4.3.6. The SMAP during System Startup. The SMAPs play a special role during
the sturtup of the communication software on a Della-4 station. After the communication system
and SMAP softwure has been loaded on the NAC and the NAC's processor has been started,
the SMAP waits for a startup command from one of the SMAP-Host Interface processes on the
host.

It then issues initinlization sction invocations to the communication layers, inserts the
station into the network and allocates its own communicarion resources {and on “Global-MIB-
stations™ also allocates the communication resources of the Global-MIB).

Two different kinds of station startup are distinguished:

+ startup during the initial startup of the Delta-4 system;
* startup of a station or restart of a repaired station when the rest of the Delta-4 system
is already operational,

In the first case, the Global-MIB is started on a set of initial “Global-MIB-stations” during
the sturtup phase. In the second case, the newly started station is always treated as a non-
"Global-MIB-station” (however, the Global-MIB may be cloned to the new station after that
smarion has become operational).

The Global-MIB is only accessible after completion of the startup phase of a station.
Certain configuration parameters of a Delra-4 system must be known by the SMAP during this
phase, They are penerally specified at system gencration tme,

8.2.4.3.7. SMAP Support for Bi-Point Connections. Apart from Delta-4 multicast
communication, the Delta-4 communication system also offers a standard 150 bi-point
communicatdon (with the extension of possibly replicated endpoints), Bi-point connections are
mapped onto the Delta-4 communication resources of the lower layers (Transport to Physical)
in the Session layer. This requires special support by the SMAP during connection
establishment:

* Provide a unique global name for the communication resources “Transport
Connection” and “Gate" per each bi-point connection. This is done by a request to a
naming authority (a2 “globul name server™) which is integrated into the Global-MIB
{cf. §8.2.4.4) and which manages a set of logical names.

* Ensure the allocation of the required communication resources (Transport

connection, gate) on all requester and responder stations through a protocol between
the involved SMAPs,

* Coordinate the replies from the responder stations (concerning the communication
resource allocation) and instruct the local session entity 1o proceed with the bi-point
connection establishment protocol, for which it needs the newly allocated
communication resources (or (o stop the protocol).

82, Sysiem Administration 207

8.2.4.4. The Global-MIB, Management information that is stored in the Global-MIB is
critical to the system's integrity and dependability; thus the Global-MIB must have a
considerable degree of dependability. The implementation of the Global-MIB as a managed
ubject comprises:
* an (Mbject Manager Entity (OME) to manage information in the Global-MIB which is
relevant to its replication and cloning; and
* areplication domain manager offering a service for the on-line cloning of new
replicas of the Global-MIB,

The design of replication domain managers concerned with the Global-MIB has additional
requirements compared with replication domain managers concerned with ordinary objects. In
the current implementation, a dedicated domain for the replication of the Global-MIB is
assumed.

8.2.4.4.1. The Global-MIB-Manager, The architecture for object management was
outlined in §8.2.3.2.1, The Object Manager Entity (OME) of the Global-MIB is integrated into
the Global-MIB object; the Global-MIB and OME software component is referred 1o as the
“Glabal-MIB-Manager” (MIB-M). Similarly 1o the FM (cf. §8.2.4.2), the Global-MIB-Manager
has an “application interface™ and a “manager application interface”. The Globul-MIB Manager
is implemented us a replicated manager process. Likewise, the replication domain manager for
the Global-MIB is implemented as a set of replicated processes (the degree of replication and
the location of these processes is the same as for the Global-MIB Manager).

8.2.4.4.2, Management Information Stored in the Global-MIB. This section gives
an overview of the management information stored in the Global-MIB and how it is structured
in the present implementation. Currently the Global-MIB contains “domain manager-integrated
management information for the CDM (cf. §8.2.4.3) and the FM (cf. §8.2.4.2).

1) CDM-integrated Management information

The “domain manager integrated management information” that is encapsulated by the CDM is
described in §8.2.4.3. This information is local to a Delta-4 station and is accessed using the
techniques described in section 8.2.4.3.4,

However, the Delta-4 fault-tolerance mechanisms require that parts of this management
information be non-local 1o a Delta-4 station, i.c., the information that represents the arributes
of the Delta-4-specific communication objects “multipoint association™ and (replicated) “M-
SAP", This information is held in the Global-MIB. The aliernative having each SMAP on each
station store its own copy of this information has been discarded because of:

* Lack of memory space on the NAC: The SMAPs reside on the NAC and would have
to store the information in the NAC memory. The amount of information is not
known beforehand but may be large. The Global-MIB is a replicated object on the
host and can store its information on disc,

* Consistency problems: The SMAPs are “individuals” and do not act as replicas. It
would have been necessary to implement a consensus protocol between the SMAPs
without being able to use the Delta-4 Multicast Communicarion System facilities to
their full extent. Using the replicated Global-MIB, which uses the multicast property
and order guarantee of replicated Delta-4 endpoints, consistency among the Global-
MIB replicas is preserved automatically.

208 £. Open System Architecture (OSA)

2) Domain Manager information not stored in the Domain Managers

A domain manager may decide 1o use the services of the Global-MIB to store (part of) its global
information, As an example the File Manager for replicated UNIX System V files stores
information about file replicas in the Global-MIB. Manager applications of the FM make use of
this information.

The information in the Global-MIB is organized as an abstract data type. The applicable
operations are invoked at the application interface and are controlled by the MIB-M. The data is
structured according to an identified set of manageable components, which are in the domains
of the CDM and the FM, their attributes and the operations that can be performed on the
attributes.

Currently, the Global-MIB defines 10 subtypes:

o delta_4_systent,

» lan_segment;

» slation;

+ NAG,

= host;

« Multicast Service Access Point (M-SAP);
« multipoint association;

+ replication_unit;

» file;

» replication_domain.

The first five data structures contain information about the configuration of the Deltm-4
system and its major components, stations and LAN-segments, together with the primary
communication objects that are to be managed: the multipoint sssociations and Multicast Service
Access Points (M-SAPs).

The subtypes “replication_unit”, “file" and “replication_domain" represent File Manager
management information.

In general, attributes of any subtype may be:

= structural, reflecting the configuration of a Delta-4 System; or
» descriptive, holding informarion about manageable components or domains.

As an example, certain structural atributes show the decomposition of a Delta-4 system
(figure 15).

A “delta_4_system” is composed of sets of “lan_segments”, “stations”, “replication_units”,
“M-SAPs” and “mulripoint associations”, A “lan_segment” is connected to a set of “stations™.
A “station” is composed of a “NAC" and o “host” and connected 1o a “Jan_segment”, etc.

An example of a descriptive attribute is the “lan_type” of a “lan_scgment” (Token Ring,
Token Bus, ...).

Note: Replicated M-SAPs and Multipoint Associations, as seen from Delta-4 management,
incorporate two categories of management information: information pertaining to the managed
object as a whole (e.g., its logical address), which is dealt with here, and information local o 2
Deltu-4 station (e.g.. the number of messages sent from a given Delta-4 station onto a
multipoint association). This latter information corresponds to the 150/051 management
information model, it is accessed using standard techniques: information exchange through M-
CMISE, a service that uses an 1SO/OSI addressing schema (object class registration tree and
object instance containment tree [ISO 10165-11). Figure 12 shows the object class registration
tree used in Delta-4 for addressing local management information (which is specific for a given

§.2. Sysiem Administration G

Dela-4 station). Figure 15, on the other hand, illustrates artributes of the non-local management
information that reflect structural relations between the managed objects. However, this is not
used for addressing the information in the Global-MIB (an IS0-like addressing schema would
be much o inefficient for the performance of the Global-MIB). As M-SAPs and Multipoint
Associations have both categories of management information, local and non-local, they appear
in both figures 12 and 15.

delta_4_system

J | v v
sogmont | | ssien | | msae || IeTRGR | [ropjcston |

replication
NAC host process | fila e vomain: L.

Fig. 15 - Strocwural Information aboul Manageable Components and Domains in the Global-MIB

8.2.4.4.3. Service Interface of the Global-MIB-Manager. As stated in §8.2.4.4.1,
the Global-MIB-Manager offers services at an application interface and at a manager application
interface. The application interface offers the normal object operations of the Global-MIB
object. General operations offercd at the application interface are:
* insertion or removal of Global-MIB entries, L.¢., instances of dar types representing
manageable components;
* getting or setting values of single attributes in an instance of a manageable
component;
+ several operations for handling list type atributes;
« searching for a MIB entry of a given kind with a given name.
Special operations that may be used only by a Systems Management Application Process
(SMAP) are:
* retrieval of all parameters needed for the opening of a given multipoint (or bi-point)
association;
« retrieval of all parameters needed for the establishment of a given M-SAP;
* update of all concerned information in the case where a given multipoint (or bi-point)
association has been opened or closed on a Delta-4 station;

* update of all concerned information in the case where a given M-SAP has been
established or de-established on a Delta-4 station;

* preserve the Global-MIB database consistency and change NAC and host states in
the case of a station failure or insertion of a new station into the system,

210 #. Open Sysiem Architecture (OSA)

The manager application interfuce offers the services used by the Global-MIB domain
manger for the on-line cloning of the Global-MIB object.

8.2.4.4.4. Service Protocol. Requests for operations on the Global-MIB and the results
of such requests are transferred s messages via the Delta-4 mulricast communication system.
For this purpose, there is a dedicated multipoint association on which the Global-MIB owns an
endpoint (characterized by the logical names of the association and the Global-MIB’s M-SAP,
which are both configuration parameters of a Delta-4 system). A Global-MIB client connects to
the Global-MIB association using an M-SAP of its own. Both the Global-MIB's endpoint and
the client’s endpoint may be replicated, the only difference is that for replicated endpoints a
voting mechanism is invoked during message sending. In this way, consistency of the Global-
MIB data (across Global-MIB replicas) is simply preserved because the Delta-4 data wransfer
facilities guarantes that:
= all Global-MIB replicas receive the requests for operations in the same order;

« reply messages from the Globul-MIB replicas are voted upon and only one reply
message is transferred back to the corresponding client (the converse is also true for
replicated clients: their requests are voted upon and only one message is transferred
to the Global-MIB).

Any client wanting 1o access the Global-MIB incorporates an interfuce module (a “Global-
MIB agent”) that handles the data exchange between the client and the Global-MIB, SMAPs are
special clients and therefore incorporate a special interface that gives them access to the special
operations (cf. §8.2.4.4.3) on Global-MIB data.

The retrieval of information stored in the Global-MIB requires special considerations for
system bootstrapping. No information stored in the Global-MIB is obtainable before the
nerwork is operational and the connections between clients and Global-MIB are established.
Thus all information needed before that stage is configuration information of a Delta-4 network
that must be fixed before network installation, Onee the Delta-4 system is operational, its imual
configuration may be changed dynamically,

