
IEEE TRANSITIONS ON REALIBILITY 1

Detecting and Removing Web Application
Vulnerabilities with Static Analysis and Data Mining

Ibéria Medeiros, Nuno Neves, Member, IEEE, and Miguel Correia, Senior Member, IEEE

Abstract—Although a large research effort has been going
on for more than a decade, the security of web applications
continues to be a challenging problem. An important part of
that problem derives from vulnerable source code, often written
in unsafe languages like PHP. Source code static analysis tools
are a solution to find vulnerabilities, but they tend to generate
false positives and require considerable effort for programmers
to manually fix the code. We explore the use of a combination
of methods to discover vulnerabilities in source code with less
false positives. We combine taint analysis, which finds candidate
vulnerabilities, with data mining, in order to predict the existence
of false positives. This approach brings together two approaches
that are apparently orthogonal: humans coding the knowledge
about vulnerabilities (for taint analysis) versus automatically
obtaining that knowledge (with machine learning, for data
mining). Given this enhanced form of detection, we propose
doing automatic code correction by inserting fixes in the source
code. Our approach was implemented in the WAP tool and an
experimental evaluation was performed with a large set of PHP
applications. Our tool found 388 vulnerabilities in 1.4 million
lines of code. Its accuracy and precision were approximately 5%
better than PhpMinerII’s and 45% better than Pixy’s.

Index Terms—Web applications, input validation vulnera-
bilities, false positives, source code static analysis, automatic
protection, software security, data mining.

ACRONYMS AND ABBREVIATIONS

AST Abstract Syntax Tree
DT/PT Directory Traversal or Path Traversal
K-NN K-Nearest Neighbor
LFI Local File Inclusion
LR Logistic Regression
MLP Multi-Layer Perceptron
NB Naive Bayes
OSCI OS Command Injection
PHPCI PHP Command Injection
RFI Remote File Inclusion
RT Random Tree
SCD Source Code Disclosure
SQLI SQL Injection
SVM Support Vector Machine
TEPT Tainted Execution Path Tree
TST Tainted Symbol Table
UD Untainted Data
Vul Vulnerabilitiy(ies)
WAP Web Application Protection

Manuscript received August XX, 2014; revised September XX, 2014.
I. Medeiros and N. Neves are with the LaSIGE, Faculdade de Ciên-

cias, Universidade de Lisboa - Portugal (e-mail: ibemed@gmail.com and
nuno@di.fc.ul.pt).

M. Correia is with the INESC-ID, Instituto Superior Técnico, Universidade
de Lisboa - Portugal (e-mail: miguel.p.correia@tecnico.ulisboa.pt).

WAP-TA Web Application Protection Taint Analyzer
XSS Cross-site Scripting

NOTATIONS

acc accuracy of classifier
fn false negative outputted by a classifier
fp false positive outputted by a classifier
fpp false positive rate of prediction
kappa kappa statistic
pd probability of detection
pfd probability of false detection
pr precision of classifier
prd precision of detection
prfp precision of prediction
tn true negative outputted by a classifier
tp true positive outputted by a classifier
tpp true positive rate of prediction
wilcoxon Wilcoxon signed-rank test

I. INTRODUCTION

S INCE its appearance in the early 1990s, the Web evolved
from a platform to access text and other media to a

framework for running complex web applications. These ap-
plications appear in many forms, from small home-made to
large-scale commercial services (e.g., Google Docs, Twitter,
Facebook). However, web applications have been plagued with
security problems. For example, a recent report indicates an
increase of web attacks of around 33% in 2012 [34]. Arguably,
a reason for the insecurity of web applications is that many
programmers lack appropriate knowledge about secure coding,
so they leave applications with flaws. However, the mecha-
nisms for web application security fall in two extremes. On
one hand, there are techniques that put the programmer aside,
e.g., web application firewalls and other runtime protections
[12], [24], [37]. On the other hand, there are techniques that
discover vulnerabilities but put the burden of removing them
on the programmer, e.g., black-box testing [2], [4], [14] and
static analysis [15], [17], [27].

The paper explores an approach for automatically protecting
web applications while keeping the programmer in the loop.
The approach consists in analyzing the web application source
code searching for input validation vulnerabilities and inserting
fixes in the same code to correct these flaws. The programmer
is kept in the loop by being allowed to understand where
the vulnerabilities were found and how they were corrected.
This contributes directly for the security of web applications
by removing vulnerabilities, and indirectly by letting the
programmers learn from their mistakes. This last aspect is

IEEE TRANSITIONS ON REALIBILITY 2

enabled by inserting fixes that follow common security coding
practices, so programmers can learn these practices by seeing
the vulnerabilities and how they were removed.

We explore the use of a novel combination of methods
to detect this type of vulnerabilities: static analysis and data
mining. Static analysis is an effective mechanisms to find
vulnerabilities in source code, but tends to report many false
positives (non-vulnerabilities) due to its undecidability [18].
This problem is particularly difficult with languages such as
PHP that are weakly typed and not formally specified [7].
Therefore, we complement a form of static analysis, taint
analysis, with the use of data mining to predict the existence of
false positives. This solution combines two apparently opposite
approaches: humans coding the knowledge about vulnerabil-
ities (for taint analysis) versus automatically obtaining that
knowledge (with supervised machine learning supporting data
mining).

To predict the existence of false positives we introduce the
novel idea of assessing if the vulnerabilities detected are false
positives using data mining. To do this assessment, we measure
attributes of the code that we observed to be associated with
the presence of false positives, and use a combination of
the three top-ranking classifiers to flag every vulnerability as
false positive or not. We explore the use of several classifiers:
ID3, C4.5/J48, Random Forest, Random Tree, K-NN, Naive
Bayes, Bayes Net, MLP, SVM, and Logistic Regression.
Moreover, for every vulnerability classified as false positive,
we use an induction rule classifier to show which attributes
are associated with it. We explore the JRip, PART, Prism
and Ridor induction rule classifiers for this goal. Classifiers
are automatically configured using machine learning based on
labeled vulnerability data.

Ensuring that the code correction is done correctly requires
assessing that the vulnerabilities are removed and that the
correct behavior of the application is not modified by the fixes.
We propose using program mutation and regression testing to
confirm, respectively, that the fixes do the function to what
they are programmed to (blocking malicious inputs) and that
the application remains working as expected (with benign
inputs). Notice that we do not claim that our approach is
able to correct any vulnerability, or to detect it, only the input
validation vulnerabilities it is programmed to deal with.

The paper also describes the design of the Web Application
Protection (WAP) tool that implements our approach [1]. WAP
analyzes and removes input validation vulnerabilities from
code1 written in PHP 5, which according to a recent report
is used by more than 77% of the web applications [16]. WAP
covers a considerable number of classes of vulnerabilities:
SQL injection (SQLI), cross-site scripting (XSS), remote file
inclusion, local file inclusion, directory traversal/path traversal,
source code disclosure, PHP code injection, and OS command
injection. The first two continue to be among the highest
positions of the OWASP Top 10 in 2013 [39], whereas the rest
are also known to be high risk, especially in PHP. Currently
WAP assumes that the background database is MySQL, DB2

1We use the terms PHP code, script, and programs interchangeably in the
paper, following a common practice.

or PostgreSQL. The tool might be extended with more flaws
and databases, but this set is enough to demonstrate the
concept. Designing and implementing WAP was a challenging
task. The tool does taint analysis of PHP programs, a form
of data flow analysis. To do a first reduction of the number
of false positives, the tool performs global, interprocedural
and context-sensitive analysis, which means that data flows
are followed even when they enter new functions and other
modules (other files). This involves the management of several
data structures, but also to deal with global variables (that in
PHP can appear anywhere in the code, simply by preceding
the name with global or through the $_GLOBALS array)
and resolving module names (which can even contain paths
taken from environment variables). Handling object orientation
with the associated inheritance and polymorphism was also a
considerable challenge.

We evaluated the tool experimentally by running it with both
simple synthetic code and with 45 open PHP web applications
available in the internet, adding up to more than 6,700 files
and 1,380,000 lines of code. Our results suggest that the tool
is capable of finding and correcting the vulnerabilities from
the classes it was programmed to handle.

The main contributions of the paper are: (1) an approach
for improving the security of web applications by combining
detection and automatic correction of vulnerabilities in web
applications; (2) a combination of taint analysis and data
mining techniques to identify vulnerabilities with low false
positives; (3) a tool that implements that approach for web
applications written in PHP with several database management
systems; (4) a study of the configuration of the data mining
component and an experimental evaluation of the tool with a
considerable number of open source PHP applications.

II. INPUT VALIDATION VULNERABILITIES

Our approach is about input validation vulnerabilities, so
this section presents briefly some of them (those handled
by the WAP tool). Inputs enter an application through entry
points (e.g., $_GET) and exploit a vulnerability by reaching a
sensitive sink (e.g., mysql_query). Most attacks involve mixing
normal input with metacharacters or metadata (e.g., ’, OR), so
applications can be protected by placing sanitization functions
in the paths between entry points and sensitive sinks.

SQL injection (SQLI) vulnerabilities are caused by the use
of string-building techniques to execute SQL queries. Fig. 1
shows PHP code vulnerable to SQLI. This script inserts in a
SQL query (line 4) the username and password provided by
the user (lines 2, 3). If the user is malicious he can provide
as username admin’ - - , causing the script to execute a query
that returns information about the user admin without the need
of providing a password: SELECT * FROM users WHERE
username=‘admin’ - - ’ AND password=‘foo’

This vulnerability can be removed either by sanitizing the
inputs (e.g., preceding with a backslash metacharacters such
as the prime) or by using prepared statements. We opted
by the former because it requires simpler modifications to
the code. Sanitization depends on the sensitive sink, i.e.,
on the way in which the input is used. For SQL and the

IEEE TRANSITIONS ON REALIBILITY 3

1: $conn = mysql_connect(“localhost”,“username”,“password”);
2: $user = $_POST[‘user’];
3: $pass = $_POST[‘password’];
4: $query = “SELECT * FROM users WHERE username=‘$user’ AND
password=‘$pass’ ”;
5: $result = mysql_query($query);

Fig. 1. Login PHP script vulnerable to SQLI.

MySQL database, PHP provides the mysql_real_escape_string
function. The username could be sanitized in line 2: $user =
mysql_real_ escape_string($_POST[‘user’]); (similar for line
3).

Cross-site scripting (XSS) attacks execute malicious code
(e.g., JavaScript) in the victim’s browser. Differently from the
other attacks we consider, a XSS attack is not against a web
application itself, but against its users. There are three main
classes of XSS attacks depending on how the malicious code
is sent to the victim (reflected or non-persistent, stored or
persistent, and DOM-based) but we explain only reflected XSS
for briefness. A script vulnerable to XSS can have a single line:
echo $_GET[’username’];. The attack involves convincing the
user to click on a link that accesses the web application,
sending it a script that is reflected by the echo instruction and
executed in the browser. This kind of attack can be prevented
by sanitizing the input and/or by encoding the output. The
latter consists in encoding metacharacters such as < and > in
a way that they are interpreted as normal characters, instead
of HTML metacharacters.

The other vulnerabilities we only briefly present due to
lack of space (more in [1]). A remote file inclusion (RFI)
vulnerability allows attackers to embed a remote file contain-
ing PHP code in the vulnerable program. Local file inclusion
(LFI) differs from RFI since it inserts a file from the local
file system of the web application (not a remote file). A
directory traversal or path traversal (DT/PT) attack consists
in an attacker accessing arbitrary local files, possibly outside
the web site directory. Source code disclosure (SCD) attacks
dump source code and configuration files. An operating system
command injection (OSCI) attack consists in forcing the
application to execute a command defined by the attacker. A
PHP code injection (PHPCI) vulnerability allows an attacker
to supply code that is executed by an eval statement.

III. APPROACH AND ARCHITECTURE

A. The approach

The notion of detecting and correcting vulnerabilities in the
source code that we propose is tightly related to information
flows: detecting problematic information flows in the source
code; modifying the source code to block these flows. The
notion of information flow is central to two of the three
main security properties: confidentiality and integrity [26].
Confidentiality is related to private information flowing to
public objects, whereas integrity is related to untrusted data
flowing to trusted objects. Availability is an exception as it is
not directly related to information flow.

The approach proposed is, therefore, about information-
flow security in the context of web applications. We are
mostly concerned with the server-side of these applications,

attackerattacker

attackerattacker

attackerattacker victim uservictim user

web applicationweb application

web applicationweb application

web applicationweb application

integrity violation
(SQLI, FRI, LFI, OSCI)

confidentiality violation
(SQLI, DT/PT, SCD)

confidentiality or integrity violation (XSS)

Fig. 2. Information flows that exploit web vulnerabilities.

which is normally written in a language such as PHP, Java
or Perl. Therefore, the problem is a case of language-based
information-flow security, a topic much investigated in recent
years [25], [15], [22]. Attacks against web vulnerabilities
can be expressed in terms of violations of information-flow
security. Fig. 2 shows the information flows that exploit each
of the vulnerabilities of Section II. The information flows are
labeled with the vulnerabilities that usually permit them (a
few rarer cases are not represented). XSS is different from
other vulnerabilities because the victim is not the web appli-
cation itself, but a user. Our approach is a way of enforcing
information-flow security at language-level. The tool detects
the possibility of existing the information flows represented in
the figure, and modifies the source code to prevent them.

The approach can be implemented as a sequence of steps:
1) Taint analysis: parsing the source code; generating an

abstract syntax tree (AST); doing taint analysis based on
the AST and generating trees describing candidate vulnerable
control-flow paths (from an entry point to a sensitive sink);

2) Data mining: obtaining attributes from the candidate vul-
nerable control-flow paths and using a top 3 of the classifiers
to predict if each candidate vulnerability is a false positive or
not. In the presence of a false positive, use induction rules to
present the relation between the attributes that classified it;

3) Code correction: given the control-flow paths trees of
vulnerabilities (predicted not to be false positives), identify
the vulnerabilities, the fixes to insert and the places where
they have to be inserted; assessing the probabilities of the
vulnerabilities being false positives and modifying the source
code with the fixes;

4) Feedback: providing feedback to the programmer based
on the data collected in the previous steps (vulnerable paths,
vulnerabilities, fixes, false positive probability and the at-
tributes that classified it as a false positive);

5) Testing: higher assurance can be obtained with two forms
of testing: program mutation to verify if the fixes do their
function; regression testing to verify if the behavior of the
application remains the same with benign inputs.

B. Architecture

Fig. 3 shows the architecture that implements steps 1 to 4
of the approach (testing is not represented). It is composed
of three modules: code analyzer, false positives predictor and
code corrector. The code analyzer first parses the PHP source
code and generates an AST. Then, it uses tree walkers to do
taint analysis, i.e., to track if data supplied by users through the

IEEE TRANSITIONS ON REALIBILITY 4

$a

1: $query

$query

9: mysql_query

mysql_query

10: $r

$r

10:

$b

2:

8: $query

$_GET['u']$a

=

a) AST (i), TST (ii) and taint analysis of the $a = $_GET['u']; statement (iii)

$_GET['u']

$a

name: $_GET['u']
line: 15
tainted: 1

name: $a
line: 15
tainted: 1

(i) (ii) (iii)

d
ir
e
c
ti
o
n

 o
f

ta
in

t
a
n
a

ly
s
is

 p
ro

p
a

g
a

ti
o

n

$x

=

$b

+

$c

$b

$x

$c

b) AST (i), TST (ii) and taint analysis of the $x = $b + $c; statement (iii)

name: $x
line: 16
tainted: 0

name: $b
line: 16
tainted: 0

name: $c
line: 16
tainted: 0

(i) (ii) (iii)

d
ir
e

c
ti
o

n
 o

f
ta

in
t

a
n

a
ly

s
is

 p
ro

p
a
g
a

ti
o
n

$b

Fig. 4. Example AST (i), TST(ii), and taint analysis (iii).

entry points reaches sensitive sinks without sanitization. While
doing this analysis, the code analyzer generates tainted symbol
tables and tainted execution path trees for those paths that link
entry points to sensitive sinks without proper sanitization. The
false positives predictor continues where the code analyzer
stops. For every sensitive sink that was found to be reached
by tainted input, it tracks the path from that sink to the entry
point using the tables and trees just mentioned. Along the track
paths (slice candidate vulnerabilities in the fig.) the vectors of
attributes (instances) are collected and classified by the data
mining algorithm as true/false positive.

The code corrector picks the paths classified as true posi-
tives to signal the tainted inputs to be sanitized using the tables
and trees mentioned above. The source code is corrected by
inserting fixes, e.g., calls to sanitization functions. The archi-
tecture is for the approach but represents also the architecture
of the WAP tool.

IV. TAINT ANALYSIS

Taint analysis for vulnerability detection has been investi-
gated for more than a decade [10]. However, papers in the
area do not present the process in detail and usually do not do
interprocedural, global, and context-sensitive analysis, so we
present how we do it. The taint analyzer is a static analysis tool
that operates over an AST created by a lexer and a parser, for
PHP 5 in our case (in WAP we implemented it using ANTLR
[23]). In the beginning of the analysis, all symbols (variables,
functions) are untainted unless they are an entry point (e.g.,
$a in $a = $_GET [′u′]). The tree walkers (also implemented
using the ANTLR [23]) build a tainted symbol table (TST) in
which every cell is a program statement from which we want
to collect data (see Fig. 4). Each cell contains a subtree of the
AST plus some data. For instance, for statement $x = $b+$c;
the TST cell contains the subtree of the AST that represents
the dependency of $x on $b and $c. For each symbol several
data items are stored, e.g., the symbol name, the line number
of the statement and the taintedness.

Taint analysis involves traveling though the TST. If a vari-
able is tainted this state is propagated to symbols that depend
on it, e.g., function parameters or variables that are updated
using it. Fig. 4 (iii) shows the propagation of taintdness of
the symbol $_GET [′u′] to the symbol $a, where the attribute
tainted of $a receives the value of the attribute tainted from
$_GET [′u′]. On the contrary, the state of a variable is not
propagated if it is untainted or if it is an argument of a PHP
sanitization function (a list of such functions is in [1]). The
process finishes when all symbols are analyzed this way.

1: $a = $_GET[’user’];
2: $b = $_POST[’pass’];
3: $c = ”SELECT * FROM users WHERE u = ’mysql_real_escape_string($a)’ ”;
4: $b = ”wap”;
5: $d = ”SELECT * FROM users WHERE u = ’$b’ ”;
6: $r = mysql_query($c);
7: $r = mysql_query($d);
8: $b = $_POST[’pass’];
9: $query = ”SELECT * FROM users WHERE u = ’$a’ AND p = ’$b”’;
10: $r = mysql_query($query);

a) Sample code vulnerable to SQLI

$_GET['u']$a

=

a) AST (i), TST (ii) and taint analysis of the $a = $_GET['u']; statement (iii)

$_GET['u']

$a

name: $_GET['u']
line: 15
tainted: 1

name: $a
line: 15
tainted: 1

(i) (ii) (iii)

d
ire

ct
io

n
 o

f
ta

in
t

an
a

ly
si

s
pr

op
a

ga
tio

n

$x

=

$b

+

$c

$b

$x

$c

b) AST (i), TST (ii) and taint analysis of the $x = $b + $c; statement (iii)

name: $x
line: 16
tainted: 0

name: $b
line: 16
tainted: 0

name: $c
line: 16
tainted: 0

(i) (ii) (iii)

di
re

ct
io

n
of

ta
in

t
an

al
ys

is
 p

ro
p

ag
at

io
n

$a

1: $query

$query

9: mysql_query

mysql_query

10: $r

$r

10:

$b

2:

8: $query

$b

b) TEPT of a) c) untainted data of a)

Fig. 5. Script with SQLI vuln., its TEPT and untaint data structures.

While the tree walkers are building the TST, they also build
a tainted execution path tree (TEPT; example in Fig. 5 b)).
Each branch of the TEPT corresponds to a tainted variable and
contains a sub-branch for each line of code where the variable
becomes tainted (a square in the fig.). The entries in the
sub-branches (curly parentheses in the fig.) are the variables
that the tainted variable propagated its state into (dependent
variables). Taint analysis involves updating the TEPT with the
variables that become tainted. At the end of the analysis, the
TEPT contains one node for each statement that passes the
taintedness from the entry point until the tainted variable.

Fig. 5 shows a sample code vulnerable to SQLI, its TEPT
and untainted data (UD) structures. The analysis understands
that $a and $b are tainted because they get non-sanitized values
from an entry point (lines 1-2). When analyzing line 3, it finds
out that $c is not tainted because $a is sanitized. Analyzing
line 5, $d is not tainted because $b becomes untainted in line
4. In line 8 $b is tainted again and in line 9 $query becomes
tainted due to $a and $b. A vulnerability is flagged in line 10
because tainted data reaches a sensitive sink (mysql_query).
When $a becomes tainted a new branch is created (Fig. 5
b)). Also a sub-branch is created to represent the line of code
where $a became tainted. The same procedure occurs to $b
in line 2. The state of $b in line 4 becomes untainted. An
entry of it is added to UD (Fig. 5 c)) to avoid its taintedeness
propagation from TEPT. So, in line 5 the statement is untainted
because $b belongs to UD and its taintedness propagation is
blocked. When, in line 8, $b becomes tainted again a new
sub-branch is created in $b to line 8 and its entry is removed
from UD. For $query a branch with a sub-branch representing

IEEE TRANSITIONS ON REALIBILITY 5

PHP
source code

Lexer Parser

Create AST AST
Taint

analysis

Fixes

Entry
points

Sensitive
sinks

PHP
Sanitization
functions

TST

TEPT

Detect
vulnerabilities

Slice of candidate
vulnerabilities

Taint AnalyzerTree Generator

Code Analyzer

Collect
attributes

Instances

Trained
data set

Trained
balanced
data set

Top 3 of
classifiers

Predict
false positives

Untainted
data

Rule
inductor

False
positives

Slice of real
vulnerabilities

Correlate
attributes

False Positives Predictor

False positive
information

Identify the
right places

Correct the
source code

Protected
source code

Source code
marked

Code Corrector

Fig. 3. Architecture: main modules and data structures.

line 9 is created. Here, $query is tainted because $a and $b
propagated their taintedness, so an entry of $query is added
in the last sub-branch created in $a and $b (1: to $a; 8: to
$b). Analyzing line 10, mysql_query and $r become tainted
because $query taintedness is propagated. The procedure is
repeated for the creation of the branch and insertion of the
dependency in the sub-branch. As we can see, the process of
taint analysis is a symbiosis of exploring the TST, TEPT and
UD structures. A symbol from a statement of TST propagates
its taintedness to its root node iff it belongs to TEPT but not
to UD. At the end of the analysis of a statement, the TEPT
and/or UD are updated: TEPT with new tainted variables and
tainted dependent variables; and UD with the addition or the
removal of variables.

To summarize, the taint analysis model has the following
steps: (1) create TST by collecting data from AST and flagging
as tainted the entry points; (2) propagate taintedness by setting
variables as tainted in TST iff the variable that propagates
its taintdeness belongs to TEPT and not to UD; (3) block
taintdeness propagation by inserting in UD any tainted variable
that belongs to TEPT and is sanitized in TST; conversely,
remove variable from UD if it becomes tainted; (4) create the
TEPT: (i) a new branch is created for each new tainted variable
resulting from TST; (ii) a sub-branch is created for each line
of code where the variable becomes tainted; (iii) an entry in
a sub-branch is made with a variable that becomes tainted by
the taindness propagation from the branch variable; (5) flag
a vulnerability whenever a TST cell representing a sensitive
sink is reached by a tainted variable in the same conditions as
in (2).

During the analysis, whenever a variable that is passed to a
sensitive sink becomes tainted, the false positives predictor is
activated in order to collect the vector of attributes and classify

the instance as being false positive or a real vulnerability. In
the last case, the code corrector is triggered in order to prepare
the correction of the code. The code is updated and stored in
a file only at the end of the process, when the analysis finishes
and all the corrections that have to be made are known.

V. PREDICTING FALSE POSITIVES

The static analysis problem is known to be related to
Turing’s halting problem, and therefore is undecidable for non-
trivial languages [18]. In practice this difficulty is solved by
making only a partial analysis of some language constructs,
leading static analysis tools to be unsound. In our approach
this problem can appear, for example, with string manipulation
operations. For instance, it is unclear on what to do to the state
of a tainted string that is processed by operations that return a
substring or concatenate it with another string. Both operations
can untaint the string, but we can not decide with complete
certainty. We opted by letting the string tainted, which may
lead to false positives but not false negatives.

The analysis might be further refined by considering, for
example, the semantics of string manipulation functions, as in
[38]. However, coding explicitly more knowledge in a static
analysis tool is hard and typically has to be done for each class
of vulnerabilities ([38] follows this direction but considers a
single class of vulnerabilities, SQLI). Moreover, the humans
who code the knowledge have first to obtain it, which can be
complex.

Data mining allows a different approach. Humans label
samples of code as vulnerable or not, then machine learning
techniques are used to configure the tool with knowledge
acquired from the labelled samples. Data mining then uses
that data to analyze the code. The key idea is that there are
symptoms in the code, e.g., the presence of string manipulation

IEEE TRANSITIONS ON REALIBILITY 6

operations, that suggest that flagging a certain pattern as a
vulnerability may be a false positive. The assessment has
mainly two steps:

1) definition of the classifier – pick a representative set of
vulnerabilities identified by the taint analyzer, verify if they
are false positives or not, extract a set of attributes, analyze
their statistical correlation with the presence of a false positive,
evaluate candidate classifiers to pick the best for the case in
point, define the parameters of the classifier;

2) classification of vulnerabilities – given the classifier, for
every vulnerability found by our approach determine if it is a
false positive or not.

A. Classification of vulnerabilities

Any process of classification involves two aspects: the
attributes that allow classifying a sample, and the classes in
which these samples are classified. We identified the attributes
by analyzing manually a set of vulnerabilities found by WAP’s
taint analyzer. We studied these vulnerabilities to understand
if they were false positives. This involved both reading the
source code and executing attacks against each vulnerability
found to understand if it was attackable (true positive) or not
(false positive). This data set is further discussed in Section
V-C.

From this analysis we found three main sets of attributes
that led to false positives:

String manipulation: attributes that represent PHP functions
or operators that manipulate strings. These are: substring
extraction, concatenation, addition of characters, replacement
of characters, and removal of white spaces. Recall that a data
flow starts at an entry point, where it is marked tainted, and
ends at a sensitive sink. The taint analyzer flags a vulnerability
if the data flow is not untainted by a sanitization function
before reaching the sensitive sink. These string manipulation
functions may result in the sanitization of a data flow, but
the taint analyzer does not have enough knowledge to change
the status from tainted to untainted, so if a vulnerability is
flagged it may be a false positive. The combinations of func-
tions/operators that untaint a data flow are hard to establish, so
this knowledge is not simple to retrofit into the taint analyzer.

Validation: set of attributes related to the validation of user
inputs, often involving an if-then-else construct. We define the
following attributes: data type (calls to is_int(), is_string()),
is value set (isset()), control pattern (preg_match()), test of
belong to a white-list, test of belong to a black-list, error and
exit functions that output an error if the user inputs do not pass
a test. Similarly to what happens with string manipulations,
any of these attributes can sanitize a data flow and lead to a
false positive.

SQL query manipulation: attributes related with the insertion
of data in SQL queries (SQL injection only). We define
attributes: string inserted in a SQL aggregate function (AVG,
SUM, MAX, MIN, etc.), string inserted in a FROM clause,
test if data is numeric, and data inserted in a complex SQL
query. Again any of these constructs can sanitize data of an
otherwise considered tainted data flow.

For the string manipulation and validation sets the possible
values for the attributes were two, corresponding to the pres-
ence (Y) or no presence (N) of at least one of these constructs
in the sequence of instructions that propagates the input from
an entry point to a sensitive sink. The SQL query manipulation
attributes can take a third value, not assigned (NA), when the
vulnerability observed is other than SQLI.

We use only two classes to classify the vulnerabilities flag-
ged by the taint analyzer: Yes (it is a false positive) and No (it
is not a false positive, but a real vulnerability). Table I shows
some examples of candidate vulnerabilities flagged by the taint
analyzer, one per line. For each candidate vulnerability the
table shows the values of some of the attributes (Y or N)
and the class, which has to be assessed manually (supervized
machine learning). The data mining component is configured
using data like this.

B. Classifiers and metrics

As already mentioned, our data mining component uses
machine learning algorithms to extract knowledge from a set
of labeled data. This section presents the machine learning
algorithms that were studied to identify the best to classify
candidate vulnerabilities. We also discuss the metrics used to
evaluate the merit of the classifiers.
Machine learning classifiers.
We studied machine learning classifiers of three classes:

Graphical/symbolic algorithms. Algorithms that represent
knowledge using a graphical model. In the ID3, C4.5/J48,
Random Tree and Random Forest classifiers, the graphical
model is a decision tree. They use the information gain rate
metric to decide how relevant an attribute is to classify an
instance in a class (a leaf of the tree). An attribute with
small information gain has big entropy (degree of impurity
of attribute or information quantity that the attribute offers to
the obtention of the class), so it is less relevant for a class than
another with a higher information gain. C4.5/J48 is a evolution
of ID3 that does pruning of the tree, i.e., removes nodes with
less relevant attributes (with a bigger entropy). The Bayesian
Network is an acyclic graphical model, where the nodes are
represented by random attributes from the data set.

Probabilistic algorithms. This category includes Naive
Bayes (NB), K-Nearest Neighbor (K-NN) and Logistic Re-
gression (LR). They classify an instance in the class that has
the highest probability. NB is a simple statistical classifier
based on the Bayes formula and the assumption of conditional
independence of the probability distributions of the attributes.
K-NN classifies an instance in the class of its neighbors. LR
uses regression analysis to classify an instance.

Neural network algorithms. This category has two algo-
rithms: Multi-Layer Perceptron (MLP) and Support Vector
Machine (SVM). These algorithms are inspired on the func-
tioning of the neurons of the human brain. MLP is an artificial
neural network classifier that maps sets of input data (values of
attributes) onto a set of appropriate outputs (our class attribute,
Yes or No). SVM is a evolution of MLP.

Classifier evaluation metrics.
To evaluate the classifiers we use ten metrics that are computed

IEEE TRANSITIONS ON REALIBILITY 7

TABLE I
ATTRIBUTES AND CLASS FOR SOME VULNERABILITIES.

Potential vulnerability String manipulation Validation SQL query manipulation

Type Webapp Extract String Add Replace Remove Type IsSet Pattern While Black Error Aggreg. FROM Numeric Complex Classsubstring concat. char string whitesp. checking entry point control list list / exit function clause entry point query
SQLI currentcost Y Y Y N N N N N N N N Y N N N Yes
SQLI currentcost Y Y Y N N N N N N N N N N N N Yes
SQLI currentcost N N N N N N N N N N N N N N N No
XSS emoncms N Y N Y N N N N N N N NA NA NA NA Yes
XSS Mfm 0.13 N Y N Y Y N N N N N N NA NA NA NA Yes
XSS St. ZiPEC 0.32 N Y N N N N N N N N N NA NA NA NA No
RFI DVWA 1.0.7 N N N N N N N N Y N Y NA NA NA NA Yes
RFI SAMATE N N N Y N N Y N N N N NA NA NA NA No
RFI SAMATE N N N Y N N Y Y N N N NA NA NA NA No
OSCI DVWA 1.0.7 N Y N Y N N N N N Y N NA NA NA NA Yes
XSS St. OWASP Vicnum Y N N N N N N Y N N N NA NA NA NA Yes
XSS Mfm 0.13 N N N N N N N N N Y N NA NA NA NA Yes

TABLE II
CONFUSION MATRIX (GENERIC).

Observed
Yes (FP) No (not FP)

Predicted Yes (FP) True positive (tp) False positive (fp)
No (not FP) False negative (fn) True negative (tn)

based mainly on four parameters of each classifier. These
parameters are better understood in terms of the quadrants of
a confusion matrix (Table II). This matrix is a cross reference
table where its columns are the observed instances and its rows
the predicted results (instances classified by a classifier). Note
that through all the paper we use the terms false positive (FP)
and true positive (not FP) to express that an alarm raised by
the taint analyser is incorrect/correct. In this section we use the
same terms false positive (fp) and true positive (tp), as well
as false/true negative (fn/tn) also for the output of the next
stage, the FP classifier. To reduce the possibility of confusion
we use uppercase FP and lowercase fp/tp/fn/tn consistently as
indicated.
True positive rate of prediction (tpp). Measures how good the
classifier is. tpp = tp/(tp+ fn).
False positive rate of prediction (fpp). Measures how the
classifier deviates from the correct classification of a candidate
vulnerability as FP. fpp = fp/(fp+ tn).
Precision of prediction (prfp). Measures the actual FPs that
are correctly predicted in terms of percentage of total number
of FPs. prfp = tp/(tp+ fp).
Probability of detection (pd). Measures how the classifier is
good at detecting real vulnerabilities. pd = tn/(tn+ fp).
Probability of false detection (pfd). Measures how the classi-
fier deviates from the correct classification of a candidate vul-
nerability that was a real vulnerability. pfd = fn/(fn+ tp).
Precision of detection (prd). Measures the actual vulnerabili-
ties (not FPs) that are correctly predicted in terms of a percent-
age of the total number of vulnerabilities. prd = tn/(tn+fn).
Accuracy (acc). Measures the total of instances well classified.
acc = (tp+ tn)/(tp+ tn+ fp+ fn).
Precision (pr). Measures the actual FPs and vulnerabilities
(not FPs) that are correctly predicted in terms of a percentage
of total number of cases. pr = average(prfp, prd).

Sheet21

Page 1

Aggregate function
FROM clause

Numeric entry point
Complex query

Extract subst ring
String concatenation

Add char
Replace st ring

Error/exit
Remove whitespaces

T ype checking
Entry point is set

Pattern control
White-list
Black-list

0 5 10 15 20 25 30

Number of observations

A
tt

ri
bu

te
s

Aggregate function
FROM clause

Numeric entry point
Complex query

Extract subst ring
String concatenation

Add char
Replace st ring

Error/exit
Remove whitespaces

T ype checking
Entry point is set

Patt ern control
White-list
Black-list

0 10 20 30 40 50 60

Number of observations

A
tt

ri
bu

te
s

Fig. 6. Number of attribute occurrences in the original data set.

Kappa statistic (kappa). Measures the concordance between
the classes predicted and observed. Can be stratified in five
categories: worst, bad, reasonable, good, very good, excellent.
kappa = (po − pe)/(1 − pe), where po = acc and pe =
(P ∗P ′+N ∗N ′)/(P+N)2 to P = (tp+fn), P ′ = (tp+fp),
N = (fp+ tn) and N ′ = (fn+ tn).
Wilcoxon signed-rank test (wilcoxon). Test to compare clas-
sifier results with pairwise comparisons of the metrics tpp and
fpp or pd and pfd, with a benchmark result of tpp, pd > 70%
and fpp, pfd < 25% [9].

C. Evaluation of classifiers
Here we use the metrics to select the best classifiers for our

case. Our current data set has 76 vulnerabilities labeled with 15
attributes: 14 to characterize the candidates vulnerabilities and
1 to classify it as being false positive (Yes) or real vulnerability
(No). For each candidate vulnerability, we used a version of
WAP to collect the values of the 14 attributes and we manually
classified them as false positives or not. Needless to say,
understanding if a vulnerability was real or a false positive
was a tedious process. The 76 potential vulnerabilities were
distributed by the classes Yes and No with 32 and 44 instances,
respectively. Fig. 6 shows the number of occurrences of each
attribute.

The 10 classifiers are available in WEKA, an open source
data mining tool [40]. We used it for training and testing

IEEE TRANSITIONS ON REALIBILITY 8

the ten candidate classifiers with a standard 10-fold cross
validation estimator. This estimator divides the data into 10
buckets, trains the classifier with 9 of them and tests it with
the 10th. This process is repeated 10 times to test every bucket
with the classifier trained with the rest. This method accounts
for heterogeneities in the data set.

Table III shows the evaluation of the classifiers. The first
observation is the rejection of the K-NN and Naive Bayes
algorithms by the Wilcoxon signed-rank test. The rejection of
the K-NN algorithm is explained by the classes Yes and No
not being balanced, where the first class has less instances (32)
than the second class (44), which leads to unbalanced numbers
of neighbors and consequently to wrong classifications. The
Naive Bayes rejection seems to be due to its naive assumption
that attributes are conditionally independent and the small
number of observations of certain attributes.

In the first four columns of the table are the decision tree
models. These models select for the tree nodes the attributes
that have higher information gain. The C4.5/J48 model prunes
the tree to achieve better results. The branches that have nodes
with weak information gain (higher entropy), i.e., the attributes
with less occurrences, are removed (see Fig. 6). However,
an excessive tree pruning can result in a tree with too few
nodes to do a good classification. This was what happened in
our study, where J48 was the worst decision tree model. The
results of ID3 validate our conclusion because this model is the
J48 model without tree pruning. We can observe that ID3 has
better accuracy and precision results when compared with J48:
89.5% against 82.2% and 91% against 84.2%, respectively.
The best of the tree decision models is the Random Tree. The
table shows that this model has the highest accuracy (90.8%
that represents 69 of 76 instances well classified) and precision
(92%), and the kappa value is in accordance (81% - excellent).
This result is asserted by the 100% of prpf that tells us that
all false positive instances were well classified in class Yes;
also the 100% of pd tells us that all instances classified in
class No were well classified. The Bayes Net classifier is the
third worst model in terms of kappa, which is justified by the
random selection of attributes to be used as the nodes of its
acyclic graphical model. Some selected attributes have high
entropy so they insert noise in the model that results in bad
performance.

The last three columns of Table III correspond to three
models with good results. MLP is the neural network with best
results and, curiously, with the same results as ID3. Logistic
Regression (LR) was the best classifier. Table IV shows the
confusion matrix of LR (second and third columns), with
values equivalent to those in Table III. This model presents
the highest accuracy (92.1%, which corresponds to 70 of 76
instances well classified), precision (92.5%) and an excellent
value of kappa (84%). The prediction of false positives (first
3 rows of the Table III) is very good with a great true positive
rate of prediction (tpp = 84.6%, 27 of 32 instances), very low
false alarms (fpp = 2.3%, 1 of 44 instances) and an excellent
precision of prediction of false positives (prfp = 96.4%, 27 of
28 instances). The detection of vulnerabilities (next 3 rows of
the Table III) is also very good, with a great true positive rate
of detection (pd = 97.7%, 43 of 44 instances), low false alarms

TABLE IV
CONFUSION MATRIX OF TOP 3 CLASSIFIERS (1ST TWO WITH

ORIGINAL DATA, 3RD WITH BALANCED DATA SET).

Observed
Logistic Regression Random Tree SVM

Predicted Yes (FP) No (not FP) Yes (FP) No (not FP) Yes (FP) No (not FP)
Yes (FP) 27 1 25 0 56 0
No (not FP) 5 43 7 44 8 44

Sheet21

Page 1

Aggregate function
FROM clause

Numeric entry point
Complex query

Extract subst ring
String concatenation

Add char
Replace st ring

Error/exit
Remove whitespaces

T ype checking
Entry point is set

Pattern control
White-list
Black-list

0 5 10 15 20 25 30

Number of observations

A
tt

ri
bu

te
s

Aggregate function
FROM clause

Numeric entry point
Complex query

Extract subst ring
String concatenation

Add char
Replace st ring

Error/exit
Remove whitespaces

T ype checking
Entry point is set

Patt ern control
White-list
Black-list

0 10 20 30 40 50 60

Number of observations

A
tt

ri
bu

te
s

Fig. 7. Number of attribute occurrences in the balanced data set.

(pfd = 15.6%, 5 of 32 instances) and a very good precision of
detection of vulnerabilities (prd = 89.6%, 43 of 48 instances).

Balanced data set.
To try to improve the evaluation, we applied the SMOTE filter
to balance the classes [40]. This filter doubles instances of
smaller classes, creating a better balance. Fig. 7 shows the
number of occurrences in this new data set. Table V shows the
results of the re-evaluation with balanced classes. All models
increased their performance and pass the Wilcoxon signed-
rank test. The K-NN model has much better performance
because the classes are now balanced. However, the kappa,
accuracy and precision metrics show that the Bayes models
continue to be the worst. The decision tree models present
good results, with the Random Tree model again the best
of them and the C4.5/J48 model still the worst. Observing
Fig. 7 there are attributes with very low occurrences that are
pruned in the C4.5/J48 model. To increase the performance of
this model we remove the lowest information gain attribute
(the biggest entropy attribute) and re-evaluate the model.
There is an increase in its performance to 92.6% of pr,
93,7% of acc and 85.0% (excellent) of kappa, that is equal
to the performance of the Random Tree model. Again the
neural networks and LR models have very good performance,
whereas SVM is the best of the three with approximately 92%
of accuracy and pr, and 100% of precision in prediction of
false positives (prfp) and detection of real vulnerabilities (pd).

Main attributes.
To conclude the study of the best classifier we need to
understand which attributes contribute most to a candidate vul-
nerability being a false positive. For that purpose we extracted
from our data set 32 false positive instances and classified them
in three sub-classes, one for each of the sets of attributes of

IEEE TRANSITIONS ON REALIBILITY 9

TABLE III
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO THE ORIGINAL DATA SET.

Measures ID3 C4.5/J48 Random Random K-NN Naive Bayes MLP SVM Logistic
(%) Forest Tree Bayes Net Regression
tpp 75.0 81.3 78.1 78.1 71.9 68.8 78.1 75.0 81.3 84.4
fpp 0.0 13.6 4.5 0.0 0.0 13.6 13.6 0.0 4.5 2.3
prfp 100.0 81.3 92.6 100.0 100.0 78.6 80.6 100.0 92.9 96.4
pd 100.0 86.4 95.5 100.0 100.0 86.4 86.4 100.0 95.5 97.7
pfd 25.0 18.8 21.9 21.9 28.1 31.3 21.9 25.0 18.8 15.6
prd 84.6 86.4 85.7 86.3 83.0 79.2 84.4 84.6 87.5 89.6
acc 89.5 82.2 88.2 90.8 82.9 78.9 82.9 89.5 89.5 92.1
(% #) 68 64 67 69 63 60 63 68 68 70
pr 91.0 84.2 88.6 92.0 86.8 78.9 82.8 91.0 89.8 92.5

kappa 77.0 67.0 75.0 81.0 63.0 56.0 64.0 77.0 78.0 84.0
very good very good very good excellent very good good very good very good very good excellent

wilcoxon accepted accepted accepted accepted rejected rejected accepted accepted accepted accepted

TABLE V
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO THE BALANCED DATA SET.

Measures ID3 C4.5/J48 Random Random K-NN Naive Bayes MLP SVM Logistic
(%) Forest Tree Bayes Net Regression
tpp 87.3 87.5 85.9 87.5 84.4 83.6 83.6 85.9 87.5 85.9
fpp 0.0 9.1 0.0 0.0 0.0 19.5 18.2 0.0 0.0 2.3
prfp 100.0 93.3 100.0 100.0 100.0 87.5 87.5 100.0 100.0 98.2
pd 100.0 90.9 100.0 100.0 100.0 80.5 81.8 100.0 100.0 97.7
pfd 12.7 12.5 14.1 12.5 15.6 16.4 16.4 14.1 12.5 14.1
prd 84.6 83.3 83.0 84.6 81.5 75.0 76.6 83.0 84.6 82.7
acc 92.5 88.9 91.7 92.6 90.7 82.4 82.9 91.7 92.6 90.7
(% #) 99 96 99 100 98 89 89 99 100 98
pr 92.3 88.3 91.5 92.3 90.7 81.3 82.0 91.5 92.3 90.5

kappa 85.0 77.0 83.0 85.0 81.0 64.0 64.0 83.0 85.0 81.0
Excellent Very Good Excellent Excellent Excellent Very Good Very Good Excellent Excellent Excellent

wilcoxon Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted

TABLE VI
CONFUSION MATRIX OF LOGISTIC REGRESSION CLASSIFIER

APPLIED TO FALSE POSITIVES DATA SET.

Observed
String manip. SQL Validation

Predicted
String manip. 17 3 1
SQL 0 0 0
Validation 0 0 11

Section V-A: string manipulation, SQL query manipulation
and validation. Then, we used WEKA to evaluate this new
data set with the classifiers that performed best (LR, Random
Tree, and SVM), with and without balanced classes. Table
VI shows the confusion matrix obtained using LR without
balanced classes. The 32 instances are distributed by the three
classes with 17, 3, and 12 instances. The LR performance
was acc = 87.5%, pr = 80.5%, and kappa = 76% (very
good). All 17 instances of the string manipulation class were
correctly classified. All 3 instances from the SQL class were
classified in the string manipulation class, which is justified
by the presence of the concatenation attribute in all instances.
The 11 instances of the validation class were well classified,
except one that was classified as string manipulation. This
mistake is explained by the presence of the add char attribute
in this instance. This analysis lead us to the conclusion that
the string manipulation class is the one that most contributes
to a candidate vulnerability being a false positive.

D. Selection of classifiers

After the evaluation of classifiers, we need to select the
classifier that is best at classifying candidate vulnerabilities
as false positives or real vulnerabilities. For that purpose, we
need a classifier with great accuracy and precision, but with a
rate of fpp as low as possible, since this rate measures the false
negatives of the classifier – when a candidate vulnerability is
misclassified as being a false positive. We want also a classifier
with a low rate of pfd – when a candidate vulnerability is
misclassified as being a real vulnerability. This rate being
different from zero means that source code with a false positive
may be corrected, however it will not break the behavior of the
application, because the fixes are designed to avoid affecting
the behavior of the application. Finally, we want to justify why
a candidate vulnerability is classified as a false positive, i.e.,
which attributes lead to this.

Meta-models.
To optimize the classification performed by classifiers, our first
attempt was to combine machine learning algorithms. WEKA
allows to do this using meta-models. In the evaluation made in
previous section the Random Tree (RT) and LR were two of
the best classifiers. We used the Bagging, Stacking and Boost-
ing algorithms with RT and Boosting with LR (LogitBoost).
The Stacking model had the worst performance with an acc =
58%, and thus we removed it from the evaluation. The others
meta-models had in average acc = 86.2%, pr = 87.7%, fpp
= 3.8% and 66 instances well classified. Given these results,

IEEE TRANSITIONS ON REALIBILITY 10

TABLE VII
EVALUATION OF THE INDUCTION RULE CLASSIFIERS APPLIED TO

OUR ORIGINAL DATA SET.

Measures (%) JRip PART Prism Ridor
acc 88.2 88.2 86.8 86.8
(% #) 67 67 66 66
pr 90.0 88.5 88.4 87.5
fpp 0.0 6.8 13.6 4.5
pfd 28.1 18.6 9.7 25.0

we concluded that the meta-models had no benefit, as they
shown worst performance than RT and LR separately (see
tables Tables III and V for these two classifiers).

Top 3 classifiers.
LR was the best classifier with our original data set, but had
fpp = 2.3% so it can misclassify candidate vulnerabilities
as false positives. With the balanced data set it was one of
the best classifiers, despite fpp remaining unchanged. On the
other hand, RT was the best decision tree classifier in both
evaluations with fpp = 0%, i.e., no false negatives. Also, the
SVM classifier was one of the best with the original data
set and the best with the balanced data set, with fpp = 0%
unlike the fpp = 4.5% in the first evaluation. It was visible
that SVM with the balanced data set classified correctly the
two false negative instances that it classified wrongly with the
original data set. Table IV shows the confusion matrix for
RT (4th/5th columns) and SVM (last two columns) with no
false negatives and for LR (2nd/3rd columns) with the number
of false positives (a false positive classified as vulnerability)
lower than the other two classifiers.

Rules of induction.
Data mining is typically about correlation, but the classifiers
presented so far do not show this correlation. For that purpose,
our machine learning approach allows to identify combina-
tions of attributes that are correlated with the presence of
false positives, i.e., what attributes justify the classification
of false positives. To show this correlation, we use induction
or coverage rules for classifying the instances and presenting
the attributes combination to that classification. For this effect
we evaluated the JRip, PART, Prism and Ridor induction
classifiers. The results are presented in Table VII. Clearly
JRip was the best induction classifier, with higher pr and
acc, and the single one without false negatives (fpp = 0%).
It correctly classified 67 out of 76 instances. The instances
wrongly classified are expressed by the rate pfd = 28.1%.
As explained, this rate means the number of instances that are
false positives but were classified as real vulnerabilities. In our
approach these instances will be corrected with unnecessary
fixes, but a fix does not interfere with the functionality of
the code. So, although JRip has a higher pfd than the other
classifiers, this is preferable to a fpp different from zero.

Table VIII shows the set of rules defined by JRip to classify
our data set. The first six columns are the attributes involved
in the rules, the seventh is the classification, and the last
is the number of instances cover by the rule / number of
instances wrongly covered by the rule. For example, the first

TABLE VIII
SET OF INDUCTION RULES FROM JRIP CLASSIFIER.

String Replace Error Extract IsSet While Class Coverconcatenation string / exit substring entry point list
Y Y Yes 9 / 0
Y Y Yes 7 / 0

Y Yes 7 / 0
Y Yes 2 / 0

N Y Yes 2 / 0
No 49 / 5

rule (second line) classifies an instance as being false positive
(Class Yes) when the String concatenation and Replace string
attributes are present. The rule covers 9 instances in these
conditions, from the 32 false positives instances from our data
set, none wrongly classified (9 / 0). The last rule classifies
as real vulnerability (Class No) all instances that are not
covered by the previous five rules. The 44 real vulnerabilities
from our data set were correctly classified by this rule. The
rule classified more five instances in class No that are false
positives. These instances are related with Black list and
SQL attributes, which are not cover by the other rules. This
classification justifies the pfd value in Table VII. Notice that
the attributes involved in this set of rules confirms the study
of main attributes presented in Section V-C, where the SQL
attributes are not relevant and the string manipulation and
validation attributes (string manipulation first) are those that
most contribute to the presence of false positives.

E. Final selection and implementation

The main conclusion of our study is that there is no single
classifier that is the best for classifying false positives with
our data set. Therefore, we opted to use the top 3 classifiers
to increase the confidence in the false positive classification.
The top 3 is composed by Logistic Regression and Random
Tree trained with the original data set, and SVM trained
with the balanced data set. Also, the JRip induction rule
is used to present the correlation between the attributes to
justify the false positives classification. The combination of 3
classifiers is applied in sequence: first LR; if LR classifies
the vulnerability as false positive, RT is applied; if false
positive, SVM is applied. Only if SVM considers it a false
positive, the final result is false positive. These classifiers were
implemented in WAP and trained with the original/balanced
data sets as indicated.

VI. FIXING AND TESTING THE VULNERABLE CODE

A. Code correction

Our approach involves doing code correction automatically
after the detection of the vulnerabilities is performed by the
taint analyzer and the data mining component. The taint
analyzer returns data about the vulnerability, including its
class (e.g., SQLI) and the vulnerable slice of code. The code
corrector uses this data to define the fix to insert and the place
to insert it. Inserting a fix involves modifying a PHP file.

A fix is a call to a function that sanitizes or validates
the data that reaches the sensitive sink. Sanitization involves

IEEE TRANSITIONS ON REALIBILITY 11

modifying the data to neutralize dangerous metacharacters or
metadata, if they are present. Validation involves checking the
data and executing the sensitive sink or not depending on this
verification. Most fixes are inserted in the line of the sensitive
sink instead of, for example, the line of the entry point, to
avoid interference with other code that sanitizes the variable.
Table IX shows the fixes, how they are inserted and other
related information.

For SQLI, the fix is inserted in the last line where the query
is composed and before it reaches the sensitive sink. However
the fix can be inserted in the line of the sensitive sink, if
the query is composed there. The san_sqli fix applies PHP
sanitization functions (e.g., mysql_real_escape_string) and lets
the sensitive sink be executed with its arguments sanitized.
The SQLI sanitization functions precedes any malicious meta-
character with a backslash and replaces others by their literal,
e.g., \n by ’\n’. The sanitization function applied by the
san_sqli fix depends on the DBMS and the sensitive sink.
For example, for MySQL, the mysql_real_escape_string is
selected if the sensitive sink mysql_query is reached, but for
PostgreSQL, the pg_escape_string is used if the sensitive sink
is pg_query. For XSS the fixes use functions from the OWASP
PHP Anti-XSS library that replace dangerous metacharacters
by their HTML entity (e.g., < becomes <). For stored XSS
the sanitization function addslashes is used and the validation
process verifies in runtime if an attempt of exploitation occurs,
raising an alarm if that is the case. For these two classes of
vulnerabilities, a fix is inserted for each malicious input that
reaches a sensitive sink. For example if three malicious inputs
appear in a echo sensitive sink (for reflected XSS), then the
san_out fix will be inserted three times (one per each malicious
input).

The fixes for the others classes of vulnerabilities were
developed by us from scratch and perform validation of the
arguments that reach the sensitive sink, using black lists and
emitting an alarm in the presence of an attack. The san_eval fix
also performs sanitization replacing malicious meta-characters
by their HTML representation, for example backtick by `.

The last two columns of the table indicate if the fixes
output an alarm message when an attack is detected and what
happens to the execution of the web application when that
action is made. For SQLI, reflected XSS and PHPCI nothing
is outputted and the execution of the application proceeds. For
stored XSS an alarm message is emitted, but the application
proceeds with its execution. For the others where the fixes
perform validation, when an attack is detected an alarm is
raised and the execution of the web application stop.

B. Testing fixed code

Our fixes were designed to avoid modifying the (correct)
behavior of the applications. So far we witnessed no cases
in which an application fixed by WAP started to function
incorrectly, or that the fixes themselves worked incorrectly.
However, to increase the confidence in this observation, we
propose using software testing techniques. Testing is probably
the most widely adopted approach for ensuring software cor-
rectness. The idea is to apply a set of test cases (i.e., inputs) to

a program to determine for instance if the program in general
contains errors, or if modifications to the program introduced
errors. This verification is done by checking if these test cases
produce incorrect or unexpected behavior/outputs. We use two
software testing techniques for doing these two verifications,
respectively (1) program mutation and (2) regression testing.

1) Program mutation: We use a technique based on pro-
gram mutation to confirm that the inserted program fixes
prevent the attacks as expected. Program mutation is a form
of code-based testing, as it involves using the source code
of the program [13]. This technique consists in generating
variations of the program (mutants), which are afterwards used
to verify if the outputs they produce differ from those produced
by the unmodified program. The main idea is that although
understanding if the behavior of a program is incorrect or not
is not trivial, on the contrary comparing the results of two tests
of similar programs is quite feasible.

A mutant of a program P is defined as a program P ′ derived
from P by making a single change to P [35], [8]. Given
programs P and P ′ and a test-case T : (A1) T differentiates P
from P ′ if executions of P and P ′ with T produce different
results; (A2) if T fails to differentiate P from P ′, either P is
functionally equivalent to P ′ or T is ineffective in revealing
the changes introduced into P ′. For each vulnerability it
detects, WAP returns the vulnerable slice of code and the same
slice with the fix inserted, both starting in an entry point and
ending in a sensitive sink. Consider that P is the original
program (that contains the vulnerable slice) and P ′ the fixed
program (with the fix inserted). Consider that both P and P ′

are executed with a test case T :
T differentiates P from P ′ (A1): If T is a malicious input

that exploits the vulnerability in P , then P executed with T
produces an incorrect behavior. P ′ is the fixed version of P .
Therefore, if the fix works correctly, the result of the execution
of P ′ with T differs from the result of the execution of P with
T . As explained above, comparing the results of the two tests
is quite feasible.
T does not differentiate P from P ′ (A2): If T is a benign

input and P and P ′ are executed with T , a correct behavior
is obtained in both cases and the result produced by both
programs is equal. Input sanitization and validation do not in-
terfere with benign inputs, then the fixes only act on malicious
inputs, leaving the benign inputs untouched and remaining the
correct behavior.

Applying this approach with a large set of test cases we can
gain confidence that a fix indeed corrects a vulnerability.

2) Regression testing: A concern that may be raised about
the use of WAP for correcting web applications is that the
applications may start to function incorrectly due to the
modifications made by the tool. As mentioned, we have some
experience with the tool and we never observed this problem.
Nevertheless, we propose using regression testing to verify if
the (correct) behavior of an application was modified by WAP.
Regression testing consists in running the same tests before
and after the program modifications [13]. The objective is to
check if the functionality that was working correctly before
the changes, still continues to work correctly.

IEEE TRANSITIONS ON REALIBILITY 12

TABLE IX
ACTION AND OUTPUT OF THE FIXES.

Vulnerability
Fix Output

Sanitization Validation Applied to Function Alarm Stop
Addition Substitution Black-list White-list message execution

SQLI X X query san_sqli – No
Reflected XSS X sensitive sink san_out – No
Stored XSS X X X sensitive sink san_wdata X No
Stored XSS X X sensitive sink san_rdata X No
RFI X sensitive sink san_mix X Yes
LFI X sensitive sink san_mix X Yes
DT /PT X sensitive sink san_mix X Yes
SCD X sensitive sink san_mix X Yes
OSCI X sensitive sink san_osci X Yes
PHPCI X X X sensitive sink san_eval X, – Yes, No

We consider that the result of running an application test can
be either pass or fail, respectively if the application worked
as expected with that test case or not. We are not concerned
about how the test cases are obtained. If WAP is used by
the application developers, they can simply do their own
regression testing process. If WAP is employed by others, they
can write their own suite of tests or use the tests that come
with the application (something that happens with many open
source applications). Regression testing is successful if all the
test cases that resulted in pass before the WAP modification,
also result in pass after inserting the fixes.

VII. EXPERIMENTAL EVALUATION

WAP was implemented in Java, using the ANTLR parser
generator. It has around 95,000 lines of code, with 78,500
of which generated by ANTLR. The implementation followed
the architecture of Figure 3 and the approach of the previous
sections.

The objective of the experimental evaluation was to answer
the following questions: (1) Is WAP able to process a large set
of PHP applications? (Section VII-A) (2) Is it more accurate
and precise than other tools that do not combine taint analysis
and data mining? (Sections VII-B–VII-C) (3) Does it correct
the vulnerabilities it detects? (Section VII-D) (4) Does the tool
detect the vulnerabilities that it was programmed to detect?
(Section VII-D) (5) Do its corrections interfere with the normal
behavior of applications? (Section VII-E)

A. Large scale evaluation

To show the ability of using WAP with a large set of
PHP applications, we run it with 45 open source packages.
Table X shows the packages that were analyzed and sum-
marizes the results. The table shows that more than 6,700
files and 1,380,000 lines of code were analyzed, with 431
vulnerabilities found (at least 43 of which false positives (FP)).
The largest packages analyzed were Tikiwiki version 1.6 with
499,315 lines of code and phpMyAdmin version 2.6.3-pl1 with
143,171 lines of code. We used a range of packages from
well-known applications (e.g., Tikiwiki) to small applications
in their initial versions (like PHP-Diary). The functionality
was equally diverse, including for instance a small content
management application like phpCMS, an event console for
the iPhone (ZiPEC), and a weather application (PHP Weather).

The vulnerabilities found in ZiPEC were in the last version,
so we informed the programmers that acknowledged their
existence and fixed them.

B. Taint analysis comparative evaluation
To answer the second question we compare WAP with

Pixy and PhpMinerII. To the best of our knowledge, Pixy is
the most cited PHP static analysis tool in the literature and
PhpMinerII is the only tool that does data mining. Other open
PHP verification tools are available, but they are mostly simple
prototypes. The full comparison of WAP with the two tools
can be found in the next section. This one has the simpler goal
of comparing WAP’s taint analyzer with Pixy, which does this
same kind of analysis. We consider only SQLI and reflected
XSS vulnerabilities, as Pixy only detects these two (recall that
WAP detects vulnerabilities of eight classes).

Table XI shows the results of the execution of the two tools
with a randomly selected subset of the applications of Table
X: 9 open source applications and all PHP samples of NIST’s
SAMATE (http://samate.nist.gov/SRD/). Pixy did
not manage to process mutilidae and WackoPicko because they
use the object-oriented features of PHP 5.0, whereas Pixy
supports only those in PHP 4.0. WAP’s taint analyzer (WAP-
TA) detected 68 vulnerabilities (22 SQLI and 46 XSS), with 21
false positives (FP). Pixy detected 73 vulnerabilities (20 SQLI
and 53 XSS), with 41 false positives and 5 false negatives
(FN, i.e., it did not detect 5 vulnerabilities that WAP-TA did).

TABLE XI
RESULTS OF RUNNING WAP’S TAINT ANALYZER (WAP-TA),

PIXY AND WAP COMPLETE (WITH DATA MINING).

Webapp WAP-TA Pixy WAP (complete)
SQLI XSS FP FN SQLI XSS FP FN SQLI XSS Fixed

currentcost 3 4 2 0 3 5 3 0 1 4 5
DVWA 1.0.7 4 2 2 0 4 0 2 2 2 2 4
emoncms 2 6 3 0 2 3 0 0 2 3 5
Measureit 1.14 1 7 7 0 1 16 16 0 1 0 1
Mfm 0.13 0 8 3 0 0 10 8 3 0 5 5
Multilidae 2.3.5 0 2 0 0 - - - - 0 2 2
OWASP Vicnum 3 1 3 0 3 1 3 0 0 1 1
SAMATE 3 11 0 0 4 11 1 0 3 11 14
WackoPicko 3 5 0 0 - - - - 3 5 8
ZiPEC 0.32 3 0 1 0 3 7 8 0 2 0 2
Total 22 46 21 0 20 53 41 5 14 33 47

Pixy reported 30 false positives that were not raised by
WAP-TA. This difference is explained in part by the interpro-

IEEE TRANSITIONS ON REALIBILITY 13

TABLE X
SUMMARY OF THE RESULTS OF RUNNING WAP WITH OPEN SOURCE PACKAGES.

Web application Files Lines of Analysis Vul Vul FP Real
code time (s) files found vul

adminer-1.11.0 45 5,434 27 3 3 0 3
Butterfly insecure 16 2,364 3 5 10 0 10
Butterfly secure 15 2,678 3 3 4 0 4
currentcost 3 270 1 2 4 2 2
dmoz2mysql 6 1,000 2 0 0 0 0
DVWA 1.0.7 310 31,407 15 12 15 8 7
emoncms 76 6,876 6 6 15 3 12
gallery2 644 124,414 27 0 0 0 0
getboo 199 42,123 17 30 64 9 55
Ghost 16 398 2 2 3 0 3
gilbitron-PIP 14 328 1 0 0 0 0
GTD-PHP 62 4,853 10 33 111 0 111
Hexjector 1.0.6 11 1,640 3 0 0 0 0
Hotelmis 0.7 447 76,754 9 2 7 5 2
Lithuanian-7.02.05-v1.6 132 3,790 24 0 0 0 0
Measureit 1.14 2 967 2 1 12 7 5
Mfm 0.13 7 5,859 6 1 8 3 5
Mutillidae 1.3 18 1,623 6 10 19 0 19
Mutillidae 2.3.5 578 102,567 63 7 10 0 10
NeoBill0.9-alpha 620 100,139 6 5 19 0 19
ocsvg-0.2 4 243 1 0 0 0 0
OWASP Vicnum 22 814 2 7 4 3 1
paCRUD 0.7 100 11,079 11 0 0 0 0
Peruggia 10 988 2 6 22 0 22
PHP X Template 0.4 10 3,009 5 0 0 0 0
PhpBB 1.4.4 62 20,743 25 0 0 0 0
Phpcms 1.2.2 6 227 2 3 5 0 5
PhpCrud 6 612 3 0 0 0 0
PhpDiary-0.1 9 618 2 0 0 0 0
PHPFusion 633 27,000 40 0 0 0 0
phpldapadmin-1.2.3 97 28,601 9 0 0 0 0
PHPLib 7.4 73 13,383 35 3 14 0 14
PHPMyAdmin 2.0.5 40 4,730 18 0 0 0 0
PHPMyAdmin 2.2.0 34 9,430 12 0 0 0 0
PHPMyAdmin 2.6.3-pl1 287 143,171 105 0 0 0 0
Phpweather 1.52 13 2,465 9 0 0 0 0
SAMATE 22 353 1 10 20 1 19
Tikiwiki 1.6 1,563 499,315 1 4 4 0 4
volkszaehler 43 5,883 1 0 0 0 0
WackoPicko 57 4,156 3 4 11 0 11
WebCalendar 129 36,525 20 0 0 0 0
Webchess 1.0 37 7,704 1 5 13 0 13
WebScripts 5 391 4 2 14 0 14
Wordpress 2.0 215 44,254 10 7 13 1 12
ZiPEC 0.32 10 765 2 1 7 1 6
Total 6,708 1,381,943 557 174 431 43 388

cedural/ global/ context-sensitive analysis performed by WAP-
TA, but not by Pixy. Another part of the justification is the
bottom-up taint analysis carried out by Pixy (AST navigated
from the leafs to the root of the tree), whereas WAP-TA’s is
top-down (starts from the entry points and verifies if they reach
a sensitive sink).

Overall, WAP-TA was more accurate than Pixy: it had an
accuracy of 69%, whereas Pixy had only 44%.

C. Full comparative evaluation

This section compares the complete WAP with Pixy and
PhpMinerII.

PhpMinerII does data mining of program slices that end
at a sensitive sink, independently of data being propagated
through them starting at an entry point or not. PhpMinerII does
this analysis to predict vulnerabilities, whereas WAP uses data

mining to predict false positives in vulnerabilities detected by
the taint analyzer.

We evaluated PhpMinerII with our data set using the same
classifiers as PhpMinerII’s authors [29][30] (a subset of the
classifiers of Section V-B). The results of this evaluation are
in Table XII. It is possible to observe that the best classifier is
LR, which is the only one that passed the Wilcoxon signed-
rank test. It had also the highest precision (pr) and accuracy
(acc), and the lowest false alarm rate (fpp = 20%).

The confusion matrix of the LR model for PhpMinerII
(Table XIII) shows that it correctly classified 68 instances,
48 as vulnerabilities and 20 as non-vulnerabilities. We can
conclude that LR is a good classifier for PhpMinerII, with an
accuracy of 87.2% and a precision of 85.3%.

Comparing the three tools. The comparison with Pixy can be
extracted from Table XI, however we can not show the results
of PhpMinerII in the table because it does not really identify

IEEE TRANSITIONS ON REALIBILITY 14

TABLE XII
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO

THE DATA SET RESULTING FROM PHPMINERII.

Measures C4.5/J48 Naive MLP Logistic
(%) Bayes Regression
tpp 94.3 88.7 94.3 90.6
fpp 32.0 60.0 32.0 20.0
prfp 86.2 75.8 86.2 90.6
pd 68.0 40.0 68.0 80.0
pfd 5.7 11.3 5.7 9.4
prd 85.0 62.5 85.0 80.0
acc 85.9 73.1 85.9 87.2
(% #) 67 57 67 68
pr 85.6 69.2 85.6 85.3

kappa 65.8 31.7 65.8 70.6
Very Good Reasonable Very Good Very Good

wilcoxon Rejected Rejected Rejected Accepted

TABLE XIII
CONFUSION MATRIX OF PHPMINERII WITH LR.

Observed
Yes (Vul) No (not Vul)

Predicted Yes (Vul) 48 5
No (not Vul) 5 20

vulnerabilities. The accuracy of WAP was 92.1%, whereas
WAP-TA’s was 69% and Pixy’s only 44%. The PHPminerII
results (Tables XII and XIII) are much better than Pixy’s, but
not as good as WAP’s, which has an accuracy of 92.1% and
a precision of 92.5% (see Table III) with the same classifier.

Table XIV summarizes the comparison between WAP, Pixy,
and PhpMinerII. We refined these values for a more detailed
comparison. We obtained the intersection between the 53 slices
classified as vulnerable by PHPminerII and the 68 vulnerabil-
ities found by WAP. Removing from the 68 those found in
applications that PHPminerII could not process, 37 remain, 11
of which false positives. All the 22 real vulnerabilities detected
by PHPminerII were also detected by WAP and PHPminerII
did not detect 4 vulnerabilities that WAP identified. The 11
false positives from WAP are among the 31 false positives of
PHPminerII.

TABLE XIV
SUMMARY FOR WAP, PIXY AND PHPMINERII.

Metric WAP Pixy PhpMinerII
accuracy 92.1% 44.0% 87.2%
precision 92.5% 50.0% 85.2%

D. Fixing vulnerabilities

WAP uses data mining to discover false positives among the
vulnerabilities detected by its taint analyzer. Table XI shows
that in the set of 10 packages WAP detected 47 SQLI and
reflected XSS vulnerabilities. The taint analyzer raised 21 false
positives that were detected by the data mining component. All
the vulnerabilities detected were corrected (right-hand column
of the table).

WAP detects several other classes of vulnerabilities besides
SQLI and reflected XSS. Table XV expands the data of
Table XI for all the vulnerabilities discovered by WAP. The

69 XSS vulnerabilities detected include reflected and stored
XSS vulnerabilities, which explains the difference to the 46
reflected XSS of Table XI. Again all vulnerabilities were
corrected by the tool (last column).

TABLE XV
RESULTS OF THE EXECUTION OF WAP WITH ALL
VULNERABILITIES IT DETECTS AND CORRECTS.

Webapp
Detected taint analysis Detected

FixedSQLI RFI, LFI SCD OSCI XSS Total FP data
DT/PT mining

currentcost 3 0 0 0 4 7 2 5 5
DVWA 1.0.7 4 3 0 6 4 17 8 9 9
emoncms 2 0 0 0 13 15 3 12 12
Measureit 1.14 1 0 0 0 11 12 7 5 5
Mfm 0.13 0 0 0 0 8 8 3 5 5
Mutillidae 2.3.5 0 0 0 2 8 10 0 10 10
OWASP Vicnum 3 0 0 0 1 4 3 1 1
SAMATE 3 6 0 0 11 20 1 19 19
WackoPicko 3 2 0 1 5 11 0 11 11
ZiPEC 0.32 3 0 0 0 4 7 1 6 6
Total 22 11 0 9 69 111 28 83 83

E. Testing fixed applications

WAP returns new application files with the vulnerabilities
removed by the insertion of fixes in the source code. As
explained in Section VI-B, regression testing can be used to
check if the code corrections made by WAP compromise the
previously correct behavior of the application.

For this purpose, we did regression testing using Sele-
nium (http://docs.seleniumhq.org), a framework
for testing web applications. Selenium automates browsing and
verifies the results of the requests sent to web applications. The
DVWA 1.0.7 application and the samples in SAMATE were
tested because they contain a variety of vulnerabilities detected
and corrected by the WAP tool (see Table XV). Specifically,
WAP corrected 6 files of DVWA 1.0.7 and 10 of SAMATE.

The regression testing was carried out in the following way:
first, we created in Selenium a set of test cases with benign
inputs; then, we run these test cases with the original DVWA
and SAMATE files, and observed that they passed all tests.
Next, we replaced the 16 vulnerable files by the 16 files
returned by WAP and rerun the tests to verify the changes
introduced by the tool. The applications passed again all the
tests.

VIII. DISCUSSION

The WAP tool like any other static analysis approach can
only detect vulnerabilities it is programmed to. WAP can
however be extended to handle more classes of input validation
vulnerabilities. We discuss it considering WAP’s three main
components: taint analyzer, data mining component, and code
corrector. The taint analyzer has three pieces of data about
each class of vulnerabilities: entry points, sensitive sinks, and
sanitization functions. The entry points are always a variant
of the same set (functions that read input parameters, e.g.,
$_GET), whereas the rest tend to be simple to identify once
the vulnerability class is known. The data mining component
has to be trained with new knowledge about false positives

IEEE TRANSITIONS ON REALIBILITY 15

for the new class. This training may be skipped at first and
improved incrementally when more data becomes available.
For the training we need data about candidate vulnerabilities
of that kind found out by the taint analyzer, which have
to be labeled as true or false positives. Then, the attributes
associated to the false positives have to be used to configure
the classifier. The code corrector needs essentially data about
what sanitization function has to be used to handle that class
of vulnerability and where it shall be inserted. Again this is
doable once the new class if known and understood.

A limitation of WAP derives from the lack of formal
specification of PHP. During the experimentation of the tool
with many open source applications (Section VII-A) several
times WAP was unable to parse the source code for lack of
a grammar rule to deal with strange constructions. With time
these rules were added and these problems stopped appearing.

IX. RELATED WORK

There is a large corpus of related work so we just summarize
the main areas by discussing representative papers, while
leaving many others unreferenced for lack of space.

Detecting vulnerabilities with static analysis.
Static analysis tools automate the auditing of code, either
source, binary or intermediate. In the paper we use the term
static analysis in a narrow sense to designate static analysis
of source code to detect vulnerabilities [15], [17], [27], [33].
The most interesting static analysis tools do semantic analysis
based on the abstract syntax tree (AST) of a program. Data
flow analysis tools follow the data paths inside a program
to detect security problems. The most commonly used data
flow analysis technique for security analysis is taint analysis,
which marks data that enters the program as tainted and
detects if it reaches sensitive functions. Taint analysis tools
like CQUAL [27] and Splint [10] (both for C code) use
two qualifiers to annotate source code: the untainted qualifier
indicates either that a function/parameter returns trustworthy
data (e.g., a sanitization function) or that a parameter of a
function that requires trustworthy data (e.g., mysql_query); the
tainted qualifier means that a function or a parameter return
non-trustworthy data (e.g., functions that read user input).

Pixy [17] uses taint analysis for verifying PHP code, but
extends it with alias analysis that takes into account the
existence of aliases, i.e., of two or more variable names that
are used to denominate the same variable. SaferPHP uses
taint analysis to detect certain semantic vulnerabilities in PHP
code: denial of service due to infinite loops and unauthorized
operations in databases [33]. WAP also does taint analysis and
alias analysis for detecting vulnerabilities, although it goes
further by also correcting the code. Furthermore, Pixy does
only module-level analysis, whereas WAP does global analysis
(i.e., the analysis is not limited to a module/file, but can involve
several).

Vulnerabilities and data mining.
Data mining has been used to predict the presence of software
defects [3], [5], [19]. These works were based on code
attributes such as numbers of lines of code, code complexity

metrics, and object-oriented features. Some papers went one
step further in the direction of our work by using similar
metrics to predict the existence of vulnerabilities in source
code [21], [32], [36]. They used attributes such as past
vulnerabilities and function calls [21], or code complexity and
developer activities [32]. On the contrary of our work, these
others did not aim to detect bugs and identify their location,
but to assess the quality of the software in terms of prevalence
of defects/vulnerabilities.

Shar and Tan presented PhpMinerI and PhpMinerII, two
tools that use data mining to assess the presence of vulner-
abilities in PHP programs [29], [30]. These tools extract a
set of attributes from program slices, then apply data mining
algorithms to those attributes. The data mining process is not
really done by the tools, but by the WEKA tool [40]. More
recently the authors evolved this idea to use also traces or
program execution [31]. Their approach is an evolution of the
previous works that aimed to assess the prevalence of vulnera-
bilities, but obtaining a higher accuracy. WAP is quite different
because it has to identify the location of vulnerabilities in the
source code, so that it can correct them with fixes. Moreover,
WAP does not use data mining to identify vulnerabilities but
to predict if vulnerabilities found by taint analysis are really
so or if, on the contrary, they are false positives.

Correcting vulnerabilities.
We propose to use the output of static analysis to remove
vulnerabilities automatically. We are aware of a few works that
use approximately the same idea of first doing static analysis
then doing some kind of protection, but mostly for the specific
case of SQL injection and without attempting to insert fixes
in a way that can be replicated by a programmer. AMNESIA
does static analysis to discover all SQL queries –vulnerable
or not– and in runtime checks if the call being made satisfies
the format defined by the programmer [11]. Buehrer et
al. do something similar by comparing in runtime the parse
tree of the SQL statement before and after the inclusion
of user input [6]. WebSSARI does also static analysis and
inserts runtime guards, but no details are available about
what the guards are or how they are inserted [15]. Merlo
et al. present a tool that does static analysis of source
code, performs dynamic analysis to build syntactic models
of legitimate SQL queries, and generates code to protect
queries from input that aims to do SQLI [20]. saferXSS
does static analysis for finding XSS vulnerabilities, then
removes them using functions provided by OWASP’s ESAPI
(http://www.owasp.org/index.php/ESAPI) to
wrap user inputs [28]. None of these works use data mining
or machine learning.

X. CONCLUSION

The paper presents an approach for finding and correcting
vulnerabilities in web applications and a tool that implements
the approach for PHP programs and input validation vulner-
abilities. The approach and the tool search for vulnerabilities
using a combination of two techniques: static source code
analysis and data mining. Data mining is used to identify false
positives using a top 3 of machine learning classifiers and to

IEEE TRANSITIONS ON REALIBILITY 16

justify their presence using an induction rule classifier. All
classifiers were selected after a thorough comparison of several
alternatives. It is important to note that this combination of de-
tection techniques can not provide entirely correct results. The
static analysis problem is undecidable and the resort to data
mining can not circumvent this undecidability, only provide
probabilistic results. The tool corrects the code by inserting
fixes, i.e., sanitization and validation functions. Testing is used
to verify if the fixes actually remove the vulnerabilities and do
not compromise the (correct) behavior of the applications. The
tool was experimented with synthetic code with vulnerabilities
inserted on purpose and with a considerable number of open
source PHP applications. It was also compared with two source
code analysis tools, Pixy and PhpMinerII. This evaluation
suggests that the tool can detect and correct the vulnerabilities
of the classes it is programmed to handle. It was able to find
388 vulnerabilities in 1.4 million lines of code. Its accuracy
and precision were approximately 5% better than PhpMinerII’s
and 45% better than Pixy’s.

ACKNOWLEDGMENT

This work was partially supported by the EC through project FP7-
607109 (SEGRID), and by national funds through Fundação para a
Ciência e a Tecnologia (FCT) with references UID/CEC/50021/2013
(INESC-ID) and UID/CEC/00408/2013 (LaSIGE).

REFERENCES

[1] WAP tool website. http://awap.sourceforge.net/.
[2] J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and R. Neves.

Vulnerability removal with attack injection. IEEE Transactions on
Software Engineering, 36(3):357–370, 2010.

[3] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic
and comprehensive investigation of methods to build and evaluate fault
prediction models. Journal of Systems and Software, 83(1):2–17, 2010.

[4] R. Banabic and G. Candea. Fast black-box testing of system recovery
code. In Proceedings of the 7th ACM European Conference on Computer
Systems, pages 281–294, 2012.

[5] L. C. Briand, J. Wüst, J. W. Daly, and D. Victor Porter. Exploring the
relationships between design measures and software quality in object-
oriented systems. Journal of Systems and Software, 51(3):245–273,
2000.

[6] G. T. Buehrer, B. W. Weide, and P. Sivilotti. Using parse tree validation
to prevent SQL injection attacks. In Proceedings of the 5th International
Workshop on Software Engineering and Middleware, pages 106–113,
Sept. 2005.

[7] N. L. de Poel. Automated security review of PHP web applications with
static code analysis. Master’s thesis, State University of Groningen, May
2010.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. Computer, 11(4):34–41,
Apr 1978.

[9] J. Demšar. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research, 7:1–30, Dec 2006.

[10] D. Evans and D. Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, pages 42–51, Jan/Feb 2002.

[11] W. Halfond and A. Orso. AMNESIA: analysis and monitoring for neu-
tralizing SQL-injection attacks. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, pages
174–183, Nov. 2005.

[12] W. Halfond, A. Orso, and P. Manolios. WASP: protecting web ap-
plications using positive tainting and syntax-aware evaluation. IEEE
Transactions on Software Engineering, 34(1):65–81, 2008.

[13] J. C. Huang. Software Error Detection through Testing and Analysis.
John Wiley and Sons, Inc., 2009.

[14] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web application
security assessment by fault injection and behavior monitoring. In
Proceedings of the 12th International Conference on World Wide Web,
pages 148–159, 2003.

[15] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo.
Securing web application code by static analysis and runtime protection.
In Proceedings of the 13th International World Wide Web Conference,
pages 40–52, 2004.

[16] Imperva. Hacker intelligence initiative, monthly trend report #8. Apr.
2012.

[17] N. Jovanovic, C. Kruegel, and E. Kirda. Precise alias analysis for static
detection of web application vulnerabilities. In Proceedings of the 2006
Workshop on Programming Languages and Analysis for Security, pages
27–36, June 2006.

[18] W. Landi. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems, 1(4):323–337, 1992.

[19] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings. IEEE Transactions on Software Engineering,
34(4):485–496, 2008.

[20] E. Merlo, D. Letarte, and G. Antoniol. Automated Protection of PHP
Applications Against SQL Injection Attacks. In Proceedings of the
11th European Conference on Software Maintenance and Reengineering,
pages 191–202, Mar. 2007.

[21] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting
vulnerable software components. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, pages 529–540,
2007.

[22] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening web applications using precise tainting. Secu-
rity and Privacy in the Age of Ubiquitous Computing, pages 295–307,
2005.

[23] T. Parr. Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages. Pragmatic Bookshelf,
2009.

[24] T. Pietraszek and C. V. Berghe. Defending against injection attacks
through context-sensitive string evaluation. In Proceedings of the 8th
International Conference on Recent Advances in Intrusion Detection,
pages 124–145, 2005.

[25] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1):5–
19, 2003.

[26] R. S. Sandhu. Lattice-based access control models. IEEE Computer,
26(11):9–19, 1993.

[27] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format-
string vulnerabilities with type qualifiers. In Proceedings of the 10th
USENIX Security Symposium, volume 10, pages 16–16, Aug. 2001.

[28] L. K. Shar and H. B. K. Tan. Automated removal of cross site
scripting vulnerabilities in web applications. Information and Software
Technology, 54(5):467–478, 2012.

[29] L. K. Shar and H. B. K. Tan. Mining input sanitization patterns for
predicting SQL injection and cross site scripting vulnerabilities. In Pro-
ceedings of the 34th International Conference on Software Engineering,
pages 1293–1296, 2012.

[30] L. K. Shar and H. B. K. Tan. Predicting common web application
vulnerabilities from input validation and sanitization code patterns.
In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pages 310–313, 2012.

[31] L. K. Shar, H. B. K. Tan, and L. C. Briand. Mining SQL injection and
cross site scripting vulnerabilities using hybrid program analysis. In Pro-
ceedings of the 35th International Conference on Software Engineering,
pages 642–651, 2013.

[32] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities. IEEE Transactions on Software Engineering,
37(6):772–787, 2011.

[33] S. Son and V. Shmatikov. SAFERPHP: Finding semantic vulnerabilities
in PHP applications. In Proceedings of the ACM SIGPLAN 6th Workshop
on Programming Languages and Analysis for Security, 2011.

[34] Symantec. Internet threat report. 2012 trends, volume 18. Apr. 2013.
[35] T. Budd et al. The design of a prototype mutation system for program

testing. In Proceedings of the AFIPS National Computer Conference,
pages 623–627, 1978.

[36] J. Walden, M. Doyle, G. A. Welch, and M. Whelan. Security of
open source web applications. In Proceedings of the 3rd International
Symposium on Empirical Software Engineering and Measurement, pages
545–553, 2009.

[37] X. Wang, C. Pan, P. Liu, and S. Zhu. SigFree: A signature-free buffer
overflow attack blocker. In Proceedings of the 15th USENIX Security
Symposium, pages 225–240, Aug. 2006.

IEEE TRANSITIONS ON REALIBILITY 17

[38] G. Wassermann and Z. Su. Sound and precise analysis of web
applications for injection vulnerabilities. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 32–41, 2007.

[39] J. Williams and D. Wichers. OWASP Top 10 - 2013 rcl - the ten
most critical web application security risks. Technical report, OWASP
Foundation, 2013.

[40] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 3rd edition, 2011.

Ibéria Medeiros is a Ph.D. student at the Department of Informatics,
University of Lisboa. She is a member of the Large-Scale Informatics Systems
Laboratory (LASIGE) and the Navigators research group. She is also an
Assistant Professor of the University of Azores, teaching courses of the
graduation in Informatics, Computer Networks and Multimedia. Her research
interests are concerned with software security, source code static analysis,
data mining and machine learning, and security. More information about her
at https://sites.google.com/site/ibemed/.

Nuno Neves Nuno Neves is Associate Professor with Habilitation at the
Faculty of Sciences of the University of Lisboa. He is also Director of the
LaSIGE Lab and he leads the Navigators group. His main research interests
are in security and dependability aspects of distributed systems. Currently,
he is principal investigator of the SUPERCLOUD and SEGRID European
projects and he is involved in projects BiobankClouds and Erasmus+ ParIS.
His work has been recognized in several occasions, for example with the IBM
Scientific Prize and the William C. Carter award. He is on the editorial board
of the International Journal of Critical Computer-Based Systems. (more info
at www.di.fc.ul.pt/∼nuno)

Miguel Correia is an Associate Professor at Instituto Superior Técnico of the
Universidade de Lisboa and a researcher at INESC-ID, in Lisboa, Portugal.
He has been involved in several international and national research projects
related to security, including the PCAS, TCLOUDS, ReSIST, MAFTIA,
and CRUTIAL European projects. He has more than 100 publications. His
main research interests are: security, intrusion tolerance, distributed systems,
distributed algorithms, software security, cloud computing, and critical in-
frastructure protection. More information about him at http://www.gsd.inesc-
id.pt/∼mpc/.

