
On the Efficiency of Durable State Machine Replication

Alysson Bessani1, Marcel Santos1, João Felix1, Nuno Neves1, Miguel Correia2

{1FCUL/LaSIGE, 2INESC-ID/IST}, University of Lisbon – Portugal

Abstract
State Machine Replication (SMR) is a fundamental tech-
nique for ensuring the dependability of critical services
in modern internet-scale infrastructures. SMR alone
does not protect from full crashes, and thus in practice
it is employed together with secondary storage to ensure
the durability of the data managed by these services. In
this work we show that the classical durability enforc-
ing mechanisms – logging, checkpointing, state transfer
– can have a high impact on the performance of SMR-
based services even if SSDs are used instead of disks. To
alleviate this impact, we propose three techniques that
can be used in a transparent manner, i.e., without modi-
fying the SMR programming model or requiring extra re-
sources: parallel logging, sequential checkpointing, and
collaborative state transfer. We show the benefits of these
techniques experimentally by implementing them in an
open-source replication library, and evaluating them in
the context of a consistent key-value store and a coordi-
nation service.

1 Introduction

Internet-scale infrastructures rely on services that are
replicated in a group of servers to guarantee availabil-
ity and integrity despite the occurrence of faults. One
of the key techniques for implementing replication is the
Paxos protocol [27], or more generically the state ma-
chine replication (SMR) approach [34]. Many systems
in production use variations of this approach to tolerate
crash faults (e.g., [4, 5, 8, 12, 19]). Research systems
have also shown that SMR can be employed with Byzan-
tine faults with reasonable costs (e.g., [6, 9, 17, 21, 25]).

This paper addresses the problem of adding durability
to SMR systems. Durability is defined as the capability
of a SMR system to survive the crash or shutdown of all
its replicas, without losing any operation acknowledged
to the clients. Its relevance is justified not only by the
need to support maintenance operations, but also by the

many examples of significant failures that occur in data
centers, causing thousands of servers to crash simultane-
ously [13, 15, 30, 33].

However, the integration of durability techniques –
logging, checkpointing, and state transfer – with the
SMR approach can be difficult [8]. First of all, these
techniques can drastically decrease the performance of
a service1. In particular, synchronous logging can make
the system throughput as low as the number of appends
that can be performed on the disk per second, typically
just a few hundreds [24]. Although the use of SSDs can
alleviate the problem, it cannot solve it completely (see
§2.2). Additionally, checkpointing requires stopping the
service during this operation [6], unless non-trivial opti-
mizations are used at the application layer, such as copy-
on-write [8, 9]. Moreover, recovering faulty replicas in-
volves running a state transfer protocol, which can im-
pact normal execution as correct replicas need to transmit
their state.

Second, these durability techniques can complicate the
programming model. In theory, SMR requires only that
the service exposes an execute() method, called by the
replication library when an operation is ready to be exe-
cuted. However this leads to logs that grow forever, so in
practice the interface has to support service state check-
pointing. Two simple methods can be added to the in-
terface, one to collect a snapshot of the state and another
to install it during recovery. This basic setup defines a
simple interface, which eases the programming of the
service, and allows a complete separation between the
replication management logic and the service implemen-
tation. However, this interface can become much more
complex, if certain optimizations are used (see §2.2).

This paper presents new techniques for implement-
ing data durability in crash and Byzantine fault-tolerant

1The performance results presented in the literature often exclude
the impact of durability, as the authors intend to evaluate other aspects
of the solutions, such as the behavior of the agreement protocol. There-
fore, high throughput numbers can be observed (in req/sec) since the
overheads of logging/checkpointing are not considered.

1

Alysson Bessani
Originally published in the Proceedings of 2013 USENIX Annual Technical Conference

(BFT) SMR services. These techniques are transpar-
ent with respect to both the service being replicated and
the replication protocol, so they do not impact the pro-
gramming model; they greatly improve the performance
in comparison to standard techniques; they can be used
in commodity servers with ordinary hardware configura-
tions (no need for extra hardware, such as disks, special
memories or replicas); and, they can be implemented in
a modular way, as a durability layer placed in between
the SMR library and the service.

The techniques are three: parallel logging, for diluting
the latency of synchronous logging; sequential check-
pointing, to avoid stopping the replicated system during
checkpoints; and collaborative state transfer, for reduc-
ing the effect of replica recoveries on the system perfor-
mance. This is the first time that the durability of fault-
tolerant SMR is tackled in a principled way with a set
of algorithms organized in an abstraction to be used be-
tween SMR protocols and the application.

The proposed techniques were implemented in a dura-
bility layer on the BFT-SMaRt state machine replica-
tion library [1], on top of which we built two services:
a consistent key-value store (SCKV-Store) and a non-
trivial BFT coordination service (Durable DepSpace).
Our experimental evaluation shows that the proposed
techniques can remove most of the performance degra-
dation due to the addition of durability.

This paper makes the following contributions:

1. A description of the performance problems affect-
ing durable state machine replication, often over-
looked in previous works (§2);

2. Three new algorithmic techniques for removing
the negative effects of logging, checkpointing and
faulty replica recovery from SMR, without requir-
ing more resources, specialized hardware, or chang-
ing the service code (§3).

3. An analysis showing that exchanging disks by SSDs
neither solves the identified problems nor improves
our techniques beyond what is achieved with disks
(§2 and §5);

4. The description of an implementation of our tech-
niques (§4), and an experimental evaluation under
write-intensive loads, highlighting the performance
limitations of previous solutions and how our tech-
niques mitigate them (§5).

2 Durable SMR Performance Limitations

This section presents a durable SMR model, and then
analyzes the effect of durability mechanisms on the per-
formance of the system.

2.1 System Model and Properties
We follow the standard SMR model [34]. Clients send
requests to invoke operations on a service, which is im-
plemented in a set of replicas (see Figure 1). Operations
are executed in the same order by all replicas, by running
some form of agreement protocol. Service operations are
assumed to be deterministic, so an operation that updates
the state (abstracted as a write) produces the same new
state in all replicas. The state required for processing
the operations is kept in main memory, just like in most
practical applications for SMR [4, 8, 19].

SMR$Client$Side$ SMR$Server$Side$

Client$App.$

invoke execute getState
setState

Service$

Stable$
Storage$

log+
ckpt

log+
ckpt

Figure 1: A durable state machine replication architecture.

The replication library implementing SMR has a client
and a server side (layers at the bottom of the figure),
which interact respectively with the client application
and the service code. The library ensures standard safety
and liveness properties [6, 27], such as correct clients
eventually receive a response to their requests if enough
synchrony exists in the system.

SMR is built under the assumption that at most f repli-
cas fail out of a total of n replicas (we assume n = 2 f +1
on a crash fault-tolerant system and n = 3 f +1 on a BFT
system). A crash of more than f replicas breaks this as-
sumption, causing the system to stop processing requests
as the necessary agreement quorums are no longer avail-
able. Furthermore, depending on which replicas were af-
fected and on the number of crashes, some state changes
may be lost. This behavior is undesirable, as clients may
have already been informed about the changes in a re-
sponse (i.e., the request completed) and there is the ex-
pectation that the execution of operations is persistent.

To address this limitation, the SMR system should also
ensure the following property:

Durability: Any request completed at a client
is reflected in the service state after a recovery.

Traditional mechanisms for enforcing durability in
SMR-based main memory databases are logging, check-
pointing and state transfer [8, 16]. A replica can recover
from a crash by using the information saved in stable
storage and the state available in other replicas. It is im-
portant to notice that a recovering replica is considered
faulty until it obtains enough data to reconstruct the state
(which typically occurs after state transfer finishes).

Logging writes to stable storage information about
the progress of the agreement protocol (e.g., when cer-

2

tain messages arrive in Paxos-like protocols [8, 20]) and
about the operations executed on the service. Therefore,
data is logged either by the replication library or the ser-
vice itself, and a record describing the operation has to
be stored before a reply is returned to the client.

The replication library and the service code synchro-
nize the creation of checkpoints with the truncation of
logs. The service is responsible for generating snap-
shots of its state (method getState) and for setting the
state to a snapshot provided by the replication library
(method setState). The replication library also imple-
ments a state transfer protocol to initiate replicas from
an updated state (e.g., when recovering from a failure or
if they are too late processing requests), akin to previous
SMR works [6, 7, 8, 9, 32]. The state is fetched from the
other replicas that are currently running.

2.2 Identifying Performance Problems
This section discusses performance problems caused by
the use of logging, checkpointing and state transfer in
SMR systems. We illustrate the problems with a con-
sistent key-value store (SCKV-Store) implemented using
BFT-SMaRt [1], a Java BFT SMR library. In any case,
the results in the paper are mostly orthogonal to the fault
model. We consider write-only workloads of 8-byte keys
and 4kB values, in a key space of 250K keys, which cre-
ates a service state size of 1GB in 4 replicas. More details
about this application and the experiments can be found
in §4 and §5, respectively.

High latency of logging. As mentioned in §2.1, events
related to the agreement protocol and operations that
change the state of the service need to be logged in stable
storage. Table 1 illustrates the effects of several logging
approaches on the SCKV-Store, with a client load that
keeps a high sustainable throughput:

Metric No log Async. Sync. SSD Sync. Disk
Min Lat. (ms) 1.98 2.16 2.89 19.61

Peak Thr. (ops/s) 4772 4312 1017 63

Table 1: Effect of logging on the SCKV-Store. Single-client
minimum latency and peak throughput of 4kB-writes.

The table shows that synchronous2 logging to disk can
cripple the performance of such system. To address this
issue, some works have suggested the use of faster non-
volatile memory, such as flash memory solid state drives
(SSDs) or/in NVCaches [32]. As the table demonstrates,
there is a huge performance improvement when the log is
written synchronously to SSD storage, but still only 23%

2Synchronous writes are optimized to update only the file contents,
and not the metadata, using the rwd mode in the Java’ RandomAccess-
File class (equivalent to using the O DSYNC flag in POSIX open). This
is important to avoid unnecessary disk head positioning.

of the “No log” throughput is achieved. Additionally, by
employing specialized hardware, one arguably increases
the costs and the management complexity of the nodes,
especially in virtualized/cloud environments where such
hardware may not be available in all machines.

There are works that avoid this penalty by using asyn-
chronous writes to disk, allowing replicas to present a
performance closer to the main memory system (e.g.,
Harp [28] and BFS [6]). The problem with this solution
is that writing asynchronously does not give durability
guarantees if all the replicas crash (and later recover),
something that production systems need to address as
correlated failures do happen [13, 15, 30, 33].

We would like to have a general solution that makes
the performance of durable systems similar to pure mem-
ory systems, and that achieves this by exploring the log-
ging latency to process the requests and by optimizing
log writes.

Perturbations caused by checkpoints. Checkpoints
are necessary to limit the log size, but their creation usu-
ally degrades the performance of the service. Figure 2
shows how the throughput of the SCKV-Store is affected
by creating checkpoints at every 200K client requests.
Taking a snapshot after processing a certain number of
operations, as proposed in most works in SMR (e.g.,
[6, 27]), can make the system halt for a few seconds. This
happens because requests are no longer processed while
replicas save their state. Moreover, if the replicas are not
fully synchronized, delays may also occur because the
necessary agreement quorum might not be available.

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

Memory
Disk
SSD

Figure 2: Throughput of a SCKV-Store with checkpoints in
memory, disk and SSD considering a state of 1GB.

The figure indicates an equivalent performance degra-
dation for checkpoints written in disk or SSD, meaning
there is no extra benefit in using the latter (both require
roughly the same amount of time to synchronously write
the checkpoints). More importantly, the problem occurs
even if the checkpoints are kept in memory, since the fun-
damental limitation is not due to storage accesses (as in
logging), but to the cost to serialize a large state (1 GB).

Often, the performance decrease caused by check-
pointing is not observed in the literature, either because
no checkpoints were taken or because the service had a
very small state (e.g., a counter with 8 bytes) [6, 10, 17,
21, 25]. Most of these works were focusing on ordering

3

requests efficiently, and therefore checkpointing could be
disregarded as an orthogonal issue. Additionally, one
could think that checkpoints need only to be created spo-
radically, and therefore, their impact is small on the over-
all execution. We argue that this is not true in many sce-
narios. For example, the SCKV-Store can process around
4700 4kB-writes per second (see §5), which means that
the log can grow at the rate of more than 1.1 GB/min,
and thus checkpoints need to be taken rather frequently to
avoid outrageous log sizes. Leader-based protocols, such
as those based on Paxos, have to log information about
most of the exchanged messages, contributing to the log
growth. Furthermore, recent SMR protocols require fre-
quent checkpoints (every few hundred operations) to al-
low the service to recover efficiently from failed specu-
lative request ordering attempts [17, 21, 25].

Some systems use copy-on-write techniques for do-
ing checkpointing without stoping replicas (e.g., [9]), but
this approach has two limitations. First, copy-on-write
may be complicated to implement at application level in
non-trivial services, as the service needs to keep track of
which data objects were modified by the requests. Sec-
ond, even if such techniques are employed, the creation
of checkpoints still consumes resources and degrades
the performance of the system. For example, writing a
checkpoint to disk makes logging much slower since the
disk head has to move between the log and checkpoint
files, with the consequent disk seek times. In practice,
this limitation could be addressed in part with extra hard-
ware, such as by using two disks per server.

Another technique to deal with the problem is fuzzy
snapshots, used in ZooKeeper [19]. A fuzzy snapshot is
essentially a checkpoint that is done without stopping the
execution of operations. The downside is that some oper-
ations may be executed more than once during recovery,
an issue that ZooKeeper solves by forcing all operations
to be idempotent. However, making operations idem-
potent requires non-trivial request pre-processing before
they are ordered, and increases the difficulty of decou-
pling the replication library from the service [19, 20].

We aim to have a checkpointing mechanism that min-
imizes performance degradation without requiring addi-
tional hardware and, at the same time, keeping the SMR
programming model simple.

Perturbations caused by state transfer. When a
replica recovers, it needs to obtain an updated state to
catch up with the other replicas. This state is usually
composed of the last checkpoint plus the log up to some
request defined by the recovering replica. Typically, (at
least) another replica has to spend resources to send (part
of) the state. If checkpoints and logs are stored in a
disk, delays occur due to the transmission of the state
through the network but also because of the disk ac-

 0

 1

 2

 3

 4

 0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

Figure 3: Throughput of a SCKV-Store when a failed replica
recovers and asks for a state transfer.

cesses. Delta-checkpoint techniques based, for instance,
on Merkle trees [6] can alleviate this problem, but cannot
solve it completely since logs have always to be trans-
ferred. Moreover, implementing this kind of technique
can add more complexity to the service code.

Similarly to what is observed with checkpointing,
there can be the temptation to disregard the state trans-
fer impact on performance because it is perceived to oc-
cur rarely. However, techniques such as replica rejuvena-
tion [18] and proactive recovery [6, 36] use state transfer
to bring refreshed replicas up to date. Moreover, recon-
figurations [29] and even leader change protocols (that
need to be executed periodically for resilient BFT repli-
cation [10]) may require replicas to synchronize them-
selves [6, 35]. In conclusion, state transfer protocols may
be invoked much more often than when there is a crash
and a subsequent recovery.

Figure 3 illustrates the effect of state transmission dur-
ing a replica recovery in a 4 node BFT system using the
PBFT’s state transfer protocol [6]. This protocol requires
just one replica to send the state (checkpoint plus log) –
similarly to crash FT Paxos-based systems – while others
just provide authenticated hashes for state validation (as
the sender of the state may suffer a Byzantine fault). The
figure shows that the system performance drops to less
than 1/3 of its normal performance during the 30 seconds
required to complete state transfer. While one replica is
recovering, another one is slowed because it is sending
the state, and thus the remaining two are unable to order
and execute requests (with f = 1, quorums of 3 replicas
are needed to order requests).

One way to avoid this performance degradation is to
ignore the state transfer requests until the load is low
enough to process both the state transfers and normal re-
quest ordering [19]. However, this approach tends to de-
lay the recovery of faulty replicas and makes the system
vulnerable to extended unavailability periods (if more
faults occur). Another possible solution is to add ex-
tra replicas to avoid interruptions on the service during
recovery [36]. This solution is undesirable as it can in-
crease the costs of deploying the system.

We would like to have a state transfer protocol that
minimizes the performance degradation due to state
transfer without delaying the recovery of faulty replicas.

4

3 Efficient Durability for SMR

In this section we present three techniques to solve the
problems identified in the previous section.

3.1 Parallel Logging
Parallel logging has the objective of hiding the high la-
tency of logging. It is based on two ideas: (1) log groups
of operations instead of single operations; and (2) pro-
cess the operations in parallel with their storage.

The first idea explores the fact that disks have a high
bandwidth, so the latency for writing 1 or 100 log en-
tries can be similar, but the throughput would be natu-
rally increased by a factor of roughly 100 in the second
case. This technique requires the replication library to
deliver groups of service operations (accumulated during
the previous batch execution) to allow the whole batch to
be logged at once, whereas previous solutions normally
only provide single operations, one by one. Notice that
this approach is different from the batching commonly
used in SMR [6, 10, 25], where a group of operations is
ordered together to amortize the costs of the agreement
protocol (although many times these costs include log-
ging a batch of requests to stable storage [27]). Here the
aim is to pass batches of operations from the replication
library to the service, and a batch may include (batches
of) requests ordered in different agreements.

The second idea requires that the requests of a batch
are processed while the corresponding log entries are be-
ing written to the secondary storage. Notice, however,
that a reply can only be sent to the client after the cor-
responding request is executed and logged, ensuring that
the result seen by the client will persist even if all repli-
cas fail and later recover. Naturally, the effectiveness of
this technique depends on the relation between the time
for processing a batch and the time for logging it. More
specifically, the interval Tk taken by a service to process
a batch of k requests is given by Tk = max(Ek,Lk), where
Ek and Lk represent the latency of executing and log-
ging the batch of k operations, respectively. This equa-
tion shows that the most expensive of the two operations
(execution or logging) defines the delay for processing
the batch. For example, in the case of the SCKV-Store,
Ek ⌧ Lk for any k, since inserting data in a hash table
with chaining (an O(1) operation) is much faster than
logging a 4kB-write (with or without batching). This is
not the case for Durable DepSpace, which takes a much
higher benefit from this technique (see §5).

3.2 Sequential Checkpointing
Sequential checkpointing aims at minimizing the perfor-
mance impact of taking replica’s state snapshots. The

Replica0 Replica1 Replica2 Replica3

:m
e$

ckp$ ckp$ ckp$ ckp$

ckp$ ckp$ ckp$ ckp$

(a) Synchronized.

Replica0 Replica1 Replica2 Replica3

ckp$

ckp$

ckp$

ckp$

ckp$

ckp$

ckp$

:m
e$

(b) Sequential.

Figure 4: Checkpointing strategies (4 replicas).

key principle is to exploit the natural redundancy that ex-
ists in asynchronous distributed systems based on SMR.
Since these systems make progress as long as a quorum
of n� f replicas is available, there are f spare replicas in
fault-free executions. The intuition here is to make each
replica store its state at different times, to ensure that
n� f replicas can continue processing client requests.

We define global checkpointing period P as the max-
imum number of (write) requests that a replica will ex-
ecute before creating a new checkpoint. This parameter
defines also the maximum size of a replica’s log in num-
ber of requests. Although P is the same for all replicas,
they checkpoint their state at different points of the ex-
ecution. Moreover, all correct replicas will take at least
one checkpoint within that period.

An instantiation of this model is for each replica i =
0, ...,n�1 to take a checkpoint after processing the k-th
request where k mod P= i⇥

⌅P
n
⇧
, e.g., for P= 1000, n=

4, replica i takes a checkpoint after processing requests
i⇥250, 1000+ i⇥250, 2000+ i⇥250, and so on.

Figure 4 compares a synchronous (or coordinated)
checkpoint with our technique. Time grows from the
bottom of the figure to the top. The shorter rectangles
represent the logging of an operation, whereas the taller
rectangles correspond to the creation of a checkpoint.
It can be observed that synchronized checkpoints occur
less frequently than sequential checkpoints, but they stop
the system during their execution whereas for sequential
checkpointing there is always an agreement quorum of 3
replicas available for continuing processing requests.

An important requirement of this scheme is to use val-
ues of P such that the chance of more than f overlapping
checkpoints is negligible. Let Cmax be the estimated max-
imum interval required for a replica to take a checkpoint
and Tmax the maximum throughput of the service. Two
consecutive checkpoints will not overlap if:

Cmax <
1

Tmax
⇥

�
P
n

⌫
=)

P > n⇥Cmax⇥Tmax (1)

Equation 1 defines the minimum value for P that can
be used with sequential checkpoints. In our SCKV-Store
example, for a state of 1GB and a 100% 4kB-write work-

5

load, we have Cmax ⇡ 15s and Tmax ⇡ 4700 ops/s, which
means P > 282000. If more frequent checkpoints are re-
quired, the replicas can be organized in groups of at most
f replicas to take checkpoints together.

3.3 Collaborative State Transfer

The state transfer protocol is used to update the state of
a replica during recovery, by transmitting log records (L)
and checkpoints (C) from other replicas (see Figure 5(a)).
Typically only one of the replicas returns the full state
and log, while the others may just send a hash of this data
for validation (only required in the BFT case). As shown
in §2, this approach can degrade performance during re-
coveries. Furthermore, it does not work with sequential
checkpoints, as the received state can not be directly vali-
dated with hashes of other replicas’ checkpoints (as they
are different). These limitations are addressed with the
collaborative state transfer (CST) protocol.

Although the two previous techniques work both with
crash-tolerant and BFT SMR, the CST protocol is sub-
stantially more complex with Byzantine faults. Conse-
quently, we start by describing a BFT version of the pro-
tocol (which also works for crash faults) and later, at the
end of the section, we explain how CST can be simplified
on a crash-tolerant system3.

We designate by leecher the recovering replica and by
seeders the replicas that send (parts of) their state. CST
is triggered when a replica (leecher) starts (see Figure 6).
Its first action is to use the local log and checkpoint to de-
termine the last logged request and its sequence number
(assigned by the ordering protocol), from now on called
agreement id. The leecher then asks for the most recent
logged agreement id of the other replicas, and waits for
replies until n� f of them are collected (including its
own id). The ids are placed in a vector in descending
order, and the largest id available in f +1 replicas is se-
lected, to ensure that such agreement id was logged by at
least one correct replica (steps 1-3).

In BFT-SMaRt there is no parallel execution of agree-
ments, so if one correct replica has ordered the id-th
batch, it means with certainty that agreement id was al-
ready processed by at least f + 1 correct replicas4. The
other correct replicas, which might be a bit late, will also
eventually process this agreement, when they receive the
necessary messages.

3Even though crash fault tolerance is by far more used in production
systems, our choice is justified by two factors. First, the subtleties of
BFT protocols require a more extensive discussion. Second, given the
lack of a stable and widely-used open-source implementation of a crash
fault tolerance SMR library, we choose to develop our techniques in a
BFT SMR library, so the description is in accordance to our prototype.

4If one employs protocols such as Paxos/PBFT, low and high wa-
termarks may need to considered.

PBFT,solu6on:onereplica$sends$checkpoint$plus$logandothers$
help$validate$it$providing$hashes$

Replica0 Replica1 Replica2
C"

L"

C"C"

L"L"

:m
e$

(a) PBFT and others (n = 4).

Assump:ons:$
A  f=2$
A  No$other$faults$

Op6mis6c,solu6on,for,f,>,1:onereplica$sends$everything$

1Ast$ 2And$
Faulty'
replica'3Ard$ 4Ath$ 5Ath$ 6Ath$

L1"

C2"

C1"

L1" L1"
L2"

C3"

L1"

L4"

L5"
C5"

L2"

L1"

L5"
L6"
C6"

L4"

L2"

L1"

L4"

C4"

L2"L2"
L3" L3" L3" L3"

:m
e$

(b) CST (n = 7).

Figure 5: Data transfer in different state transfer strategies.

Next, the leecher proceeds to obtain the state up to
id from a seeder and the associated validation data from
f other replicas. The active replicas are ordered by the
freshness of the checkpoints, from the most recent to
the oldest (step 4). A leecher can make this calculation
based on id, as replicas take checkpoints at determinis-
tic points, as explained in §3.2. We call the replica with
i-th oldest checkpoint the i-th replica and the checkpoint
Ci. The log of a replica is divided in segments, and each
segment Li is the portion of the log required to update the
state from Ci to the more recent state Ci�1. Therefore, we
use the following notion of equivalence: Ci�1 ⌘Ci +Li.
Notice that L1 corresponds to the log records of the re-
quests that were executed after the most recent check-
point C1 (see Figure 5(b) for n = 7).

The leecher fetches the state from the (f + 1)-th
replica (seeder), which comprises the log segments L1,
..., L f+1 and checkpoint Cf+1 (step 8). To validate this
state, it also gets hashes of the log segments and check-
points from the other f replicas with more recent check-
points (from the 1st until the f -th replica) (step 6a). Then,
the leecher sets its state to the checkpoint and replays the
log segments received from the seeder, in order to bring
up to date its state (steps 10 and 12a).

The state validation is performed by comparing the
hashes of the f replicas with the hashes of the log seg-
ments from the seeder and intermediate checkpoints. For
each replica i, the leecher replays Li+1 to reach a state
equivalent to the checkpoint of this replica. Then, it cre-
ates a intermediate checkpoint of its state and calculates
the corresponding hash (steps 12a and 12b). The leecher
finds out if the log segments sent by the seeder and the
current state (after executing Li+1) match the hashes pro-
vided by this replica (step 12c).

If the check succeeds for f replicas, the reached state
is valid and the CST protocol can finish (step 13). If
the validation fails, the leecher fetches the data from the
(f + 2)-th replica, which includes the log segments L1,
..., L f+2 and checkpoint Cf+2 (step 13 goes back to step
8). Then, it re-executes the validation protocol, consider-
ing as extra validation information the hashes that were
produced with the data from the (f + 1)-th replica (step
9). Notice that the validation still requires f +1 matching

6

1. Look at the local log to discover the last executed agreement;

2. Fetch the id of the last executed agreement from n� f replicas
(including itself) and save the identifier of these replicas;

3. id = largest agreement id that is available in f +1 replicas;

4. Using id, P and n, order the replicas (including itself) with the
ones with most recent checkpoints first;

5. V /0; // the set containing state and log hashes

6. For i = 1 to f do:

(a) Fetch Vi = hHL1, ...,HLi,HCii from i-th replica;

(b) V V [{Vi};

7. r f +1; // replica to fetch state

8. Fetch Sr = hL1, ...,Lr,Cri from r-th replica;

9. V V [{hH(Sr.L1), ...,H(Sr.Lr),H(Sr.Cr)i};

10. Update state using Sr.Cr;

11. v 0; // number of validations of Sr

12. For i = r�1 down to 1 do:

(a) Replay log Sr.Li+1;

(b) Take checkpoint C0i and calculate its hash HC0i ;

(c) If (Vi.HL1..i =Vr.HL1..i)^ (Vi.HCi = HC0i), v++;

13. If v� f , replay log Sr.L1 and return; Else, r++ and go to 8;

Figure 6: The CST recovery protocol called by the leecher af-
ter a restart. Fetch commands wait for replies within a timeout
and go back to step 2 if they do not complete.

log segments and checkpoints, but now there are f + 2
replicas involved, and the validation is successful even
with one Byzantine replica. In the worst case, f faulty
replicas participate in the protocol, which requires 2 f +1
replicas to send some data, ensuring a correct majority
and at least one valid state (log and checkpoint).

In the scenario of Figure 5(b), the 3rd replica (the
(f +1)-th replica) sends L1, L2, L3 and C3, while the 2nd

replica only transmits HL1 = H(L1), HL2 = H(L2) and
HC2 = H(C2), and the 1st replica sends HL1 = H(L1)
and HC1 = H(C1). The leecher next replays L3 to get to
state C3 +L3, and takes the intermediate checkpoint C02
and calculates the hash HC02 = H(C02). If HC02 matches
HC2 from the 2nd replica, and the hashes of log segments
L2 and L1 from the 3rd replica are equal to HL2 and HL1
from the 2nd replica, then the first validation is success-
ful. Next, a similar procedure is applied to replay L2 and
the validation data from the 1st replica. Now, the leecher
only needs to replay L1 to reach the state corresponding
to the execution of request id.

While the state transfer protocol is running, replicas
continue to create new checkpoints and logs since the
recovery does not stop the processing of new requests.
Therefore, they are required to keep old log segments and
checkpoints to improve their chances to support the re-
covery of a slow leecher. However, to bound the required

storage space, these old files are eventually removed, and
the leecher might not be able to collect enough data to
complete recovery. When this happens, it restarts the al-
gorithm using a more recent request id (a similar solution
exists in all other state state transfer protocols that we are
aware of, e.g., [6, 8]).

The leecher observes the execution of the other repli-
cas while running CST, and stores all received messages
concerning agreements more recent than id in an out-
of-context buffer. At the end of CST, it uses this buffer
to catch up with the other replicas, allowing it to be re-
integrated in the state machine.

Correctness. We present here a brief correctness argu-
ment of the CST protocol. Assume that b is the actual
number of faulty (Byzantine) replicas (lower or equal to
f) and r the number of recovering replicas.

In terms of safety, the first thing to observe is that CST
returns if and only if the state is validated by at least
f +1 replicas. This implies that the state reached by the
leecher at the end of the procedure is valid according to
at least one correct replica. To ensure that this state is
recent, the largest agreement id that is returned by f +1
replicas is used.

Regarding liveness, there are two cases to consider.
If b + r f , there are still n� f correct replicas run-
ning and therefore the system could have made progress
while the r replicas were crashed. A replica is able to
recover as long as checkpoints and logs can be collected
from the other replicas. Blocking is prevented because
CST restarts if any of the Fetch commands fails or takes
too much time. Consequently, the protocol is live if cor-
rect replicas keep the logs and checkpoints for a suffi-
ciently long interval. This is a common assumption for
state transfer protocols. If b+ r > f , then there may not
be enough replicas for the system to continue process-
ing. In this case the recovering replica(s) will continu-
ously try to fetch the most up to date agreement id from
n� f replicas (possibly including other recovering repli-
cas) until such quorum exists. Notice that a total system
crash is a special case of this scenario.

Optimizing CST for f = 1. When f = 1 (and thus
n= 4), a single recovering replica can degrade the perfor-
mance of the system because one of n� f replicas will be
transferring the checkpoint and logs, delaying the execu-
tion of the agreements (as illustrated in Figure 7(a)). To
avoid this problem, we spread the data transfer between
the active replicas through the following optimization in
an initial recovery round: the 2nd replica (f + 1 = 2)
sends C2 plus hHL1,HL2i (instead of the checkpoint plus
full log), while the 1st replica sends L1 and HC1 (instead
of only hashes) and the 3rd replica sends L2 (instead of
not participating). If the validation of the received state

7

Assump:ons:$
A  f=1$
A  |C|$≈$(|LU|+|LL|)/2$

Op6mis6c,solu6on,for,f=1:$every$replica$sends$~1/3ofthe$data$

C1"

L1"

1Ast$replica$ 2And$replica$ 3Ard$replica$

C2"

C3"

L2" L2"

L3"

L1" L1"
:m

e$

(a) General CST.

Assump:ons:$
A  f=1$
A  |C|$≈$(|LU|+|LL|)/2$

Op6mis6c,solu6on,for,f=1:$every$replica$sends$~1/3ofthe$data$

C1"

L1"

1Ast$replica$ 2And$replica$ 3Ard$replica$

C2"

C3"

L2" L2"

L3"

L1" L1"

:m
e$

(b) Optimized CST.

Figure 7: General and optimized CST with f = 1.

fails, then the normal CST protocol is executed. This
optimization is represented in Figure 7(b), and in §5 we
show the benefits of this strategy.

Simplifications for crash faults. When the SMR only
needs to tolerate crash faults, a much simpler version of
CST can be employed. The basic idea is to execute steps
1-4 of CST and then fetch and use the checkpoint and log
from the 1st (most up to date) replica, since no validation
needs to be performed. If f = 1, a analogous optimiza-
tion can be used to spread the burden of data transfer
among the two replicas: the 1st replica sends the check-
point while the 2nd replica sends the log segment.

4 Implementation: Dura-SMaRt

In order to validate our techniques, we extended the
open-source BFT-SMaRt replication library [1] with a
durability layer, placed between the request ordering
and the service. We named the resulting system Dura-
SMaRt, and used it to implement two applications: a con-
sistent key-value store and a coordination service.

Adding durability to BFT-SMaRt. BFT-SMaRt orig-
inally offered an API for invoking and executing state
machine operations, and some callback operations to
fetch and set the service state. The implemented pro-
tocols are described in [35] and follow the basic ideas
introduced in PBFT and Aardvark [6, 10]. BFT-SMaRt
is capable of ordering more than 100K 0-byte msg/s
(the 0/0 microbenchmark used to evaluate BFT proto-
cols [17, 25]) in our environment. However, this through-
put drops to 20K and 5K msgs/s for 1kB and 4kB mes-
sage sizes, respectively (the workloads we use – see §5).

We modified BFT-SMaRt to accommodate an inter-
mediate Durability layer implementing our techniques at
the server-side, as described in Figure 8, together with
the following modifications on BFT-SMaRt. First, we
added a new server side operation to deliver batches of
requests instead of one by one. This operation supplies
ordered but not delivered requests spanning one or more
agreements, so they can be logged in a single write by
the Keeper thread. Second, we implemented the parallel

invoke

setState
getState

Stable$
Storage$

log

Service$

logBatch

ckp

Dura%Coordinator,

SMR$Server$Side$

SMR$Client$Side$

Client$App.$ setState
getState

execute Keeper,

durability
layer

execBatch
invokeST
handlerST

Figure 8: The Dura-SMaRt architecture.

checkpoints and collaborative state transfer in the Dura-
Coordinator component, removing the old checkpoint
and state transfer logic from BFT-SMaRt and defining
an extensible API for implementing different state trans-
fer strategies. Finally, we created a dedicated thread and
socket to be used for state transfer in order to decrease
its interference on request processing.

SCKV-store. The first system implemented with Dura-
SMaRt was a simple and consistent key-value store
(SCKV-Store) that supports the storage and retrieval of
key-value pairs, alike to other services described in the
literature, e.g., [11, 31]. The implementation of the
SCKV-Store was greatly simplified, since consistency
and availability come directly from SMR and durability
is achieved with our new layer.

Durable DepSpace (DDS). The second use case is
a durable extension of the DepSpace coordination ser-
vice [2], which originally stored all data only in mem-
ory. The system, named Durable DepSpace (DDS), pro-
vides a tuple space interface in which tuples (variable-
size sequences of typed fields) can be inserted, retrieved
and removed. There are two important characteristics of
DDS that differentiate it from similar services such as
Chubby [4] and ZooKepper [19]: it does not follow a
hierarchical data model, since tuple spaces are, by defi-
nition, unstructured; and it tolerates Byzantine faults, in-
stead of only crash faults. The addition of durability to
DepSpace basically required the replacement of its orig-
inal replication layer by Dura-SMaRt.

5 Evaluation

This section evaluates the effectiveness of our techniques
for implementing durable SMR services. In particular,
we devised experiments to answer the following ques-
tions: (1) What is the cost of adding durability to SMR
services? (2) How much does parallel logging improve
the efficiency of durable SMR with synchronous disk and
SSD writes? (3) Can sequential checkpoints remove the
costs of taking checkpoints in durable SMR? (4) How

8

does collaborative state transfer affect replica recover-
ies for different values of f ? Question 1 was addressed
in §2, so we focus on questions 2-4.

Case studies and workloads. As already mentioned,
we consider two SMR-based services implemented us-
ing Dura-SMaRt: the SCKV-Store and the DDS coordi-
nation service. Although in practice, these systems tend
to serve mixed or read-intensive workloads [11, 19], we
focus on write operations because they stress both the
ordering protocol and the durable storage (disk or SSD).
Reads, on the other hand, can be served from memory,
without running the ordering protocol. Therefore, we
consider a 100%-write workload, which has to be pro-
cessed by an agreement, execution and logging. For the
SCKV-Store, we use YCSB [11] with a new workload
composed of 100% of replaces of 4kB-values, making
our results comparable to other recent SMR-based stor-
age systems [3, 32, 37]. For DDS, we consider the inser-
tion of random tuples with four fields containing strings,
with a total size of 1kB, creating a workload with a pat-
tern equivalent to the ZooKeeper evaluation [19, 20].

Experimental environment. All experiments, includ-
ing the ones in §2, were executed in a cluster of 14 ma-
chines interconnected by a gigabit ethernet. Each ma-
chine has two quad-core 2.27 GHz Intel Xeon E5520,
32 GB of RAM memory, a 146 GB 15000 RPM SCSI
disk and a 120 GB SATA Flash SSD. We ran the IOzone
benchmark5 on our disk and SSD to understand their per-
formance under the kind of workload we are interested:
rewrite (append) for records of 1MB and 4MB (the max-
imum size of the request batch to be logged in DDS and
SCKV-Store, respectively). The results are:

Record length Disk SSD
1MB 96.1 MB/s 128.3 MB/s
4MB 135.6 MB/s 130.7 MB/s

Parallel logging. Figure 9(a) displays latency-
throughput curves for the SCKV-Store considering
several durability variants. The figure shows that naive
(synchronous) disk and SSD logging achieve a through-
put of 63 and 1017 ops/s, respectively, while a pure
memory version with no durability reaches a throughput
of around 4772 ops/s.

Parallel logging involves two ideas, the storage of
batches of operations in a single write and the execu-
tion of operations in parallel with the secondary storage
accesses. The use of batch delivery alone allowed for a
throughput of 4739 ops/s with disks (a 75⇥ improvement
over naive disk logging). This roughly represents what
would be achieved in Paxos [24, 27], ZooKeeper [19]

5http://www.iozone.org.

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5

L
a

te
n

cy
 (

m
se

c)

Throughput (Kops/sec)

Naive (Disk)
Naive (SSD)

Batching (Disk)
Par. Log (Disk)
Par. Log (SSD)

Pure Memory

(a) SCKV-Store.

 0

 100

 200

 300

 400

 0 2 4 6 8 10 12 14 16

L
a
te

n
cy

 (
m

se
c)

Throughput (Kops/sec)

(b) Durable DepSpace.

Figure 9: Latency-throughput curves for several variants of
the SCKV-Store and DDS considering 100%-write workloads
of 4kB and 1kB, respectively. Disk and SSD logging are always
done synchronously. The legend in (a) is valid also for (b).

or UpRight [9], with requests being logged during the
agreement protocol. Interestingly, the addition of a sep-
arated thread to write the batch of operations, does not
improve the throughput of this system. This occurs be-
cause a local put on SCKV-Store replica is very efficient,
with almost no effect on the throughput.

The use of parallel logging with SSDs improves the
latency of the system by 30-50ms when compared with
disks until a load of 4400 ops/s. After this point, par-
allel logging with SSDs achieves a peak throughput of
4500 ops/s, 5% less than parallel logging with disk (4710
ops/s), with the same observed latency. This is consistent
with the IOzone results. Overall, parallel logging with
disk achieves 98% of the throughput of the pure memory
solution, being the replication layer the main bottleneck
of the system. Moreover, the use of SSDs neither solves
the problem that parallel logging addresses, nor improves
the performance of our technique, being thus not effec-
tive in eliminating the log bottleneck of durable SMR.

Figure 9(b) presents the results of a similar experi-
ment, but now considering DDS with the same durabil-
ity variants as in SCKV-Store. The figure shows that a
version of DDS with naive logging in disk (resp. SSD)
achieves a throughput of 143 ops/s (resp. 1900 ops/s),
while a pure memory system (DepSpace), reaches 14739
ops/s. The use of batch delivery improves the perfor-
mance of disk logging to 7153 ops/s (a 50⇥ improve-
ment). However, differently from what happens with
SCKV-Store, the use of parallel logging in disk further
improves the system throughput to 8430 ops/s, an im-
provement of 18% when compared with batching alone.
This difference is due to the fact that inserting a tuple re-
quires traversing many layers [2] and the update of an hi-
erarchical index, which takes a non-negligible time (0.04
ms), and impacts the performance of the system if done
sequentially with logging. The difference would be even
bigger if the SMR service requires more processing. Fi-
nally, the use of SSDs with parallel logging in DDS was
more effective than with the SCKV-Store, increasing the

9

peak throughput of the system to 9250 ops/s (an improve-
ment of 10% when compared with disks). Again, this is
consistent with our IOzone results: we use 1kB requests
here, so the batches are smaller than in SCKV-Store, and
SSDs are more efficient with smaller writes.

Notice that DDS could not achieve a throughput near
to pure memory. This happens because, as discussed in
§3.1, the throughput of parallel logging will be closer
to a pure memory system if the time required to pro-
cess a batch of requests is akin to the time to log this
batch. In the experiments, we observed that the workload
makes BFT-SMaRt deliver batches of approximately 750
requests on average. The local execution of such batch
takes around 30 ms, and the logging of this batch on disk
entails 70 ms. This implies a maximum throughput of
10.750 ops/s, which is close to the obtained values. With
this workload, the execution time matches the log time
(around 500 ms) for batches of 30K operations. These
batches require the replication library to reach a through-
put of 60K 1kB msgs/s, three times more than what BFT-
SMaRt achieves for this message size.

Sequential Checkpointing. Figure 10 illustrates the
effect of executing sequential checkpoints in disks with
SCKV-Store6 during a 3-minute execution period.

When compared with the results of Figure 2 for syn-
chronized checkpoints, one can observe that the unavail-
ability periods no longer occur, as the 4 replicas take
checkpoints separately. This is valid both when there is
a high and medium load on the service and with disks
and SSDs (not show). However, if the system is under
stress (high load), it is possible to notice a periodic small
decrease on the throughput happening with both 500MB
and 1GB states (Figures 10(a) and 10(b)). This behav-
ior is justified because at every

⌅P
n
⇧

requests one of the
replicas takes a checkpoint. When this occurs, the replica
stops executing the agreements, which causes it to be-
come a bit late (once it resumes processing) when com-
pared with the other replicas. While the replica is still
catching up, another replica initiates the checkpoint, and
therefore, a few agreements get delayed as the quorum
is not immediately available. Notice that this effect does
not exist if the system has less load or if there is sufficient
time between sequential checkpoints to allow replicas to
catch up (“Medium load” line in Figure 10).

6Although we do not show checkpoint and state transfer results for
DDS due to space constraints, the use of our techniques bring the same
advantage as on SCKV-Store. The only noticeable difference is due to
the fact that DDS local tuple insertions are more costly than SCKV-
Store local puts, which makes the variance on the throughput of se-
quential checkpoints even more noticeable (especially when the leader
is taking its checkpoint). However, as in SCKV-Store, this effect is
directly proportional to the load imposed to the system.

 0

 1

 2

 3

 4

 0 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

High load
Medium load

(a) 500MB state.

 0

 1

 2

 3

 4

 0 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

High load
Medium load

(b) 1GB state.

Figure 10: SCKV-Store throughput with sequential check-
points with different write-only loads and state size.

Collaborative State Transfer. This section evaluates
the benefits of CST when compared to a PBFT-like state
transfer in the SCKV-Store with disks, with 4 and 7 repli-
cas, considering two state sizes. In all experiments a sin-
gle replica recovery is triggered when the log size is ap-
proximately twice the state size, to simulate the condition
of Figure 7(b).

Figure 11 displays the observed throughput of some
executions of a system with n = 4, running PBFT and
the CST algorithm optimized for f = 1, for states of
500MB and 1GB, respectively. A PBFT-like state trans-
fer takes 30 (resp. 16) seconds to deliver the whole 1 GB
(resp. 500MB) of state with a sole replica transmitter. In
this period, the system processes 741 (resp. 984) write
ops/sec on average. CST optimized for f = 1 divides
the state transfer by three replicas, where one sends the
state and the other two up to half the log each. Overall,
this operation takes 42 (resp. 20) seconds for a state of
1GB (resp. 500MB), 28% (resp. 20%) more than with
the PBFT-like solution for the same state size. However,
during this period the system processes 1809 (resp. 1426)
ops/sec on average. Overall, the SCKV-Store with a state
of 1GB achieves only 24% (or 32% for 500MB-state)
of its normal throughput with a PBFT-like state transfer,
while the use of CST raises this number to 60% (or 47%
for 500MB-state).

Two observations can be made about this experiment.
First, the benefit of CST might not be as good as ex-
pected for small states (47% of the normal throughput
for a 500MB-state) due to the fact that when fetching
state from different replicas we need to wait for the slow-
est one, which always brings some degradation in terms
of time to fetch the state (20% more time). Second,
when the state is bigger (1GB), the benefits of dividing
the load among several replicas make state transfer much
less damaging to the overall system throughput (60% of
the normal throughput), even considering the extra time
required for fetching the state (+28%).

We did an analogous experiment for n = 7 (not shown
due to space constraints) and observed that, as expected,
the state transfer no longer causes a degradation on the
system throughput (both for CST and PBFT) since state
is fetched from a single replica, which is available since

10

 0

 1

 2

 3

 4

 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

PBFT

CST

(a) 500MB and n = 4.

 0

 1

 2

 3

 4

 50 100 150Th
ro

ug
hp

ut
 (K

op
s/

se
c)

Time (seconds)

transfer

started

transfer

finished

PBFT

CST

(b) 1GB and n = 4.

Figure 11: Effect of a replica recovery on SCKV-Store
throughput using CST with f = 1 and different state sizes.

n = 7 and there is only one faulty replica (see Figure 5).
We repeated the experiment for n = 7 with the state of
1GB being fetched from the leader, and we noticed a
65% degradation on the throughput. A comparable ef-
fect occurs if the state is obtained from the leader in CST.
As a cautionary note, we would like to remark that when
using spare replicas for “cheap” faulty recovery, it is im-
portant to avoid fetching the state from the leader replica
(as in [4, 8, 19, 32]) because this replica dictates the over-
all system performance.

6 Related Work

Over the years, there has been a reasonable amount of
work about stable state management in main memory
databases (see [16] for an early survey). In particular,
parallel logging shares some ideas with classical tech-
niques such as group commit and pre-committed transac-
tions [14] and the creation of checkpoints in background
has also been suggested [26]. Our techniques were how-
ever developed with the SMR model in mind, and there-
fore, they leverage the specific characteristics of these
systems (e.g., log groups of requests while they are ex-
ecuted, and schedule checkpoints preserving the agree-
ment quorums).

Durability management is a key aspect of practical
crash-FT SMR-like systems [3, 8, 19, 20, 32, 37]. In par-
ticular, making the system use the disk efficiently usually
requires several hacks and tricks (e.g., non-transparent
copy-on-write, request throttling) on an otherwise small
and simple protocol and service specification [8]. These
systems usually resort to dedicated disks for logging, em-
ploy mostly synchronized checkpoints and fetch the state
from a leader [8, 19, 32]. A few systems also delay state
transfer during load-intensive periods to avoid a notice-
able service degradation [19, 37]. All these approaches
either hurt the SMR elegant programming model or lead
to the problems described in §2.2. For instance, recent
consistent storage systems such as Windows Azure Stor-
age [5] and Spanner [12] use Paxos together with several
extensions for ensuring durability. We believe works like
ours can improve the modularity of future systems re-
quiring durable SMR techniques.

BFT SMR systems use logging, checkpoints, and state
transfer, but the associated performance penalties often
do not appear in the papers because the state is very
small (e.g., a counter) or the checkpoint period is too
large (e.g., [6, 10, 17, 21, 25]). A notable exception is
UpRight [9], which implements durable state machine
replication, albeit without focusing on the efficiency of
logging, checkpoints and state transfer. In any case, if
one wants to sustain a high-throughput (as reported in the
papers) for non-trivial states, the use of our techniques is
fundamental. Moreover, any implementation of proac-
tive recovery [6, 36] requires an efficient state transfer.

PBFT [6] was one of the few works that explicitly
dealt with the problem of optimizing checkpoints and
state transfer. The proposed mechanism was based on
copy-on-write and delta-checkpoints to ensure that only
pages modified since the previous checkpoint are stored.
This mechanism is complementary to our techniques, as
we could use it together with the sequential checkpoints
and also to fetch checkpoint pages in parallel from differ-
ent replicas to improve the state transfer. However, the
use of copy-on-write may require the service definition
to follow certain abstractions [7, 9], which can increase
the complexity of the programming model. Additionally,
this mechanism, which is referred in many subsequent
works (e.g., [17, 25]), only alleviates but does not solve
the problems discussed in §2.2.

A few works have described solutions for fetching dif-
ferent portions of a database state from several “donors”
for fast replica recovery or database cluster reconfigura-
tion (e.g., [23]). The same kind of techniques were em-
ployed for fast replica recovery in group communication
systems [22] and, more recently, in main-memory-based
storage [31]. There are three differences between these
works and ours. First, these systems try to improve the
recovery time of faulty replicas, while CST main objec-
tive is to minimize the effect of replica recovery on the
system performance. Second, we are concerned with the
interplay between logging and checkpoints, which is fun-
damental in SMR, while these works are more concerned
with state snapshots. Finally, our work has a broader
scope in the sense that it includes a set of complemen-
tary techniques for Byzantine and crash faults in SMR
systems, while previous works address only crash faults.

7 Conclusion

This paper discusses several performance problems
caused by the use of logging, checkpoints and state trans-
fer on SMR systems, and proposes a set of techniques
to mitigate them. The techniques – parallel logging, se-
quential checkpoints and collaborative state transfer –
are purely algorithmic, and require no additional sup-
port (e.g., hardware) to be implemented in commodity

11

servers. Moreover, they preserve the simple state ma-
chine programming model, and thus can be integrated in
any crash or Byzantine fault-tolerant library without im-
pact on the supported services.

The techniques were implemented in a durability layer
for the BFT-SMaRt library, which was used to develop
two representative services: a KV-store and a coordina-
tion service. Our results show that these services can
reach up to 98% of the throughput of pure memory sys-
tems, remove most of the negative effects of checkpoints
and substantially decrease the throughput degradation
during state transfer. We also show that the identified
performance problems can not be solved by exchanging
disks by SSDs, highlighting the need for techniques such
as the ones presented here.

Acknowledgements. Thanks to the anonymous reviewers,
John Howell and Lorenzo Alvisi, our shepherd, for the com-
ments that helped improve the paper. This work was partially
supported by the EC FP7 through project TCLOUDS (ICT-
257243), by the FCT through project RC-Clouds (PTDC/EIA-
EIA/115211/2009), the Multi-annual Program (LASIGE), and
contract PEst-OE/EEI/LA0021/2011 (INESC-ID).

References
[1] BFT-SMaRt project page. http://code.google.com/p/

bftsmart, 2012.

[2] A. Bessani, E. Alchieri, M. Correia, and J. Fraga. DepSpace: a
Byzantine fault-tolerant coordination service. In EuroSys, 2008.

[3] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and
P. Li. Paxos replicated state machines as the basis of a high-
performance data store. In NSDI, 2011.

[4] M. Burrows. The Chubby lock service. In OSDI, 2006.

[5] B. Calder et al. Windows azure storage: A highly available cloud
storage service with strong consistency. In SOSP, 2011.

[6] M. Castro and B. Liskov. Practical Byzantine fault-tolerance and
proactive recovery. ACM Transactions on Computer Systems,
20(4):398–461, Nov. 2002.

[7] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstrac-
tion to improve fault tolerance. ACM Transactions on Computer
Systems, 21(3):236–269, Aug. 2003.

[8] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live - An
engineering perspective. In PODC, 2007.

[9] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riché. UpRight cluster services. In SOSP, 2009.

[10] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In NSDI, 2009.

[11] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB. In
SOCC, 2010.

[12] J. Corbett et al. Spanner: Google’s globally-distributed database.
In OSDI, 2012.

[13] J. Dean. Google: Designs, lessons and advice from building large
distributed systems. In Keynote at LADIS, Oct. 2009.

[14] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and
D. Wood. Implementation techniques for main memory database
systems. In SIGMOD, 1984.

[15] D. Ford, F. Labelle, F. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in globally
distributed storage systems. In OSDI, 2010.

[16] H. Garcia-Molina and K. Salem. Main memory database sys-
tems: An overview. IEEE Transactions on Knowledge and Data
Engineering, 4(6):509–516, Dec. 1992.

[17] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next
700 BFT protocols. In EuroSys, 2010.

[18] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software reju-
venation: analysis, module and applications. In FTCS, 1995.

[19] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for Internet-scale services. In USENIX ATC,
2010.

[20] F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance
broadcast for primary-backup systems. In DSN, 2011.

[21] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schröder-Preikschat, and K. Stengel. CheapBFT:
resource-efficient Byzantine fault tolerance. In EuroSys, 2012.

[22] R. Kapitza, T. Zeman, F. Hauck, and H. P. Reiser. Parallel state
transfer in object replication systems. In DAIS, 2007.

[23] B. Kemme, A. Bartoli, and O. Babaoglu. Online reconfiguration
in replicated databases based on group communication. In DSN,
2001.

[24] J. Kirsh and Y. Amir. Paxos for system builders: An overview. In
LADIS, 2008.

[25] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. ACM Transac-
tions on Computer Systems, 27(4):7:1–7:39, Dec. 2009.

[26] K.-Y. Lam. An implementation for small databases with high
availability. SIGOPS Operating Systems Rev., 25(4), Oct. 1991.

[27] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[28] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L. Shrira.
Replication in the Harp file system. In SOSP, 1991.

[29] J. Lorch, A. Adya, W. Bolosky, R. Chaiken, J. Douceur, and
J. Howell. The SMART way to migrate replicated stateful ser-
vices. In EuroSys, 2006.

[30] R. Miller. Explosion at The Planet causes major outage. Data
Center Knowledge, June 2008.

[31] D. Ongaro, S. M. Ruble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in RAMCloud. In SOSP,
2011.

[32] J. Rao, E. J. Shenkita, and S. Tata. Using Paxos to build a scal-
able, consistent, and highly available datastore. VLDB, 2011.

[33] M. Ricknäs. Lightning strike in Dublin downs Amazon, Mi-
crosoft clouds. PC World, Aug. 2011.

[34] F. B. Schneider. Implementing fault-tolerant service using the
state machine aproach: A tutorial. ACM Computing Surveys,
22(4):299–319, Dec. 1990.

[35] J. Sousa and A. Bessani. From Byzantine consensus to BFT
state machine replication: A latency-optimal transformation. In
EDCC, 2012.

[36] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verı́ssimo.
Highly available intrusion-tolerant services with proactive-
reactive recovery. IEEE Transactions on Parallel and Distributed
Systems, 21(4):452–465, Apr. 2010.

[37] Y. Wang, L. Alvisi, and M. Dahlin. Gnothi: Separating data
and metadata for efficient and available storage replication. In
USENIX ATC, 2012.

12

