

Event Timestamping Tool: a simple
PC based kernel to timestamp

distributed events

Pedro Martins
António Casimiro

 DI-FCUL TR�00�4

July 2000

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports.
The files are stored in PDF, with the report number as filename. Alternatively,
reports are available by post from the above address.

 1

Event Timestamping Tool: a simple PC based kernel to
timestamp distributed events

Pedro Martins
pmartins@di.fc.ul.pt

FC/UL٭

António Casimiro
casim@di.fc.ul.pt

FC/UL

Abstract

This report describes the design and implementation of a tool to timestamp
distributed events, using a standard PC hardware platform. The Event
Timestamping Tool (ETT) is a small software kernel that detects externally
generated events using two probe sources, and stores the respective
timestamps with known precision bounds. A specialized kernel solution
minimizes the response time for an event detection and registration and,
consequently, maximizes the precision of the tool. Our approach exploits the
Pentium µprocessor internal timestamp counter to provide timestamps with
fine granularity.

1 Introduction and Motivation

In distributed systems computations are not restricted to one local machine and may
take several machines to execute a single function. A computation is composed by a set
of actions bounded by a start event, when the first action starts, and by an end event,
when the last action terminates. In distributed computations (or actions), start and end
events occur in different machines. The duration of an action is measured by the
difference between the end and the start event instants.

Event timestamping consists in assigning timestamps to events, using some
reference clock. Therefore, by timestamping the events that bound distributed actions it
is possible to measure distributed durations. Pre-operational duration measurements
(e.g. configuring timing variables that depends on the system execution environment)
are very important in systems that have QoS requirements and are crucial in systems
where timeliness has to be guaranteed, like in hard real-time systems.

To measure the duration of a local action, it is possible to use the local clock
(assuming the clock is correct) to obtain the timestamps of the start and end events.
However, since a distributed action is bounded by events occurring in two different
machines, local clocks cannot be used to obtain timestamps because they might not be
synchronized. Using a clock synchronization protocol to obtain a global time reference,
introduces an error in the duration measurement that depends on the particular protocol
that is used. This error can only be avoided if the same time reference is used to
timestamp the events.

 � Faculdade de Ciências da Universidade de Lisboa. Bloco C5, Campo Grande, 1749-016 Lisboa ٭
Portugal. Navigators Home Page: http://www.navigators.di.fc.ul.pt. This work was partially supported by
the FCT, through projects Praxis/P/EEI/12160/1998 (MICRA) and Praxis/P/EEI/14187/1998 (DEAR-
COTS).

 2

There are few software solutions available for event timestamping, and hardware
equipments are expensive or of restricted use [8].

 One of the approaches to measure durations consists in using an oscilloscope.
However, this technique is only appropriate to observe periodic events or to obtain a
small number of measurements, but it is not adequate to analyze high volumes of
information. This limitation is imposed by the small memory capacity of normal
oscilloscopes.

Today�s PC hardware platforms are equipped with highly precise hardware clocks.
The Intel Pentium processor family [4,5] has an internal processor timestamp register
that makes possible to timestamp events with a granularity of a single CPU clock cycle.
For example, using a 500Mhz CPU, it is possible to timestamp events with a granularity
of two nanoseconds.

The idea of the proposed tool is to use the clock of a dedicated machine as the time
reference, and provide the means for that machine to detect external events. With a
correct system implementation, it is possible to build a low cost PC software solution
for distributed event timestamping that provides good precision and fine time
granularities. In this document, we describe a small PC kernel (the Event Timestamping
Tool) that is able to detect, timestamp and record external events.

The document is organized as follows. The next section presents a description of the
tool and some relevant concepts used throughout this document. In the section 3 we
describe the implementation details of the Event Timestamping Tool. Section 4
discusses the timing behavior of the tool and section 5 presents a concrete response time
analysis using a 500Mhz PentiumIII PC. The document concludes with some
considerations about future work.

2 System Overview

The system is composed by one measurement machine, where the tool runs, and
probe cables that are connected to the data bits of the machine�s parallel port. A probe
cable carries events from their sources to the measurement machine.

Since there are eight data bits on the parallel port, it would be possible to implement
the Event Timestamping Tool with up to eight probes (using one data bit per probe).
However, in the implementation described in this document a scheme with two probes
is considered, which is already sufficient to perform measurements of distributed
actions. In this �double probe� scheme, each cable contains four data lines that are
connected to half of the parallel port data bits (one of the probes is connected to the
lower four bits, and the other to the higher ones).

Figure 1 � System Overview

 3

The tool detects external events by reading parallel port inputs. Physically, an event
occurs whenever any of the data bits of the parallel port is modified. More precisely, an
event signaled to one of the probes will modify the lower nibble data bits on the port,
and events signaled to the other will modify the higher nibble data bits. Since the
presented tool is specifically targeted to deal with events, we present bellow the exact
definitions of some relevant concepts that we will extensively use throughout this
document.

• Event Instant: An event occurs when it is signaled at the data bit pins of the

parallel port. We considerer that the delay introduced by the probes is
negligible.

• Event Detection Instant: An event is detected by the application when it
reads the parallel port, and verifies that some data bits have changed.

• Event Timestamping Instant: An event is timestamped by the application as
soon as it is detected.

• Timestamping Precision Bound: Considerer a global timeline materialized
by a continuous (i.e. non granular) physical clock G (which we assume to be
reliable, with a negligible drift rate with respect to non-observable real time),
and let G(t) be the clock time that is observed at any real time instant t, ts the
real time instant a which some event e is signaled to the ETT and te the latest
instant at which the event can be timestamped by the application. The
precision of the timestamps provided by the tool is bounded by: G(te) - G(ts)

Event sources can be of any kind, provided that they conform to the electrical

specifications of the parallel port (see subsection 3.2.1). Naturally, the most obvious
measurement scenario consists in connecting the probe cable extremities to parallel
ports of other computers.

The primary goal of the tool is to detect changes on the parallel port data lines (i.e.
an event signaling), and provide timestamps for those events using a local clock. Given
the above definition of timestamping precision, a dedicated kernel solution enforces a
small and bounded difference between the instants of an event signaling and the
respective timestamping.

The complete tool package comprehends three main stages of operation: a setup
stage, during which the application binary is loaded into the main memory and
executed; a capture stage, during which the application detects, timestamps and records
(in the main memory) external events; and an analysis stage (after the capture stage),
during which event information can be consulted or saved for later analysis, using a
specific interface.

During the capture stage, the tool enters in a loop waiting for new events on the
parallel port. When a new event is detected, the tool builds an information structure
containing three fields: the probe number that generated the event, an event code, and
the event corresponding timestamp. This information is stored in the main memory.
These operations are cyclically executed in a loop, until a termination event is detected
in one of the probes, or until the memory capacity is exhausted.

During the analysis stage, the event information acquired during the capture stage is
presented to the user. This information may be saved into a diskette, allowing an a
posteriori analysis in another system using specific analysis software.

 4

3 Tool Description

The tool is composed of three operational stages: a setup stage, a capture stage and
an analysis stage. In this section, we describe each of these operational stages and their
implementation details using a PC hardware platform.

 The tool software is a small binary (about 2KBytes) that is loaded into the main
memory during the bootstrapping phase of the PC. For simplicity, the binary can be
stored in a diskette to avoid the creation of an extra partition in the hard disk. The
application code is a 16-bit binary that runs in real mode and has no operating system
support (runs on the bare hardware). Basically, and apart from the interfacing aspects,
the application consists of a small loop that reads parallel port inputs waiting for new
events, assigns timestamps to those events and records them in the memory.

3.1 Setup Stage

The bootstrap of a PC from a diskette drive entails the following operations. First,
the system firmware in the BIOS ROM executes a power-on self test (POST), runs
BIOS extensions in peripheral board ROMs, and invokes software interrupt INT 19H
(Bootstrap). The INT 19H handler typically performs the standard PC-compatible boot,
which consists in reading the first physical sector from the first diskette drive into the
main memory at memory address 0000H:7C00H. Then the processor jumps to the first
byte of the boot sector image stored in memory.

The Event Timestamping Tool boots from a diskette. The application data that is
stored in the diskette contains the boot sector code and the application code merged into
a single binary. After the bootstrapping process, the first 512 bytes of the application
code are stored at memory address 0000H:7C00H. The application starts its execution
by setting up the stack segment and the stack pointer values. Then, the boot sector is
copied into memory address 1000H:0000H (Code Segment of the application) and the
rest of the application code is copied into the main memory using BIOS INT 13H.

3.2 Capture Stage

During the capture stage, the tool enters in a loop waiting for new events on the
parallel port. During the loop execution, interrupts are disabled to avoid any undesirable
extra activities. The following lines present the main instructions of this capture loop,
using a C-like notation.

 �
cli(); // disable interrupts
byte in_val= get_lpt1_byte();
byte probe1_val=in_val & 0x0F; // only the lower 4 bits
byte probe2_val=in_val >> 4; // only the upper 4 bits
byte last_probe1=probe1_val; //last value read from probe1
byte last_probe2=probe2_val; //last value read from probe2

while ((probe1_val<>0) && (probe2_val<>0)) // a zero value
// terminates capture

{

 5

in_val= get_lpt1_byte();
ts = get_timestamp();

probe1_val=in_val & 0x0F;
probe2_val=in_val >>4;

if (probe1_val<>last_probe1)
{
register_event(ts,prob1_val);
last_probe1=prob1_val;
}

if (probe2_val<>last_probe2)
{
register_event(ts,prob2_val << 4);
last_probe2=prob2_val;
}

}

The application detects an event by a change of the state of data bits on the port. The

value represented by these data bits is considered as an event code, which means that
there are 16 different codes (4 bits) to be considered. From the point of view of the
system that is generating the events there is a restriction on the event codes that may be
signaled in order to be detected by the tool. In fact, no two equal events codes can be
sequentially signaled on the same probe because they would not be distinguishable.
Also, since the capture loop terminates when an event with a zero code is detected on
one of the probes, events with this zero code have a restricted usage. Actually, it would
be possible to terminate the capture loop by detecting a direct user order, signaled
through the keyboard. However, this feature would increase the WCET (Worst Case
Execution Time) of the capture loop and consequently decrease the tool precision (see
section 4). Nevertheless, and although not being shown in the presented code, the loop
always terminates when there is not enough memory to store more events.

This loop includes reading the parallel port, reading the local clock and storing
event information into the memory. We will now discuss these operations in detail.

3.2.1 Parallel Port

The Parallel Port allows the input of up to nine bits or the output of twelve bits at

any one given time, thus requiring minimal external circuitry to implement many
simpler tasks. The port is composed of four control lines, five status lines and eight data
lines.

Newer Parallel Ports are standardized accordingly to the IEEE 1284 standard, first
released in 1994. This standard defines five modes of operation, which are the
following:

1. Compatibility Mode.
2. Nibble Mode.
3. Byte Mode.
4. EPP Mode (Enhanced Parallel Port).
5. ECP Mode (Extended Capabilities Mode).

 6

The aim of standardization is to allow the design of new drivers and devices that are
compatible with each other and also backwards compatible with the Standard Parallel
Port (SPP). Compatibility, Nibble and Byte modes use just the standard hardware
available on the original parallel port cards while EPP and ECP modes require
additional hardware on the parallel port card, which can run at faster speeds, while still
being backwards compatible with the Standard Parallel Port.

Compatibility mode can only send data in the forward direction (i.e. from computer
to device). In order to receive data, a mode change to either Nibble or Byte mode has to
be done. Nibble mode can input a nibble (four bits) in the reverse direction (i.e. from
device to computer). Byte mode uses the Parallel's bi-directional feature (found only on
some cards) to input a byte (eight bits) of data in the reverse direction.

The Event Timestamping Tool application uses the Byte mode of the Standard
Parallel Port to input bytes from the port. Parallel's bi-directional feature, which is found
only on some cards, is typically available in all recent computers. Note that even if the
parallel port card is an EEP or an ECP, there is no problem in using the Event
Timestamp Tool since they are backwards compatible with the Standard Parallel Port
hardware.

The application assumes that the first parallel port located at IO port address 378H,
is the one used to connect the probes. Nevertheless, if a different IO port has to be used
this value can be reconfigured. For a detailed description of the parallel port the reader
can refer to [1]. Here, we just explain how to set up the bi-directional feature of the SPP
port, how to get the data from the input and how to connect the probes to the data pins
of the parallel port.

Setting up the bi-directional feature of the parallel port consists in activating the
fifth bit on the control port located at IO address base+2 (or, 378H+2). To read a byte, it
is sufficient to read from the data port located at IO base address (378H). The C-like
code procedures to do these operations are presented next:

void set_bi_directional_lpt1()
{

byte ctrl;

ctrl=inb(37Ah);
set_bit(ctrl,5);
outb(37Ah,ctrl);

}

byte get_lpt1_byte()
{

byte bt;

bt=inb(378h);
return bt;

}

Parallel port data bits (D0-D7) of the measurement machine, are multiplexed by two
probe cable input lines. Each probe cable has four data bit lines, which are connected as
depicted in Figure 2. The ground pin on the connector is shared by the two probe
sources.

 7

Figure 2 � Configuration of a D-25 parallel port cable connector, for use with two
measurement probes

A byte read from the parallel port is interpreted as follows: the first four bits

represent the code of an event got from probe one; the four high significant bits
represent an event got from probe two. Therefore, 16 event codes can be obtained from
each probe

The voltage level that must be applied on the parallel port data bits to generate a
logical value of one, is of 5.0 Vdc. The current sink capacity varies from port to port.
Most parallel ports implemented in ASIC, can sink around 12mA. However, some ports
have sink capacities of 6mA, 16mA or 20mA.

3.2.2 Timing on the Intel PC family

PC hardware has three main sources of timing; the counter/time chip, the real time
clock, and the processor timestamp counter, only available in the Pentium family.

A crystal oscillator, or oscillator module, generates a 14.31818 MHz clock that is
divided by 12 to generate a 1.193182 MHz clock (being the period 0.8381
microseconds) pulsing to the three channels of the 8253/8254 counter/timer chip (CTC)
[2,6]. The CTC divides this frequency to lower frequencies using programmable
divisors, and produces three output signals.

The CTC channel zero output is connected directly to IRQ0 on the primary PIC
(8259A interrupt controller chip [3]), and generates INT 8, the timer tick interrupt,
about 18.2065 times per second, or once every 54.9254 milliseconds. The timer tick is a
periodic interrupt, which allows certain actions to be executed periodically.

The CTC divides its 1.193182 MHz clock down to 18.2065 Hz using a 16-bit
counter. It is possible to read the actual count in progress in the CTC. In combination
with the tick count variable, this can give an absolute time value, in units of 0.8381 µs,
for timestamping. If a timer tick rate faster than 18.2065 times per second is required,
this can be achieved by reprogramming the CTC.

The Real Time Clock (RTC) was introduced with the AT, and all hardware-
compatible AT�s and later machines have one. The RTC is completely independent of
the CTC. It uses a 32.768 kHz crystal for timekeeping and is battery backed up (i.e.
continues to keep time while the computer is powered off). It can be used to generate a
periodic interrupt, usually at 1024 Hz (1024 interrupts per second).

In the Intel Pentium processor family, an internal 64-bit processor timestamp
counter was introduced. This counter, which is incremented at every CPU clock cycle,
tracks the number of CPU clock cycles since the system booted up.

 8

RDTSC � Read Time-Stamp Counter OPCODE � 0F31

The above instruction loads the current value of processor�s timestamp counter

into the EDX:EAX registers. Using the Pentium timestamp counter it is possible to have
a time reference with a granularity equal to one CPU clock cycle time. The granularity
of timestamps given by the processor�s internal counter is:

ε = (1 / CPU speed in Hertz) seconds

 Besides the fine time granularity achieved by the Pentium internal counter, there
are other important advantages in event timestamping using this approach. There is no
need for an IO port read when getting a timestamp (when using the CTC source, a read
port operation must be done to get the internal counter value of the CTC). Interrupt
handling of CTC generated IRQ0 (that is, the IRQ is generated by the PIC but the
stimulus to the PIC is given by the CTC channel 0) is avoided. Those two advantages
reduce the response time of the ETT, that is, the maximum execution time to register an
event, which is a feature of extreme importance for the tool precision (see Section 4).

The time source used by the application to timestamp events is the Pentium internal
timestamp counter. This approach forces the usage of a Pentium machine to run the
ETT software, the processor speed is not a restriction factor, but higher processor
speeds provide smaller clock granularities (see subsection 3.2). Processor speed is also
important to the machine response time when processing incoming events (see section
4).

The following code is used to read the internal Pentium timestamp counter.

timestamp get_timestamp()
{

rdtsc;
return EDX:EAX;

}

3.2.3 Memory Layout

The application runs in real mode and has access to the lowest 640Kbytes of main
memory. The application data segments are used to store event information during the
capture stage. Each event information stored in the main memory contains an eight
bytes timestamp and a four bytes event code. Note that since each event code is stored
in four bytes (an event code is a 4-bit value) the double word memory alignment is
preserved and in consequence a better event registering performance is achieved.

Designation Segment
BIOS 0000h

Application Code Segment 1000h
Application Stack Segment 2000h
Application Data Segment 3000h

� �
Application Data Segment 9000h

Figure 3 - Conventional Memory Layout

 9

3.3 Analysis Stage

In the analysis stage, the event information acquired during the capture stage is
presented to the user. This information can be saved in a diskette to a posteriori analysis
in a system equipped with analysis tools.

3.3.1 User Interface

The application user interface pretends to be very simple and intuitive. When the

application starts, it waits for the user to press the enter key (using BIOS INT 16H)
before starting the capture stage. After that, the application enters in the capture stage
and stays there until it detects a zero code event on one of the probes, or until there is no
available memory to record event information.

After the capture stage, the application enters in the analysis stage. In the analysis
stage a scroll box containing the information of the capture stage is presented to the
user. Each line of the scroll box contains the information of one event, which is
presented in four columns containing a sequence number that corresponds to the order
of the event recording in the system, a probe number that specifies the probe that
generated the event, the code of the event and the timestamp of the event. The user is
able to view all the lines contained in the scroll box by pressing the PGUP/PGDOWN
keys. Pressing the �S� key the results will be saved in a diskette and pressing the ESC
key the application will return to the initial state (before the capture stage).

3.3.2 Raw File-System

In the analysis stage, the user has an option to save the results into the diskette. The

save operation consists in a dump of memory data segments into the sectors of a
diskette, using the BIOS INT 13H.

 The ETT package includes a Linux tool to extract a raw diskette image file and
convert it to a Linux text file. The utility, named fextract, can be used as follows:

fextract <diskette_image_file> <dest_file> <cpu_speed>

The parameter cpu_speed refers to the machine where the ETT has been executed.

The utility converts processor clock cycles to nanoseconds using this processor speed
value. Image_file is the output file generated by the fextract command. Each line of this
text file contains an event. Each event consists of three values: a timestamp (represented
in nanoseconds), the event code and a probe number. The resulting file can be used for
later analysis.

Under Linux, a diskette image can be converted to a file using the following
command:

cp /dev/fd0 image_file

4 Timing Analysis

The Event Timestamping Tool was developed on top of generic PC hardware. There
are no specialized hardware components and performance is enforced recurring to a set
of software techniques. Note that in this context performance has to do with the

 10

response time of the tool, and therefore it is only meaningful during the capture stage.
The worst response time (τmax) corresponds to the worst case execution time of a
capture loop step.

τmax = WCET (capture loop step)

The response time has a direct impact on the tool precision and on the minimum

inter-arrival time allowed for events signaled in the same probe. Note that the number of
probe cables connected to the measurement machine influences the execution time of
the main loop. For each additional probe in the system, the respective event detection
test and event registry instructions will have to be added to the main loop code, which
will slightly increase its WCET. In what follows these relations will be carefully
analyzed.

4.1 Timestamping Precision

Like it was introduced in section 2, the precision of the timestamps generated by the
tool depends on the execution time of the action bounded by the instants of an event
signaling and the correspondent timestamping instant. Note that due to the cyclic nature
of the capture loop and the asynchronous nature of the events that are signaled, the
duration of such an action can take up to τmax, that is, the WCET of a capture loop step.

 Suppose that an event is timestamped at the instant ti. The next timestamp will be
processed at time t < ti+τmax, that is, timestamping will only be performed again at time
ti+τmax. Now suppose that just after the timestamping is done, another event is signaled
on the port. The latter will only be timestamped at time ti+τmax. The response time may
take up to the maximum time τmax.

Recall the definition of timestamping precision provided in section 2, but assume,
now, that the physical clock G has a granularity of ε. The precision π [7] of the
timestamps provided by the tool is equal to τmax + ε, that is, be ts the instant at which
some event e is signaled to the application and te the latest instant at which the event can
be timestamped by the application. The precision of the timestamps provided by the tool
is bounded by: G(te) - G(ts) <τmax + ε. We can only define an interval for the event
signaling instant, not an absolute value: G(te) ∈ [G(ts)..G(ts) + τmax + ε[.

4.2 Precision of an Action Duration Measurement

An action is defined by one start even and one end event. The duration of an action
is given by the difference between the instants of those events. When measuring
durations of actions with the Event Timestamping Tool, the precision of such
measurements depends on the precision of the two timestamps obtained for the
boundary events.

Consider the clock described in the previous subsection. Be ts and te the real time
instants at which a start and an end event occur, and ts�and te� the real time instants at
which their respective timestamps are generated.

te-ts gives the real time duration of the action. Given our assumption about the clock
we also have G(te)-G(ts)= te-ts.

 11

G(ts�) ∈ [G(ts), G(ts) + τmax + ε[and G(te�) ∈ [G(te), G(te) + τmax + ε[⇒

G(te�)-G(ts�) < G(te) + τmax + ε - G(ts) ! G(te�)-G(ts�)< G(te)-G(ts)+ π !

G(te�)-G(ts�)< te - ts+ π

When measuring an action with the Event Timestamping Tool, the maximum error

that could be undertaken is π.

4.3 Response Capacity

The minimum inter-arrival time between two consecutive events signaled in the

same probe is determined by the capacity of the tool to detect both events. Look back at
the example described in subsection 4.1 and suppose that the rate of incoming events is
τmax /2. Now consider the following scenarios where three events are consecutively
signaled on one of the probes. In the first scenario, one event is signaled at time ti, the
second at time ti+τmax /2 and the third at time ti+τmax. In this case it is obvious that the
second event will not be detected because after the first event is read from the parallel
port the application only will read again the input at time ti+τmax. Since at time ti+τmax
the second event has been replaced by the third event, the data bits correspondent to the
second event have, by then, be lost.

A necessary condition to guarantee that the application does not loose events, is that
the minimum inter-arrival time between events from the same probe source, be a least
equal to the response time τmax.

4.4 Implementation considerations

Like it was described in the previous subsections, the WCET of the capture main
loop determines the precision and the response capacity of the tool, therefore the main
loop code was designed in order to minimize its WCET.
 An operating system, even if it is a real-time one, needs to perform some
background tasks, such as interrupt handling, to ensure its operability and functionality.
Those background activities have some impact in the execution time of user
applications because they compete with them on the access to the hardware, and
normally have higher priorities. For example, the execution of a user application has to
be preempted each time an interrupt is serviced. Operating system activities are
asynchronous to user applications and generate an overhead that increases the WCET of
user applications.
 Software activities that occur asynchronously with respect to the normal
execution flow of user applications, will increase the WCET of these applications not
only for the amount of time they use the processor (and the context switching time), but
also degrade the system performance due the negative impacts on the pipelining and
caching mechanisms.
 For performance reasons, some operating systems concede some degree of
operational autonomy to the devices in the system, allowing them to perform operations
without the intervention of the system processor. For example, DMA transfers between

 12

devices and memory are initiated by a device without any CPU intervention. The
problem is that DMA activities compete with the processor on the access to the system
bus, and since they have priority they will stop the processor execution during the bursts
of information transfers on the system bus.

The use of a specialized kernel solution guarantees that all machine resources
are available to the application, and guarantees that they are used in an optimal manner
for the purpose of the tool. Note that during the execution of the capture main loop,
there are no other background activities running in parallel with the main loop, since
interrupts are disabled and there are no devices starting DMA transfers (the devices in
the system must be initialized by the operating system before starting operating, and the
tool does not perform the initialization of any device).

Unfortunately, there are some hardware overheads that can not be eliminated,
even by a specialized kernel. The hardware architecture is composed by a set of
components and its way of operation does not always exhibit synchronous behavior.
The memory refreshing operation on a PC, which performs the refreshment of electrical
signals on the dynamic memory of the system, is a periodic activity that is asynchronous
to the processor execution. This periodic activity stops the processor executions,
periodically, during the time interval that takes to execute the refresh operation on the
hardware. It is obvious that during the execution of some loop steps, the overhead
generated by this asynchronous activity has impact on the execution time of those loop
steps.

5 Case-study for a 500Mhz PentiumIII PC

In this section we will present a set of measurements obtained using a PentiumIII
PC with processor speed of 500Mhz. Experiments were done with no external
measurement instrumentation. The results provide a practical view of the upper bounds
for the tool precision.

The execution time of the capture loop was calculated using the following approach:
in all loop steps the application records an event; differences between two sequential
events corresponds to the execution time of a loop step.

 τmax = 2080 ns

Figure 4 � Distribution of capture loop execution times using a 500Mhz PC

Observing this graphic, we can see that the majority of executions times are lower
than 1522 nanoseconds. For instance, using the results of the experience we can assume
a τmax of 1522 with a coverage near 1.

 13

Assumed ττττmax (ns) Coverage Assumption
1522 .955
1800 .997
2080 1

Next table shows the precisions for three different assurance levels obtained for

three values of τmax and their respective coverage.

π = τmax + + ε

ε = (1 / CPU speed in Hertz) seconds = 2 ns

ττττmax εεεε Coverage

Assumption
Precision π (ns)

2080 2 1 2082
1800 2 .997 1802
1522 2 .955 1524

The tool guarantees that it does not loose events for a minimum event rate of 2080

nanoseconds per probe source.

6 Conclusions and Future Work

Using ordinary PC hardware to timestamp distributed events is not necessarily a bad
solution since it may not depend on the timing behavior of an underlying operating
system. If a correct system implementation is employed it is possible to build a tool that
provides highly precise timestamps for distributed events.

The keys for a successful implementation consist in using a fine granularity clock
reference and in minimizing the time between the signaling of an event on the parallel
port and its respective timestamping. A specialized kernel avoids operating system and
hardware overheads that increase the maximum execution time of the ETT main loop.

We have described the implementation details of an event timestamping tool. The
description corresponds to a first implementation approach that can still be optimized
for a better resource utilization and increased performance. For instance, the machine
can run in protected mode with a 32-bit binary code, which is smaller and faster than a
16-bit version. Also, in protected mode the entire system memory can be accessed,
allowing more events to be registered during the capture stage. Another improvement
that can be made consists in replacing the diskette raw file system by a file system that
mounts a Linux disk partition, or by a NFS file system.

7 References

[1] Craig Peacock. Interfacing the Standard Parallel Port, available from
http://www.beyondlogic.org/spp/parallel.htm.

[2] Intel Corporation. 8254 Programmable Interval Timer. Order Number 231164-005.

 14

[3] Intel Corporation. 8259A Programmable Interrupt Controller. Order Number
231468-003.

[4] Intel Corporation. The Intel Architecture Software Developer�s Manual, Volume 1:
Basic Architecture. Order Number 243190.

[5] Intel Corporation. The Intel Architecture Software Developer�s Manual, Volume 2:
Instruction Set Reference. Order Number 243191.

[6] Kris Heidenstrom. Timing on the PC family under DOS, available from
http://208.128.17.166/zone7/cat128/1481.htm.

[7] Paulo Veríssimo, Luís Rodrigues. Distributed Systems for System Architects. To be
published.

[8] Pedro Gomes and Rui Rijo. PET: uma ferramenta universal para a avaliação de
desempenho em sistemas distribuídos. In Proceedings of Primeiro Encontro de
Engenharia Informática e de Computadores, Tomar, Portugal, June 1996.

	Event Timestamping Tool: a simple PC based kernel to timestamp distributed events
	Abstract

	1	Introduction and Motivation
	2	System Overview
	3	Tool Description
	3.1 Setup Stage
	3.2 Capture Stage
	3.2.1 Parallel Port
	3.2.2 Timing on the Intel PC family
	3.2.3 Memory Layout

	3.3 Analysis Stage
	3.3.1 User Interface
	3.3.2 Raw File-System

	4	Timing Analysis
	4.1 Timestamping Precision
	4.2 Precision of an Action Duration Measurement
	4.3 Response Capacity
	4.4 Implementation considerations

	5	Case-study for a 500Mhz PentiumIII PC
	6	Conclusions and Future Work
	7	References

