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ABSTRACT
Distributed protocols executing in uncertain environments,
like the Internet, had better adapt dynamically to environ-
ment changes in order to preserve QoS. In a previous work,
it was shown that QoS adaptation should be dependable,
if correctness of protocol properties is to be maintained.
In this paper we provide concrete strategies and method-
ologies to improve the implementation of dependable QoS
adaptation. During its lifetime, a system alternates peri-
ods where its temporal behavior is well characterized, with
transition periods where a variation of the environment con-
ditions occurs. Our method is based on the following: if the
environment is generically characterized in analytical terms,
and we can detect the alternation of these stable and tran-
sient phases, we can drastically improve the effectiveness of
dependable QoS adaptation. To prove our point, we con-
duct an evaluation based on “synthetic” data flows gener-
ated from one or more probabilistic distributions, and we
show that the proposed strategies can indeed be effective
and still dependable in the considered cases.
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1. INTRODUCTION
Computer systems and applications are becoming increas-

ingly distributed and we witness to the pervasiveness and
ubiquity of computing devices. This openness and complex-
ity means that the environment tends to be unpredictable,
essentially asynchronous, making it impractical, or even in-
correct, to assume any time-related bounds. On the other
hand, there are increased concerns about the dependability
of these systems and applications, in the sense of their ability
to meet some specified quality of service (QoS) levels. One
possible way to cope with the uncertain timeliness of the
environment while meeting dependability constraints con-
sists in building adaptive applications and ensure that they
adapt in a dependable way, that is, they remain correct as
a result of adaptation.

In this paper we build on previous work that introduced
the necessary architectural and functional principles over
which a dependable adaptation approach should be based
[2]. In essence, the idea behind dependable adaptation is to
ensure that a coverage stability property is satisfied, that is,
that the assumed bounds for fundamental variables are se-
cured with a known and constant probability. Clearly, this
is only possible if some assumptions about the environment
behavior are made. Then, using appropriate mechanisms
and approaches it may be possible to probabilistically char-
acterize the current operational state and derive the bounds
that must be used to secure the coverage stability property.

In this paper we introduce a framework that is based on
the use of probabilistic methods for the recognition of the
“state” of the environment. The framework does not require
a specific method to be used, but it allows several methods
to be used even simultaneously.

One important and distinguishing aspect of our work is
that we are concerned with dependability objectives. We
performed a number of simulation experiments using syn-
thetic data flows generated from well-known probabilistic
distributions. Based on these results we are able to conclude
that the proposed framework may indeed allow to achieve
dependable adaptation and improved time bounds, provided
that adequate environment recognition methods are used for
a given environment behavior.

The paper is organized as follows. Next section provides a
motivation for this work and we discuss related work. Then,
Section 3 describes the proposed framework for dependable
adaptation in probabilistic environments. Implementation
issues are then addressed in Section 4, while some simulation
results are discussed in Section 5. Conclusions and future
perspectives are finally presented in Section 6.



2. MOTIVATION AND RELATED WORK
Providing QoS guarantees for the communication in spite

of the uncertain or probabilistic nature of networks is a
problem with a wide scope, which can be addressed from
many different perspectives. We are fundamentally con-
cerned with timeliness issues and with securing or improving
the dependability of adaptive applications.

The fundamental architectural and functional principles
for dependable QoS adaptation have been previously intro-
duced in [2]. In this earlier work we also followed a de-
pendable perspective, and analyzed why systems would fail
as a result of timing assumptions being violated, as it may
happen in asynchronous environments. A relevant effect is
decreased coverage of some time bound [13], when the num-
ber of timing failures goes beyond an assumed limit. This
effect can be handled in adaptive systems, by adapting the
assumed bounds during the execution to ensure that cover-
age of that bound is secured. In other words, the objective
is to satisfy the so called Coverage Stability property. How-
ever, deciding when and how to adapt depends on what
is assumed about the environment. In our previous work
([2]) a conservative approach was followed, just assuming
a probabilistic environment but not a specific probabilistic
distribution for delays. Therefore, this led to a conservative
solution with respect to the bounds required to guarantee
some coverage.

Interestingly, in the last few years several works have ad-
dressed the problem of probabilistically characterizing the
delays in IP-based networks based on real measured data,
allowing to conclude that observed empirical delay distri-
butions may be characterized by well known distributions,
such as the Weibull distribution [10, 6], the shifted gamma
distribution [11, 4], the exponential distribution [8] or the
truncated normal distribution [5]. Based on this, we realized
that it would be interesting and appropriate to consider less
conservative approaches, by assuming that specific distribu-
tions may be identified and thus allowing to achieve better
time bounds for the same required coverage.

However, some of these works also recognize that prob-
abilistic distributions may change over time (e.g. [11]), de-
pending on the load or other sporadic occurrences, like fail-
ures. Therefore, in order to secure the required dependabil-
ity attributes, it becomes necessary to detect changes in the
distribution and hence use mechanisms for being able to do
that. Fortunately, there is also considerable work and well-
known approaches addressing this problem (see [14] for a
nice overview). Among others, we can find approaches based
on time-exponentially weighted moving histograms [9] and
on the Kolmogorov-Smirnov test [5].

A fundamental distinguishing factor of our work is that we
are concerned with system dependability. Therefore, while
other works addressing adaptive systems are concerned with
performance improvements, our objective is to achieve de-
pendable adaptive designs by ensuring coverage stability.

3. THE ADAPTATION FRAMEWORK

3.1 Assumptions
As mentioned in the previous section, in this work we ad-

vance on previous results by making more optimistic but not
less realistic assumptions, in order to achieve improved and
still dependable 〈bound, coverage〉 pairs. Instead of making
the weak but restrictive assumption, that the environment

is probabilistic but the distribution is unknown (as done in
[2]), we now make the following assumptions:

Interleaved known probabilistic behavior - We as-
sume that the environment alternates stable periods,
during which it follows some known probabilistic
behavior, with unstable periods, during which the
probabilistic behavior is unknown or cannot be char-
acterized. As discussed in Section 2, this assumption
is supported by the results of many recent works (e.g.
[6, 10, 11]).

Recognition abilities - The system has sufficient re-
sources and can be equipped with the adequate mech-
anisms to detect changes from stable to unstable pe-
riods (and vice-versa) and recognize the best fitting
probabilistic distribution during stable periods.

Sufficient stability - We assume that probabilistic
changes are slower than the detection and recognition
speed. In other words, we assume that typical
execution environments are sufficiently stable for the
time it takes to recognize the actual probabilistic
distribution. This is a mandatory assumption for
any application that needs to recognize the state of a
dynamic environment.

Sufficient activity - We assume that there is sufficient
system activity, and therefore enough observation
points that we can use to feed some trend detection
and recognition mechanisms. Hence it is possible to
use measured delays, assuming that all of them re-
port to a sufficiently recent observation period as re-
quired for accurately characterizing the state of the
environment. Obviously, system activity depends on
the application. We believe that this is an acceptable
assumption for many systems, such as car-to-car and
multimedia applications.

3.2 Environment recognition and adaptation
The proposed framework for dependable (QoS) adapta-

tion can be seen as composed by two activities:

Environment recognition - The environment conditions
can be inferred analyzing a real time data flow repre-
senting, for example, the end-to-end message delays in
a network. Using statistics the data may be described
by a probability density function (pdf).We note that
the data models can be so complex that they can not
be described in terms of simple well-know probabilis-
tic distributions. In the case in which the model that
describes the data is known, the problem is reduced
to estimating unknown parameters of a known model
from the available data. In our experimental imple-
mentation of the framework we used the method of
maximum likelihood estimation (MLE), which is con-
sidered to be one of the most robust techniques for
parameter estimation [12].

QoS adaptation - Once the most fitting distribution (to-
gether with its parameters) has been identified, its
statistics properties can be exploited to find a pair
〈bound, coverage〉 that will satisfy the objective of
keeping a constant coverage of the assumed bound
throughout the execution.



3.3 The adaptive approach
As detailed in Section 3.1 we are assuming an interleaved

probabilistic behavior of the environment. Therefore, we can
consider that the system alternates periods during which
the conditions of the environment remain fixed (stable
phases), with periods during which the environment con-
ditions change (transient phases). In the first case, the
statistical process that generates the data flow is under con-
trol and then we can compute the corresponding distribu-
tion using an appropriate number of samples; On the con-
trary, if the environment conditions are changing, then the
associated statistical process is actually varying, so no fixed
distribution can describe its real behavior.

During the transient phases we adopt a conservative ap-
proach and we set the pair 〈bound, coverage〉 using a prob-
abilistic formulation based on the one-sided inequality [2],
which provides a pessimistic bound, but which holds for all
probabilistic distributions. As soon as the presence of a sta-
ble phase is detected, a proper pdf is identified and then an
improved (lower) bound can be computed according to the
new distribution (optimistic approach), still ensuring the
coverage stability property. The bound adaptation is then
triggered by the detection of a new stable/transient phase.

3.4 Phase detection mechanisms
A phase detection mechanism must detect the beginning

of a new transient phase, as soon as the environment con-
ditions start changing (“changing environment” detection
time), as well as the beginning of a new stable phase, as
soon as the environment conditions stabilize (“stable envi-
ronment” detection time).

The “changing environment” detection time is of partic-
ular importance in this context, since during such critical
periods, the environment is changing but the bound is tai-
lored for a particular set of condition environments that do
not hold anymore. The ideal situation arises when the de-
tection of a changing environment is instantaneous.

Although marginal to the main focus of the paper, here
we propose some simple phase detection mechanisms that
can be implemented in the framework. Such mechanisms
can be used individually, or combined together.

• Mechanism 1. A stable period with distribution D̂
is detected when the estimated mean E(D̂) and the

estimated variance V (D̂) satisfy some relations that

are always true for the postulated distribution D̂ (e.g.,

E(D̂)2 = V (D̂) for the exponential distribution).

• Mechanism 2. At the reception of the k-th sam-
pling point, we compute the expected mean E(D̂)k

and observed variance V (D̂)k using the last h col-
lected sampling points, with k ≥ h. Let d ∈ N+

the step-size, a stable phase will be detected if the
following f measurements E(D̂)i and V (D̂)i, with
i = k + d, k + 2 ∗ d, . . . , k + f ∗ d (each one performed
using the available last h collected sampling points),
will remain within a given tolerance level edev and vdev

from E(D̂)k and V (D̂)k, respectively.

• Mechanism 3. A stable period with distribution D̂
is detected when some goodness-of-fit (GoF) tests es-
tablish the goodness of fit between the postulated dis-
tribution D̂ and the evidence contained in the exper-

imental observations. For example, the Kolmogorov-
Smirnov test [3] is the preferred GoF test in case of a
continuous population distribution.

In the following section we describe how these mecha-
nisms have been implemented in the context of the proposed
framework. This also serves to clarify the conditions under
which the experimental results presented in Section 5 are
obtained.

4. IMPLEMENTATION ISSUES
The scheme depicted in Figure 1 shows that the frame-

work can be modelled as a service that: (i) accepts the
history size (i.e., the number of collected samples of the
random variable under observation) and the required cov-
erage as dependability related parameters; (ii) reads sam-
ples/measured delays as input, using them to fill up the his-
tory buffer that is used by the phase detection mechanisms
and for the estimation of distribution parameters; and (iii)
provides, as output, a bound that should be used in order
to achieve the specified coverage.
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Figure 1: Schematic view of the framework for de-
pendable adaptation.

In this experimental implementation we only considered
two probabilistic distributions: the exponential and the
Pareto distributions. This was an early decision that we
took based on the fact that these are commonly used dis-
tributions and would perfectly serve our purpose of testing
the framework. In fact, in a deployed system, the number
of different mechanisms that could be used and configured
for other, different distributions, would only be limited by
the available resources, assumed to be enough by construc-
tion, as per the “Recognition abilities” assumption (see Sec-
tion 3.1).

4.1 Setting up parameters
As previously mentioned, it is possible to use several

phase detection mechanisms simultaneously. We have im-
plemented the three mechanisms described earlier to detect
the exponential distribution, and “Mechanism 1” for the de-
tection of the Pareto distribution.

“Mechanism 1” detects a stable exponential period if

|
√

V (D̂) − E(D̂)| < τ , being E(D̂) and V (D̂) an estima-

tion of the expected mean and variance, respectively, and
τ a tolerance bound to encompass for the estimation er-
rors (see [1] for a detailed explanation). The configuration
of the other two mechanisms for the exponential distribu-
tion was done exactly as explained in Section 3.4, which



required some values to be postulated. In particular, for
the case of “Mechanism 2” we set the step-size to 1 (thus
obtaining the promptest adaptation possible, at the cost of
additional processing resources) and, for an history size of
h = 30, we used f = 10. In practical settings these two
values must be configured to match the expected environ-
ment dynamics. As per the “Sufficient stability” and “Suffi-
cient activity” assumptions, the observed environment will
present time windows during which a sufficient number of
samples can be observed (at least h + f) while the proba-
bilistic behavior is stable. To tune the method sensibility
we set edev = 0.5 × E(D̂)k and vdev = 0.5 × V (D̂)k. For
the case of “Mechanism 3”, we just had to postulate the
critical values of Kolmogorov-Smirnov statistics for the ex-
ponential distribution with unknown mean, which we did by
using standard values provided in statistics tables.

With respect to the instantiation of “Mechanism 1” for
the Pareto distribution, we had to postulate a value for
τ , which in practice depends on the history size and on
the shape parameter of the distribution, as shown in Ta-
ble 1. This table was constructed based on several tests
to empirically determine which values would ensure the de-
pendability of the mechanism. The location parameter of
the distribution is always set to the lower value observed in
the history. A stable Pareto distribution is detected when
|V (D̂)− E(D̂)2/α(α− 2)| < τ .

Table 1: Values for τ , Pareto distribution.
α τ(h = 30) α τ(h = 30)

(0,1.2] 1 (2.4,3.2] 0.1

(1.2,2.4] 0.4 (3.2,inf] 0.05

4.2 Defining bound estimators
Depending on the output of the phase detection mech-

anisms, one of the bounds calculated by the implemented
bound estimators will be selected as the output of the frame-
work. The selection is performed with the help of some logic
(the “Selection logic” element of Figure 1).In fact, when sta-
bility is detected by more than one phase detection mecha-
nism, more than one bound is estimated and can be selected
by the framework.

In this experimental implementation we defined three
bound estimators: the conservative estimator, which is al-
ways required, and estimators for the exponential and for
the Pareto distributions. They are presented in Table 2.

Table 2: Bound estimators for a required coverage.

Estimator Minimum time bound t

Conservative bound = E(D) +
√

V (D)
1−coverage

− V (D)

Exponential bound = 1
λ

ln 1
1−coverage

Pareto bound = k
α√1−coverage

5. RESULTS AND DISCUSSION
We did a few experiments to test the implemented frame-

work and to observe, in particular, what would be the im-
provements achievable with a less conservative and adaptive
approach, in comparison with the simple conservative and
pessimistic approach described in [2]. This section briefly

presents some of our experimental results. The complete
test set can be found in an extended version of this paper,
available as a technical report [1].

The experiments described here were performed using
synthetic data traces with 1500 sample points following the
exponential distribution with rate λ = 0.8. We defined an
expected coverage of 0.98 (i.e., given the assumed bound as
provided by the framework, no more than 30 timing failures
can occur for the 1500 samples of this execution), and a
history size of h = 30.
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Figure 2: Comparison of pessimistic and adaptive
approaches, using “Mechanism 1” for an exponential
trace.

A first experiment has been performed aiming to observe
the effectiveness of “Mechanism 1” in terms of its capability
to detect stable phases, hence providing improved (lower)
bounds, still maintaining the required coverage. The results
presented in Figure 2 show that this mechanism detected
the exponential distribution in 97% of the sample points
(we exclude the initial h samples, while the history buffer is
not yet full). The average of time bounds produced by the
adaptive approach was hence smaller than in the conserva-
tive approach (7.6ms against 9.3ms, that is, 18% improve-
ment). In spite of that, we only observed five timing faults
in the entire observation period, therefore clearly securing
the required coverage.

We note that the adaptive approach makes a pessimistic
estimation of E(D̂), since it uses the greatest value in the
confidence interval of the expected distribution (see [1]).
Since the number of observed timing faults was far below
the acceptable value, it seems possible to apply a less pes-
simistic estimation in order to further improve the average
achievable time bounds while still ensuring the required cov-
erage.

We executed similar experiments using the same exponen-
tial data trace as input, to evaluate “Mechanism 2”, “Mech-
anism 3”, and a combination of “Mechanism 1” and “Mech-
anism 3”. Table 3 presents the results expressed in terms
of i) percentage of sampling points in which the adaptation
mechanism actually detects a stable phase, ii) number of ob-
served timing faults, and iii) average time bounds produced
by the framework.

The results show that the three mechanisms present
quite similar results when individually applied. However,
as expected, a more conservative result is obtained when
combining “Mechanism 1” and “Mechanism 3”: whenever
“Mechanism 1” detects an exponential distribution, the
Kolmogorov-Smirnov test is executed to confirm it. This



double-checking implementation decreases the aggressive-
ness of the adaptive approach, thus reducing the ability to
detect stability, but still providing a lower average bound
(8.1ms) than the conservative approach (9.3ms).

Table 3: Observed results for different mechanisms
using the exponential trace.

Mechanism Stable detec. Timing faults Avg. Bound
1 97% 5 7.6 ms
2 96% 5 7.7 ms
3 95% 4 7.8 ms

1 + 3 75% 4 8.1 ms

6. CONCLUSIONS AND FUTURE WORK
In this paper we addressed the problem of supporting

adaptive systems and applications in probabilistic environ-
ments, from a dependability perspective: maintaining cor-
rectness of system properties after adaptation.

We advanced on previous work by leveraging on the as-
sumption that a system alternates stable periods, during
which the environment characteristics are fixed, and unsta-
ble periods, in which a variation of the environment condi-
tions occurs, and that the mode changes can be detected.
Based on that, we proposed and evaluated a general frame-
work for adaptation, which allows to dynamically set opti-
mistic time bounds when a stable phase is detected, while
it provides conservative but still dependable bounds during
transient phases.

We believe that the fundamental conclusion to derive from
the full set of experiments made so far, part of them pre-
sented in this paper, is that it is possible to define sim-
ple and effective mechanisms to detect stable and transient
phases and, for the stable ones, correctly characterize the
observed probabilistic distribution. Because of that, the pro-
posed framework seems to constitute a promising approach
to achieve dependable adaptation and, at the same time, ob-
tain improved (tighter) time bounds than those previously
obtained with a more conservative approach. This improve-
ment is relevant in the implementation of practical systems,
for instance in the configuration of timeouts in failure detec-
tors, where the objective is to use the smallest possible time
bound (to improve the detection time) without compromis-
ing the failure detector accuracy (mistakes due to timing
faults).

Under the light of the promising findings of this paper, the
open question to be addressed next concerns the behavior
of the proposed framework under real scenarios. As future
work, we plan to validate this approach in a real scenario.
We should show that: a) the assumptions stated in this
paper are met in real systems; b) the framework is actually
configurable for specific environments. We believe this is a
hard problem, and thus a very challenging next step.

We are currently extending the framework by incorporat-
ing other probabilistic distributions and detection mecha-
nisms, and we plan to apply this framework in the context
of a FP6 European project [7], for selected applications in-
volving car-to-car communication in ad hoc environments.
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