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Abstract. Aerospace systems have strict dependability and real-time
requirements, as well as a need for flexible resource reallocation and re-
duced size, weight and power consumption. To cope with these issues,
while still maintaining safety and fault containment properties, tempo-
ral and spatial partitioning (TSP) principles are employed. In a TSP
system, the various onboard functions (avionics, payload) are integrated
in a shared computing platform, however being logically separated into
partitions. Robust temporal and spatial partitioning means that parti-
tions do not mutually interfere in terms of fulfilment of real-time and
addressing space encapsulation requirements. This chapter describes in
detail the foundations of an architecture for robust TSP aiming a new
generation of spaceborne systems, including advanced dependability and
timeliness adaptation/control mechanisms. A formal system model which
allows verification of integrator-defined system parameters is defined, and
a prototype implementation demonstrating the current state of the art
is presented.

1 Introduction

Aerospace systems, namely the onboard computing infrastructure, have strict
requirements with respect to dependability and real-time, as well as a need for
flexible resource reallocation and reduction of size, weight and power consump-
tion (SWaP). A typical spacecraft onboard computer has to host a set of avionics
functions and one or more payload subsystems [13]. Relevant examples of avion-
ics functions are the Attitude and Orbit Control Subsystem (AOCS), Onboard
Data Handling (OBDH), Telemetry, Tracking, and Command (TTC) subsystem,
and Fault Detection, Isolation and Recovery (FDIR).

Traditionally, dedicated hardware resources have been separately allocated to
those functions. However, there has been a recent trend in the aerospace indus-
try towards integrating several functions in the same computing platform. This
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is advantageous in respect to SWaP requirements, but has introduced potential
risks, as these functions may have different degrees of criticality and predictabil-
ity, and originate from multiple providers or development teams [25,30].

In order to mitigate these risks, an architectural principle was proposed
whereby onboard applications are functionally separated in logical containers,
called partitions. With partitioning we achieve two results: allowing contain-
ment of faults in the domain in which they occur; and enabling independent
software verification and validation, thus easing the overall certification process.
Partitioning in logical containers implies separation of applications’ execution in
the time domain and usage of dedicated memory and input/output addressing
spaces. Robust temporal and spatial partitioning (TSP) means that partitions do
not interfere with each other in terms of fulfilment of real-time and addressing
space encapsulation requirements.

This chapter describes in detail the foundations and genesis of an architecture
for robust TSP aiming at a new generation of spaceborne systems. Firstly, the ba-
sic architecture is detailed together with the advanced features introduced in its
design. A second result described in the chapter is the introduction of a couple of
advanced timeliness adaptation and control mechanisms, crucial to the provision
of high degrees of dependability in TSP systems: mode-based partition schedules
(allowing the temporal requirements of the installed functions to vary accord-
ing to the mission’s phase or mode of operation) and process deadline violation
monitoring (providing fundamental health monitoring services with enhanced
diagnostics support). Thirdly, a formal system model is defined. This model and
associated tools ease the verifiability of systems based on the architecture. It
allows for the verification of the integrator-defined system parameters, such as
partition scheduling according to the respective temporal requirements, and lays
the ground for schedulability analysis and automated aids to the definition of
system parameters. Temporal analysis in TSP systems has not been addressed in
the literature to the full extent needed to aid design, integration and deployment
of modern TSP systems in space [32].

Our research has been motivated by the challenge launched by several space
industry partners, such as the National Aeronautics and Space Administration
(NASA) [24] and the European Space Agency (ESA) [29], for applying TSP con-
cepts to computing resources onboard spacecrafts, while observing compliance
with existing standards such as the ARINC 653 specification [2]. ARINC 653 de-
fines a standard interface for avionics application software to interact with the
underlying core software (operating system). This standard is tightly connected
to the Integrated Modular Avionics (IMA) concept, which applies the TSP no-
tion to the civil aviation world [1]. The TSP Working Group, comprising space
agencies ESA and CNES (the French government space agency) and industry
partners Astrium and Thales Alenia Space, has identified the specific require-
ments for the adoption of IMA concepts in space, and found no technological
feasibility impairments to it [32].

In the wake of space agencies’ interest, what originally started as a proof of
concept for the addition of TSP-capabilities to a free/opensource real-time op-



erating system, the Real-Time Executive for Multiprocessor Systems (RTEMS),
evolved into the definition of a more ambitious and innovative architecture in
the context of the AIR (ARINC 653 In Space Real-time Operating System)
project [11,23,22]. The AIR architecture has been designed to fulfil the require-
ments for robust TSP, and foresees the use of different operating systems among
the partitions, either real-time operating systems (RTOS) or generic non-real-
time ones. Temporal partitioning is achieved through the scheduling of partitions
in a cyclic sequence of fixed time slices. Inside each partition, processes compete
with each other according to the native process scheduler of the partition. In the
case of RTOSs, this is usually a dynamic priority-based scheduler.

The chapter is organized as follows. Section 2 describes the AIR system ar-
chitecture. Then, Sect. 3 contains the formal definition of a generic model for
ARINC 653-based systems with regard to their temporal properties and require-
ments. Sections 4 and 5 describe the principles and implications of introducing,
respectively, mode-based schedules and process deadline violation monitoring
into AIR. Sect. 6 demonstrates the properties of the system model and the
enhancements described in the previous sections by means of a prototype imple-
mentation. Section 7 presents related work and Sect. 8 concludes the chapter.

2 AIR System Architecture

The AIR (ARINC 653 in Space RTOS) architecture is currently evolving to-
wards an industrial product definition by improving and completing the key
points identified in early proof-of-concept activities [22]. The fundamental idea
in the definition of the AIR architecture is a simple solution for providing ro-
bust TSP properties, thus guaranteeing the fulfilment of real-time and dedicated
memory and input/output addressing space separation requirements. Faults are
confined to their domain of occurrence inside each partition. AIR provides the
ARINC 653 functionality missing in off-the-shelf (real-time) operating system
kernels, as illustrated in the diagram of Fig. 1, encapsulating those functions in
special-purpose additional components with well-defined interfaces. In essence,
the AIR architecture preserves the hardware and operating system independence
defined in the ARINC 653 specification [2]. AIR foresees the possibility that each
partition runs a different operating system, henceforth called Partition Operating
System (POS) [23].

Applications may use a strict ARINC 653 service interface, the Application
Executive (APEX) interface or, in the case of system partitions, may bypass
this standard interface and use additional functions from the POS kernel, as
illustrated in Fig. 1. The existence of system partitions with the possibility of
bypassing the APEX interface is a requirement of the ARINC 653 specification.
It should noted though that these partitions will typically run system admin-
istration and management functions, performed by applications which will be
subject to increased verification efforts.



Fig. 1. AIR system architecture

A (system) application, and the given APEX interface, POS and AIR POS
Adaptation Layer (PAL) instances compose the containment domain of each
partition.

2.1 AIR Partition Management Kernel (PMK)

The AIR Partition Management Kernel (PMK) component, transversal to the
whole system (see Fig. 1), could be seen as a hypervisor, playing nevertheless a
major role in achieving dependability, by ensuring robust TSP.

Temporal Partitioning

Temporal partitioning concerns partitions not interfering with each other’s time-
liness. In AIR this is guaranteed by a two-level hierarchical scheduling scheme;
partitions are scheduled cyclically under a fixed schedule, and processes are
scheduled by the native scheduler of the operating system of the partition in
which they are executing, as shown in Fig. 2. The partition schedule is repeated
cyclically and covers a time interval denominated major time frame (MTF).

The AIR PMK integrates a Partition Scheduler and a Partition Dispatcher
which implement the first level of this hierarchical scheduling scheme. At each
clock tick, the Partition Scheduler consults a scheduling table to detect if a
partition preemption point has been reached. If that is the case, the Partition
Dispatcher is called upon to perform the context switch between the active
partition (which currently holds the processing resources) and the heir partition
(which will hold the processing resources until the next partition preemption
point). The advanced mechanisms represented in Fig. 2 (mode-based schedules
and process deadline violation monitoring) are detailed in Sects. 4 and 5.



Fig. 2. AIR two-level hierarchical scheduling

Spatial Partitioning

Spatial partitioning means that applications running in one partition cannot ac-
cess addressing spaces outside those belonging to that partition [24,27]. For the
support thereto, AIR follows a highly modular design approach illustrated in
Fig. 3. Spatial partitioning requirements (specified in AIR and ARINC 653 con-
figuration files with the assistance of development tools support) are described
in runtime through a high-level processor-independent abstraction layer. A set
of descriptors is provided per partition, primarily corresponding to the several
levels of execution (e.g. application, operating system and AIR PMK) and to its
different memory sections (e.g. code, data and stack) [22].

Fig. 3. AIR spatial partitioning mechanisms



The high-level abstract spatial partitioning description needs to be mapped
in runtime to the specific processor memory protection mechanisms, exploiting
the availability of a hardware Memory Management Unit (MMU), as shown in
the lowest layer of Fig. 3. An example of such mapping is the Gaisler SPARC
V8 LEON3 three-level page-based MMU core [28].

Interpartition Communication

Notwithstanding spatial partitioning requirements, typical spacecraft partitioned
onboard applications need to exchange data. For example, some payload subsys-
tems may need to read AOCS data or transmit data to FDIR. Thus, AIR PMK
provides low-level mechanisms for interpartition communication. Applications
access the interpartition communication services through the APEX interface
(Sect. 2.3), in a way which is agnostic of whether the partitions are local or re-
mote to one another and how they communicate. The AIR PMK deals with these
specifics, being obliged to message delivery guarantees. For physically separated
partitions, this implies data transmission through a communication infrastruc-
ture. In the case of partitions in the same processing platform, interpartition
communication is implemented through memory-to-memory copies not violat-
ing spatial separation requirements [22].

2.2 AIR POS Adaptation Layer (PAL)

The AIR POS Adaptation Layer (PAL) plays an important role in the AIR archi-
tecture, in the sense it wraps each partition’s operating system, hiding its partic-
ularities from the AIR architecture components. This allows for a more flexible
and homogeneous integration of support to new partition operating systems (or
new versions thereof) and a better software development process (supported by
separation of concerns and stronger validation and certification processes) [22,8].

2.3 Flexible Portable APEX Interface

The APEX interface provides to the applications a set of services, defined in
the ARINC 653 specification [2]. AIR employs an innovative implementation of
APEX which consists of two components: the APEX Core Layer and the APEX
Layer Interface.

The APEX Core Layer implements the advanced notion of Portable APEX
intended to ensure portability between the different POSs supported by AIR [26].
The AIR APEX fully exploits the the availability of AIR PAL-related func-
tions, and the POSIX application programming interface currently available on
most (RT)OSs [15]. An optimized implementation may invoke directly the native
(RT)OS service primitives. The AIR APEX also coordinates, when required, the
interactions with the AIR Health Monitor, e.g. upon detection of an error [22].



2.4 AIR Health Monitoring (HM)

The AIR Health Monitor is responsible for handling hardware and software errors
(like deadlines missed, memory protection violations, or hardware failures). The
aim is to isolate errors within its domain of occurrence: process level errors will
cause an application error handler to be invoked, while partition level errors
trigger a response action defined at system integration time. Errors detected at
system level may lead the entire system to be stopped or reinitialized [22].

2.5 Integration of Generic Operating Systems

The foreseen heterogeneity between POSs is also being extended to include
generic non-real-time systems, such as Linux, answering to a recent trend in
the aerospace industry. The coexistance of real-time and non-real-time POSs
is motivated by the lack of relevant functions in most RTOSs, which are com-
monly provided by generic non-real-time operating systems. Furthermore, port-
ing these functions (e.g. scripting language interpreters) to RTOSs can be a
complicated and error-prone task [16]. An embedded variant of Linux has been
approached, and yields a fully functional operating system with a minimal size
compatible with the coexistence with other POSs and typical space missions
requirements [8,9].

To ensure that a non-real-time kernel as Linux cannot undermine the overall
time guarantees of the system by disabling or diverting system clock interrupts,
the instructions that could allow this must be wrapped by low-level handlers
(paravirtualized) [8].

3 System Model

To allow for formal verification of properties and requirements, the AIR ar-
chitecture can be modeled as follows. The model presented here focuses on the
temporal aspects of the system, which are the most relevant for the contributions
of this chapter. This system model is generic enough that it can possibly apply to
other TSP systems, especially those based on the ARINC 653 specification [2].
A simplified version of the system model can also apply to hypervisor-based
systems in general.

The notation used in this chapter has been chosen so as to follow recent
efforts towards a common notation among the research community [10]. To that
purpose, symbols to denote the notions of the system model coincide with those
used in previous works in the area [10,18]. Symbols for new concepts try, as
much as possible, not to conflict with those already widely used in the literature
for different concepts. A reference table for this notation, as applicable to the
system model resulting from the work presented in this chapter, is presented in
the Appendix.



3.1 Partitions

An AIR-based system, or actually a generic ARINC 653-based system, is com-
posed by a set of partitions, P :

P = {P1, P2, . . . , Pn(P )} . (1)

Each partition Pm is defined as:

Pm = 〈ηm, dm, τm,Mm(t)〉 (2)

where ηm is the partition’s activation cycle, dm is its assigned duration (the
amount of time to be given to the partition per cycle), and τm is the set of
processes running inside the partition (these will be covered in detail in Sect. 3.3).
Mm(t) is the operating mode of the partition Pm at the instant t, such that:

Mm(t) ∈ {normal, idle, coldStart,warmStart} . (3)

In the normal mode, the partition is effectively operational, with its process
scheduler active, while the idle mode corresponds to a shut-down partition not
executing any processes. The coldStart and warmStart modes both indicate that
the partition is initializing (with process scheduling disabled), differing from one
another regarding the initial context [2].

This model is very flexible, supporting partitions with either an inherently
periodic or aperiodic behaviour. As seen in Sect. 2.1, the partition schedule
repeats over a major time frame (MTF); thus, a partition which is not by itself
periodic can be modeled as having a partition cycle equal to the duration of
the MTF. Partitions which do not have strict time requirements, such as those
running non-real time operating systems, are also covered, having dm = 0.

3.2 Partition Scheduling

Partitions are scheduled on a fixed cyclic basis in the first of the two levels of
the hierarchical scheduling scheme, as illustrated in Fig. 2. The time interval
covered by a partition schedule, and over which it repeats, is called the major
time frame (MTF). The partition scheduling table (PST) for a system, χ, can
be defined as:

χ = 〈MTF , ω = {ω1, ω2, . . . , ωn(ω)}〉 . (4)

ω is a set of time windows, each one defined as:

ωj = 〈Pωj , Oj , cj〉 Pωj ∈ P (5)

where Pωj is the partition scheduled to be active during the jth time window, Oj
is the window’s offset (relative to the beginning of a major time frame) and cj
is its duration. At this stage, we assume that every partition in P has, at least,
one time window, thus

⋃
ωj∈ω P

ω
j = P . Time windows do not intersect and are

fully contained within one MTF, so:{
Oj + cj ≤ Oj+1 ∀j < n(ω)
On(ω) + cn(ω) ≤ MTF .

(6)



As a necessary but not sufficient condition for system-wide schedulability,
the MTF should be a multiple of the least common multiple (lcm) of all the
partitions’ cycles:

MTF = k × lcm
∀Pm∈P

(ηm) k ∈ N . (7)

and the sum of each partition’s time windows should account for the duration
defined for that partition:∑

{ωj∈ω |Pω
j =Pm }

cj ≥ dm
MTF

ηm
∀Pm ∈ P . (8)

This is nevertheless not a sufficient condition for compliance with the par-
titions’ temporal requirements. Besides respecting (8), the time windows must
guarantee that, if a partition completes more than one cycle inside the MTF, it
executes the assigned duration within each of these cycles:∑

{ωj∈ω |Pω
j =Pm∧

Oj∈[k ηm;(k+1)ηm[ }

cj ≥ dm ∀Pm ∈ P , ∀k ∈
[
0..

MTF

ηm
− 1

]
.

(9)

If the condition expressed in (9) holds, each partition Pm has at least dm
time units assigned in each of the MTF

ηm
cycles completed inside one MTF. Thus

(8) will also hold — the sum of all the time windows inside one MTF will be no
less than dm

MTF
ηm

.

3.3 Processes

In AIR (and ARINC 653), the scope of process management is restricted to its
partition. As defined in (2), each partition Pm ∈ P contains a set of processes:

τm = {τm,1, τm,2, . . . , τm,n(τm)} . (10)

Each process τm,q can be defined as:

τm,q = 〈Tm,q, Dm,q, pm,q, Cm,q, Sm,q(t)〉 (11)

where Tm,q is the process’s period, Dm,q its relative deadline, pm,q its base pri-
ority, and Sm,q(t) represents the status of the process at instant t. If the process
τm,q is aperiodic or sporadic, Tm,q represents the lower bound for the time be-
tween consecutive activations. If Dm,q = ∞, then τm,q has no deadlines. The
worst case execution time (WCET), Cm,q, is not originally a process attribute
in the ARINC 653 specification. It is though added to the system model, since
it is essential for further scheduling analyses.

The status of the process:

Sm,q(t) = 〈D′
m,q(t), p

′
m,q(t),Stm,q(t)〉 (12)



includes the process’s absolute deadline time, D′
m,q(t), current priority, p′m,q(t),

and state:
Stm,q(t) ∈ {dormant, ready, running,waiting} . (13)

A dormant process is ineligible to receive resources because it either has not been
started or has been stopped. A ready process is one which is able to be executed,
while a running process (only one at any time) is the one currently executing.
A waiting process is not eligible to be scheduled until a certain event for which
it is waiting has occurred — a delay, a semaphore, a period, etc. — or another
process resumes it (if it has been suspended).

Processes inside each partition compete for processing time during the par-
tition’s time windows. In RTOSs, this is usually done according to a preemptive
priority-driven scheduling algorithm. The convention here is that lower numer-
ical values represent greater priorities. In normal operation with preemption
enabled, the heir process in a given partition at a given moment, heirm(t), is
wielded by:

heirm(t) = τm,h ∈ Readym(t) | (p′m,h(t) < p′m,q(t)) ∨
(p′m,h(t) = p′m,q(t) ∧ h < q) ∀τm,q ∈ Readym(t), q 6= h

(14)

where:
Readym(t) = {τm,q ∈ τm | Stm,q(t) ∈ {ready, running}} . (15)

Processes are assumed to be sorted in decreasing order of antiquity in the
ready state. This reads that the process selected to be executed is the highest
priority ready (or already running) process in the partition; if more than one
process has the highest priority, the oldest one is selected.

4 Mode-Based Schedules

The original AIR Partition Scheduler, integrated in the AIR PMK component
(Sect. 2), defines a static scheduling of partitions, cyclically obeying to a Parti-
tion Scheduling Table (PST) defined offline, at system integration time (see (4)).
The AIR Partition Scheduler verifies whether a partition preemption point has
been reached and, in that case, selects the heir partition.

This static scheme is very restricting in terms of configuration flexibility and
fault tolerance. The AIR advanced design addresses this issue by introducing
support for multiple mode-based partition schedules. Examples of the usefulness
of mode-based schedules include the adaptation of partition scheduling to dif-
ferent modes/phases (initialization, operation, etc.) and the accommodation of
component failures (e.g., assigning a critical program running in a failed proces-
sor to another one). Such a notion is also conveyed in Part 2 of the ARINC 653
specification [3].

The basic mandatory scheduling scheme is extended to allow multiple sched-
ules to be defined at system integration time. At execution time, authorized
partitions may request switching between the different PSTs, represented in the
rightmost part of Fig. 4.



Fig. 4. AIR Partition Scheduler with support for mode-based schedules

To this purpose, the system configuration and integration process is extended
in two ways:

1. definition of multiple schedules, with different major time frames, partitions,
and respective periods and execution time windows;

2. inclusion of restart actions (ScheduleChangeAction) to be performed, on a
per-partition and per-schedule basis, when the schedule is changed.

The AIR Partition Scheduler has to be modified with the functions high-
lighted (dotted line) in Fig. 4. These modifications concern the verification, at
the end of each MTF, of whether a schedule switch is pending and, if that is the
case, make the schedule switch effective.

4.1 Implications on the System Model

The introduction of mode-based schedules imposes a reformulation of the sys-
tem model presented in Sect. 3. Besides the system now having a set of partition
scheduling tables, the partitions’ timing requirements (period and duration) are
no longer attributes of the partition, but rather attributes of the partition in a
given schedule. Schedules may change on account of the mission’s mode/phase
changing, and this in turn implies that most likely some processes inside par-
titions need not be always active. Thus, each partition’s timing requirements
may change from schedule to schedule; the alternative approach of keeping each
partition’s time requirements constant throughout the schedules by targeting an
extremely pessimistic case would lead to a poorly efficient resource utilization
through time.



The system is still composed of a set P of partitions (1), which will now be
deprived of timing requirements on their own:

Pm = 〈τm,Mm(t)〉 . (16)

The system also holds, as mentioned, a set of partition scheduling tables:

χ = {χ1, χ2, . . . , χn(χ)} (17)

which definition should be adjusted from (4):

χi = 〈MTF i, Qi = {Qi,1, . . . , Qi,n(Qi)}, ωi = {ωi,1, . . . , ωi,n(ωi)}〉 (18)

where:
Qi,m = 〈Pχi,m, ηi,m, di,m〉 Pχi,m ∈ P . (19)

Since now it may be the case that not all partitions will be present in ev-
ery schedule, the requirements expressed in (7), (8) and (9) are too strong, as
they express requirements for each PST in terms of all partitions in the system
(regardless of which partitions are present in each PST).

To reflect the changes expressed in (17), (18) and (19), and the concern
over the mentioned requirements being too strong, the system model must be
enhanced by replacing (5) to (7) with (20) to (22):

ωi,j = 〈Pωi,j , Oi,j , ci,j〉 Pωi,j ∈ Qi (20){
Oi,j + ci,j ≤ Oi,j+1 ∀j < n(ωi)

Oi,n(ωi) + ci,n(ωi) ≤ MTFi
(21)

MTF i = ki × lcm
∀Qm∈Qi

(ηm) ki ∈ N . (22)

The fundamental timing requirement fulfilment condition expressed in (9) is
accordingly updated as can be seen in (23):∑

{ωi,j∈ωi |Pω
i,j=Pm∧

Oi,j∈[k ηm;(k+1)ηm[ }

ci,j ≥ dm ∀i ≤ n(χ) ,∀Pm ∈ Qi ,∀k ∈
[
0..

MTFi

ηm
− 1

]
.

(23)

Since (9) implies (8), a replacement for the latter is not provided. The kind of
system initially described, with only one statically defined partition scheduling
table, can still be modeled, as a special case of a system with n(χ) = 1.

4.2 Implications on the APEX Interface

Support for mode-based schedules requires the provision of additional APEX ser-
vices. These should allow setting and obtaining the current partition scheduling
parameters.



First and foremost, a service which sets the schedule that will start execut-
ing at the top of the next MTF must be provided. It must be invoked by an
authorized partition, and have the identifier of an existing schedule as its only
parameter. The immediate result is only that of storing the identifier of the next
schedule.

The effective schedule switch occurs at the start of the next MTF, by having
the AIR Partition Scheduler (see Algorithm 1) perform the following steps:

Line 4: currentSchedule is set to nextSchedule, which is the identifier stored
in the latest previous call to the service.

Line 5: lastScheduleSwitch is set to the current time.

Algorithm 1 AIR Partition Scheduler featuring mode-based schedules

1: ticks ← ticks + 1 . ticks is the global system clock tick counter
2: if schedulescurrentSchedule .tabletableIterator .tick =

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf then
3: if currentSchedule 6= nextSchedule ∧

(ticks − lastScheduleSwitch) mod schedulescurrentSchedule .mtf = 0 then
4: currentSchedule ← nextSchedule
5: lastScheduleSwitch ← ticks
6: tableIterator ← 0
7: end if
8: heirPartition← schedulescurrentSchedule .tabletableIterator .partition
9: tableIterator ← (tableIterator + 1) mod

schedulescurrentSchedule .numberPartitionPreemptionPoints
10: end if

Also, each partition Pm in the new schedule running in normal mode, i.e.
Mm(t) = normal, will have to be restarted according to the value defined for its
ScheduleChangeAction (which can indicate that no restart should occur). This
action takes place the first time each partition is scheduled/dispatched after
the schedule switch (not represented in Algorithm 1). Support for the schedule
switch makes up for virtually the whole of the changes made to the original AIR
Partition Scheduler.

Another service provided in AIR allows obtaining the full current schedule
status information, which (in compliance with ARINC 653 Part 2 [3]) comprises:

– the time of the last schedule switch (0 if none ever occurred);

– the identifier of the current schedule;

– the identifier of the next schedule, which will be the same as the current
schedule if no schedule change is pending for the end of the present major
time frame.



4.3 Design and Engineering Issues

Since the AIR Partition Scheduler code is invoked at every system clock tick, its
code needs to be as efficient as possible. In the AIR implementation presented
in Algorithm 1, in the best and most frequent case, only two computations are
performed:

Line 1: Increment the number of clock ticks by one.
Line 2: Verify if a partition preemption point has been reached (this best

case is also the most frequent one, since this verification will turn
out false far more often than true).

To incorporate the mode-based schedules functionality, the AIR Partition
Scheduler computations had to be extended (see Algorithm 1); verifications of
the presence of a partition preemption point (line 2) or the end of a MTF (line 3)
need to rely on the number of clock ticks elapsed since the last schedule switch,
and not solely the number of clock ticks since system initialization.

The AIR Partition Dispatcher is executed after the Partition Scheduler. Its
only modification regarding mode-based schedules is the invocation of pending
schedule change actions. The mechanism of the AIR Partition Dispatcher, with
this modification highlighted (dotted line), is detailed in Fig. 5.

Fig. 5. AIR Partition Dispatcher with support for mode-based schedules

Part 2 of the ARINC 653 specification [3] does not clearly state whether
schedule change actions should be performed immediately after effectively chang-
ing schedule (i.e., at the beginning of the first MTF under the new schedule, for



all partitions) or performed for each partition as it is dispatched for the first
time after the schedule switch. It is nevertheless our understanding that the
latter approach is more compliant with the fulfilment of temporal separation
requirements, since these will only affect its own execution time window. This
is specified in Algorithm 2 (line 9). The remaining actions in Algorithm 2 are
related to saving and restoring the execution context (lines 4 and 8), and eval-
uation of the elapsed clock ticks (lines 2 and 6).

Algorithm 2 AIR Partition Dispatcher featuring mode-based schedules

1: if heirPartition = activePartition then
2: elapsedTicks ← 1
3: else
4: SaveContext(activePartition.context)
5: activePartition.lastTick ← ticks − 1
6: elapsedTicks ← ticks − heirPartition.lastTick
7: activePartition ← heirPartition
8: RestoreContext(heirPartition.context)
9: PendingScheduleChangeAction(heirPartition)

10: end if

5 Process Deadline Violation Monitoring

During the execution of the system, it may be the case that a process exceeds its
deadline; this can be caused by a malfunction or because that process’s WCET
was underestimated at system configuration and integration time. Other factors
related to faulty system planning (such as the time windows not satisfying the
partitions’ timing requirements) could, in principle, also cause deadline viola-
tions; however, such issues can be predicted and avoided using offline tools that
verify the fulfilment of the timing requirements as expressed in (23).

In addition, it is also possible that a process exceeds a deadline while the
partition in which it executes is inactive, and that will only be detected when
the partition is being dispatched, just before invoking the process scheduler. The
earliest deadline is checked; following deadlines may subsequently be verified
until one has not been missed. This can be computationally optimized with the
help of an appropriate data structure with the deadlines in ascending order,
allowing for O(1) retrieval of the earliest deadline. This is extremely relevant
given deadline verification is performed inside the system clock interrupt service
routine (ISR). Furthermore, this methodology is optimal with respect to deadline
violation detection latency.

In the context of Health Monitoring (HM), ARINC 653 classifies process
deadline violation as a process level error (an error that impacts one or more
processes in the partition, or the entire partition) [2,22]. Possible recovery actions
in the event of such an error are:



– ignoring the error (logging it, but taking no action);
– logging the error a certain number of times before acting upon it;
– stopping the faulty process, and reinitializing it from the entry address or

starting another process;
– stopping the faulty process, assuming that the partition will detect this and

recover;
– restarting or stopping the partition.

The actual action to be performed is defined by the application programmer,
through an appropriate error handler [22].

5.1 Implications on the System Model

At instant t, the set of processes having violated their deadlines is given by:

V (t) =

n(P )⋃
m=1

{
τm,q ∈ τm | Dm,q 6=∞∧D′

m,q(t) < t
}

(24)

The Dm,q 6=∞ condition translates the fact that the notion of deadline violation
does not apply to non-real-time processes.

5.2 Implications on the APEX Interface

The information about processes statuses and deadlines is maintained in such
a way that it is conveniently kept updated by the relevant APEX primitives
which:

– start a process, making it become able to be executed by initializing all its
attributes, setting the runtime stack, and placing it in the ready state;

– start a process with a given delay, by placing it in the waiting state until the
requested delay is expired;

– suspend the execution of a (periodic) process until the next release point1;
– postpone a process’s deadline time (replenishment);
– perform a partition shutdown or restart.

Each of these primitives will need to insert or update the due processes’ dead-
lines, while the services which stop a process (putting it in the dormant state,
by its own request or from another process) need to remove the due processes’
deadline information from the control data structures.

The AIR PAL component provides private interfaces for these APEX ser-
vices to register/update and unregister deadlines, and keeps the appropriate
data structures containing this information. This is the most reasonable imple-
mentation, from the engineering, integrity and spatial separation points of view.
An example of how the APEX and the AIR PAL for one given partition integrate
to provide this functionality is shown in Fig. 6.

1 A release point of a process is defined in general as the instant the process becomes
ready for execution. For a periodic process the consecutive release points will be
separated by the respective period.



Fig. 6. Integration of the APEX Interface and the AIR PAL to provide process deadline
violation detection and reporting

When a process is started, via the START APEX service, its deadline time is
set to instant t3 (obtained by adding the process’s time capacity to the current
instant), and this value is registered via the AIR PAL-provided interface. Upon a
replenishment request (REPLENISH service), a new deadline time, t4, is calcu-
lated (by adding the requested budget time to the current instant). The interface
provided by AIR PAL to register a process deadline is again called, to update
the information for this process; if necessary, this information will be moved
to keep the deadlines sorted by ascending deadline time order. When instant
t4 is reached without the process having finished its execution, a deadline miss
has occurred, which is detected and should be reported to partition-wise health
monitoring and error handling mechanisms through appropriate primitives.

5.3 Design and Engineering Issues

Figure 7 illustrates the modification to the surrogate clock tick announcement
routine provided by the AIR PAL, so as to verify the earliest deadline(s) and re-
port any violations to the health monitoring. Process scheduling and dispatching
is ensured by the corresponding native POS mechanisms.

The implementation of process deadline violation monitoring in AIR is shown
in Algorithm 3. To keep the computational complexity of the process deadline
violation monitoring to a minimum, the information concerning process deadlines
is kept at each partition’s AIR PAL component, ordered by deadline, and only



Fig. 7. Modifications on the surrogate clock tick announcement routine to accommo-
date deadline verification features

the earliest deadline is verified by default; this verification (line 3) happens after
announcing the passage of the elapsed clock ticks (line 1). The information on
the earliest deadline is retrieved in constant time (O(1)). Only in the presence
of deadline violations will more deadlines be checked, in ascending order until
reaching one that has not been violated.

Algorithm 3 Deadline verification at the AIR PAL level

1: *POS ClockTickAnnounce(elapsedTicks)
2: for all d ∈ PAL deadlines do
3: if d.deadlineTime ≥ PAL GetCurrentTime( ) then
4: break
5: end if
6: HM DeadlineViolated(d.pid) . pid: process identifier
7: PAL RemoveProcessDeadline(d)
8: end for

Currently, the AIR PAL uses a linked list to keep the process deadline infor-
mation. In the deadline verification process, a violation may be detected (Algo-
rithm 3, line 3), and after reporting its occurrence to Health Monitoring (line 6)
the deadline is removed from the control structure (line 7). Since we already
have a pointer to the node to be removed, the complexity of the deadline re-
moval from the linked list will effectively be O(1), as opposed to the generic
O(n) complexity yielded by linked lists.

A point where the use of a self-balancing binary search tree would theoreti-
cally outperform a linked list concern the act of inserting, removing or updating
nodes, materialized in the register/unregister deadline interfaces provided to the



APEX — O(log n) vs. O(n). Nevertheless, since these operations do not happen
inside the system clock tick ISR, but rather on a partition’s execution time win-
dow, and also the number of processes accounted for deadline verification will be
typically small, such asymptotic advantage will not correlate to effective and/or
significant profit, and certainly not compensate for the more critical downside
to operations running during an ISR.

6 Prototype Implementation

To demonstrate the advanced timeliness control features, we developed a proto-
type implementation of an AIR-based system comprising four partitions. Each
partition executes an RTEMS-based [21] mockup application representative of
typical functions present in a satellite system. The demonstration was imple-
mented for an Intel IA-32 target, and ran on the QEMU emulator.

This sample system is configured with two PSTs, between which it is possible
to alternate through the mode-based schedules service described in Sect. 4. These
partition scheduling tables are shown in Fig. 8. Both tables repeat over a MTF
of 1300 time units, but this is not a strict requirement — it stems from the
partitions’ timing requirements as per (22). Each partition contains one to three
mockup processes, which period is a multiple of the respective partition’s cycle
duration.

P = {P1, P2, P3, P4}
Q1 = Q2 = {〈P1, 1300, 200〉, 〈P2, 650, 100〉, 〈P3, 650, 100〉, 〈P4, 1300, 100〉}
χ1 = 〈MTF1 = 1300, ω1 = {〈Q1,1, 0, 200〉, 〈Q1,2, 200, 100〉, 〈Q1,3, 300, 100〉, 〈Q1,4, 400, 600〉,

〈Q1,2, 1000, 100〉, 〈Q1,3, 1100, 100〉, 〈Q1,4, 1200, 100〉}〉
χ2 = 〈MTF2 = 1300, ω2 = {〈Q2,1, 0, 200〉, 〈Q2,4, 200, 100〉, 〈Q2,3, 300, 100〉, 〈Q2,2, 400, 600〉,

〈Q2,4, 1000, 100〉, 〈Q2,3, 1100, 100〉, 〈Q2,2, 1200, 100〉}〉

Fig. 8. Partition scheduling tables for the prototype implementation



We have the possibility to inject a faulty process on P1, so that a deadline
miss occurs even though both PSTs comply with P1’s timing requirements (cf.
(23) and (25) for schedule χ1).

∑
{ωi,j∈ωi |Pω

i,j=Pm∧Oi,j∈[k ηm;(k+1)ηm[ }

ci,j ≥ dm i = 1, Pm = Q1,1, k = 0

∑
{ω1,j∈ω1 |Pω

1,j=Q1,1∧O1,j∈[0;1300[ }

c1,j ≥ 200

∑
{ 〈Q1,1,0,200〉 }

c1,j ≥ 200

200 ≥ 200 ut
(25)

When the faulty process is active, its deadline violation is detected and reported
every time (except the first) that P1 is scheduled and dispatched to execute.

Successive requests to change schedule are correctly handled at the end of
the current MTF and do not introduce deadline violations other than the one
injected in a process in P1. This is caused, not by the schedule switch mechanism
itself, but by ensuring that the different PSTs comply with the temporal require-
ments of the partitions therein contained. This is in consonance with the overall
tone of the ARINC 653 specification, which emphasizes that in many cases the
system can only support certain properties, and cannot guarantee them without
proper and careful integration and configuration [2].

To allow for proof of concept visualization and interaction, the prototype
includes VITRAL, a text-mode windows manager for RTEMS [7], whose graph-
ical aspect can be seen in Fig. 9. There is one window for each partition, where
its output can be seen, and also two more windows which allow observation of
the behaviour of AIR components. VITRAL also supports keyboard interaction,
which is used, for demonstration purposes, to allow switching to a given parti-
tion scheduling table at the end of the present major time frame and activating
the faulty process on P1.

7 Related Work

To the best of our knowledge, the only contemporary approach to flexible schedul-
ing in a TSP system is the mode-based scheduling feature provided by the com-
mercial Wind River VxWorks 653 solution [31]. Previous academic research on
TSP solutions [19] and works on scheduling analysis for TSP systems [4,18,12]
do not include or foresee mechanisms for timing parameters adaptation.

Mode-based scheduling principles are also employed to communication pro-
tocols. In the Time-Triggered Protocol (TTP) [17], the controller state includes
an operational mode, repeated at every mode cycle, which controls the sequence,
attributes and schedule for nodes to send messages. If a node intends to change
mode, it signals the remaining nodes through a frame’s control field.



Fig. 9. Prototype implementation demonstration, featuring the VITRAL text-mode
windows manager for RTEMS

The overall concept of a timing watchdog to detect timing failures in the
context of IMA-based systems is mentioned in [5,6]. In order to process dead-
line violation monitoring, the ARINC 653 specification defines deadline miss as a
process level error, but makes no considerations on how or when the error should
be detected [2]. In AIR, on the other hand, we propose an efficient implementa-
tion of such a mechanism. XtratuM, in its documentation, does not mention any
provision of any similar deadline supervision [19]. VxWorks 653 is said to fully
implement the ARINC 653 APEX specification, but it is not clear if deadline
violation monitoring is addressed [31].

Temporal analysis in TSP systems such as IMA/ARINC 653 as been ad-
dressed in some instances in the literature, albeit not to the full extent needed
to aid design, integration and deployment of TSP systems in space. In [4] the
response time analysis leads to the proposal of abandoning two-level scheduling
in favour of a single-level priority preemptive scheduling, and [14] also makes
the case for abandoning cyclic partition scheduling, but in favour of reservation-
based scheduling.

A theorem for partition schedulability is presented in [18], assuming that
each partition is assigned a single continuous execution time window within each
iteration of its cycle; this is much of a simplification of the scheduling mecha-
nisms for TSP systems. This fact is also pointed out in [20], which addresses
the task and partition scheduling problems with assumptions that differ from
those possible when using the IMA and ARINC 653 specifications as a basis. For
instance, the authors analyze the schedulability of processes (within a partition)
by Earliest Deadline First policies, whereas ARINC 653 mandates a preemptive
priority-based algorithm [2].

Finally, [12] models ARINC 653 with two-level scheduling and apply tim-
ing analysis techniques to generate partition schedules. This analysis relies on
a model with some limiting (and, in some cases, unjustified) assumptions; for
instance, the authors ignore aperiodic processes on the grounds that they are
scheduled as background workload.



8 Conclusion and Future Work

The strict requirements of modern aerospace systems has brought us to inte-
grating several onboard functions (avionics, payload), traditionally separated
in dedicated resources, in the same computing platform. Robust temporal and
spatial partitioning (TSP) is introduced to address dependability challenges re-
sulting from this integration. TSP involves onboard applications being separated
in logical containers (partitions), implying fault containment. Partitions do not
interfere with one another regarding real-time and addressing space separation
requirements.

In this chapter we presented the design of the TSP-based AIR architecture,
which is compliant with the ARINC 653 specification. Then, we formally modeled
AIR, with emphasis on the temporal properties and requirements. The innova-
tive features introduced in the AIR architecture to enforce its dependability with
respect to timeliness guarantees (mode-based schedules and process deadline vi-
olation monitoring) are then detailed regarding their definition, implementation
and implications on the definition of an extended system model. Finally, we pre-
sented a prototype implementation, demonstrating the AIR architecture with
the newly introduced timeliness adaptation and control features.

Mode-based schedules and process deadline violation monitoring do not, ac-
tively and/or by themselves, improve the timeliness of an AIR system. What
they do is provide valuable means for system developers, integrators, maintain-
ers and mission controllers to have a much greater control on whether and how
this timeliness is achieved. Process deadline violation monitoring can give an
almost immediate insight on possible underdimensioning of the execution time
given to one or more partitions, which, coupled with mode-based schedules and
a system integrated and configured to cope with this kind of event, can allow
the problem to be solved in execution time.

As future work, the system model resulting from this chapter, composed of
equations:

– (1), (3) and (16)–(23) (partitions, and partition mode-based scheduling);
– (10)–(15) (processes), and;
– (24) (process deadline violations);

will be consolidated and much extended, namely so as to include: (i) necessary
conditions for process scheduling and deadline fulfilment; (ii) spatial separation
characteristics, addressing space protection attributes, and fault detection re-
quirements; (iii) the implications of unforeseen events on the time model (ape-
riodic/sporadic processes, event overload, etc.), and; (iv) parallelism between
partition time windows on a multicore platform [8]. Formal definition of the
characteristics and requirements of an ARINC 653-based system, such as those
built on the AIR architecture, is of paramount importance for future space mis-
sions, since it opens room for system verification and development of timing
analysis tools to aid system integration. This also implies deeper studies on
schedulability analysis for TSP systems.
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Edgar Pascoal, José Neves (GMV Portugal) and James Windsor (ESA–ESTEC)
for the joint efforts in the scope of the AIR activities, and Manuel Coutinho, for
the extensive work on the VITRAL window manager for RTEMS and on earlier
AIR prototyping.

References

1. AEEC: Design guidance for Integrated Modular Avionics. ARINC Report 651-1
(Nov 1997)

2. AEEC: Avionics application software standard interface, part 1 - required services.
ARINC Specification 653P1-2 (Mar 2006)

3. AEEC: Avionics application software standard interface, part 2 - extended services.
ARINC Specification 653P2-1 (Dec 2008)

4. Audsley, N., Wellings, A.: Analysing APEX applications. In: Proc. 17th IEEE
Real-Time Systems Symp. pp. 39–44. Washington, DC, USA (Dec 1996)

5. Bate, I., Burns, A.: A dependable distributed architecture for a safety critical
hard real-time system. In: IEE Half-Day Colloquium on Hardware Systems for
Dependable Applications (Digest No: 1997/335). pp. 1/1–1/6 (1997)

6. Conmy, P., McDermid, J.: High level failure analysis for Integrated Modular Avion-
ics. In: Proc. 6th Australian Workshop on Safety critical systems and software.
vol. 3, pp. 13–21. Australian Computer Society, Inc., Brisbane, Australia (2001)

7. Coutinho, M., Almeida, C., Rufino, J.: VITRAL - a text mode window manager
for real-time embedded kernels. In: Proc. 11th IEEE Int. Conf. on Emerging Tech-
nologies and Factory Automation. Prague, Czech Republic (Sep 2006)

8. Craveiro, J.: Integration of generic operating systems in partitioned architectures.
MSc thesis, Faculty of Sciences, University of Lisbon (Jul 2009)

9. Craveiro, J., Rufino, J., Almeida, C., Covelo, R., Venda, P.: Embedded Linux in a
partitioned architecture for aerospace applications. In: Proc. 7th ACS/IEEE Int.
Conf. on Computer Systems and Applications. pp. 132–138. Rabat, Morocco (May
2009)

10. Davis, R., Burns, A.: A survey of hard real-time scheduling algorithms and schedu-
lability analysis techniques for multiprocessor systems. Tech. Rep. YCS-2009-443,
University of York, Department of Computer Science (2009)

11. Diniz, N., Rufino, J.: ARINC 653 in space. In: Proc. DASIA 2005 “DAta Systems
In Aerospace” Conf. Edinburgh, Scotland (Jun 2005)

12. Easwaran, A., Lee, I., Sokolsky, O., Vestal, S.: A compositional scheduling frame-
work for digital avionics systems. In: Proc. 15th IEEE Int. Conf. on Embedded
and Real-Time Computing Systems and Applications. Beijing, China (Aug 2009)

13. Fortescue, P.W., Stark, J.P.W., Swinerd, G. (eds.): Spacecraft Systems Engineer-
ing, 3rd edition. Wiley (2003)

14. Grigg, A., Audsley, N.: Towards a scheduling and timing analysis solution for
integrated modular avionic systems. Microprocessors and Microsystems Journal
22(8), 423–431 (1999)

15. IEEE: 1996 (ISO/IEC) [IEEE/ANSI Std 1003.1, 1996 Edition] Information Tech-
nology — Portable Operating System Interface (POSIX) — Part 1: System Appli-
cation: Program Interface (API) [C Language]. IEEE, New York, USA (1996)



16. Kinnan, L.: Application migration from Linux prototype to deployable IMA plat-
form using ARINC 653 and Open GL. In: Proc. 26th IEEE/AIAA Digital Avionics
Systems Conference. pp. 6.C.2–1–6.C.2–5. Dallas, TX, USA (Oct 2007)

17. Kopetz, H., Grünsteidl, G.: TTP — a time-triggered protocol for fault-tolerant
real-time systems. In: Proc. 23rd Int. Symp. on Fault-Tolerant Computing (1993)

18. Lee, Y., Kim, D., Younis, M., Zhou, J.: Partition scheduling in APEX runtime
environment for embedded avionics software. In: Proc. 5th Int. Conf. on Real-Time
Computing Systems and Applications. pp. 103–109. Hiroshima, Japan (1998)

19. Masmano, M., Ripoll, I., Crespo, A.: XtratuM Hypervisor for LEON2: design and
implementation overview. Tech. rep., I. U. de Automática e Informática Industrial,
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Appendix: Notation

Symbol Description

Convention used
N Set of natural numbers (0 /∈ N)

n(S) (Where S is a set) Equivalent to #S
a mod b Modulo operation (remainder of the division of a by b)

Partitions
P Set of partitions in the system

n(P ) Number of partitions in the system (n(P ) ≡ #P )
Pm Partition m

Mm(t) Operating mode of partition Pm at instant t
(normal, idle, coldStart, or warmStart)

Partition scheduling
χ Set of partition schedules available in the system

n(χ) Number of partition schedules available (n(χ) ≡ #χ)
χi Partition schedule i

MTF i Major time frame of schedule χi
Qi Set of partition time requirements for χi
Pχi,m Each partition with at least one time window in χi
ηi,m Activation cycle of partition Pχi,m under χi
di,m Duration of partition Pχi,m under χi
ωi Set of time windows in schedule χi

n(ωi) Number of time windows in schedule χi (n(ωi) ≡ #ωi)
ωi,j Time window j in schedule χi
Pωi,j Partition active during time window ωi,j
Oi,j Offset of time window ωi,j , relative to the beginning of MTF i
ci,j Duration of time window ωi,j

Tasks/processes
τm Taskset of partition Pm

n(τm) Number of tasks (processes) in partition Pm (n(τm) ≡ #τm)
τm,q Task q of partition Pm
Tm,q Period of task τm,q
Dm,q Relative deadline of task τm,q
pm,q (Base) priority of task τm,q
Cm,q Worst case execution time (WCET) of task τm,q
Sm,q(t) Status of task τm,q at instant t
D′
m,q(t) (Absolute) deadline time of task τm,q at instant t

p′m,q(t) (Current) priority of task τm,q at instant t
Stm,q(t) State of task τm,q at instant t (dormant, ready, running, or waiting)

Readym(t) Set of schedulable tasks (ready or running) in partition Pm at instant t
heirm(t) Heir task in partition Pm at instant t
V (t) Set of tasks which, at instant t, have violated a deadline

Note: This notation, as described in this table, applies to the system model where multiple partition

schedules are supported.


