Response Time Analysis of Composable
Micro-Protocols*

Joao Ventura Joao Rodrigues
Universidade de Lisboa INETI
jev@ieee.org joao.carlos@mail.ineti.pt

Luis Rodrigues
Universidade de Lisboa
ler@di.fc.ul.pt

February 1, 2001

Abstract

The paper presents a generic framework to analyse the timing
behavior of protocol graphs derived from the composition of micro-
protocols. The model assumes that a protocol stack is composed of a
set of protocol objects that interact through the exchange of events.
A specific task is associated with each relevant protocol event and for
each task, the periods and offsets are derived from a description of the
interactions between adjacent protocols. To illustrate the use of the
model, a stack of modular reliable group communication protocols for
the CAN field-bus is analysed.

1 Introduction

With the increase of processing power and network bandwidth it is possible
to build sophisticated distributed hard-real time systems. Many of these
systems benefit from communication services that enforce strong consistency
properties such as ordering and agreement at the communication level. The

*This work has been partially supported by the PRAXIS/P/EEI/14187/1998 project,
DEAR-COTS. J. Ventura has been supported by the PRAXIS XXI Programme under
grant PRAXIS XXI/BM/20729/99. Selected portions of this report were published in
the Proceedings of the 4th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2001), Magdeburg, Germany, May, 2 - 4, 2001.

construction of such communication systems using the composition of several
micro-protocol objects is an approach that has been applied with success in
the non real-time arena[2, 1, 6]. This encourages the re-use of protocol
components and allows the applications to configure stacks tailored to their
needs. To benefit from this approach in hard real-time systems, one must
be able to derive the timing behavior of a protocol composition given a
description of its protocol objects.

This paper presents a general framework to analyse the timing behavior
of protocol graphs derived from the composition of micro-protocols. Indi-
vidual micro-protocols are described as protocol objects that subscribe and
produce events; interactions among adjacent protocols are modeled by the
exchange of these events. The protocol implementation is modeled by a set
of tasks, each programmed to handle a specific protocol event. The periods
and offsets of these tasks can be derived from the protocol interfaces and a
description of the traffic load. The model presented is generic but it is being
developed to be applied to a concrete protocol composition framework, the
RT-Appia system [7].

To illustrate the use of the framework, the paper presents the study on
the timing analysis of a set of modular fault-tolerant group communication
protocols designed for the CAN field-bus: RELCAN over EDCAN[9]. In
order to perform this study, an existing software tool was extended to comply
with the model requirements.

The paper is organised as follows: Section 2 presents the notion of proto-
col composition in which the objective of being able to deduce timing anal-
ysis of a generic protocol is based. Section 3 presents the theoretical model
used in producing the analysis. Section 4 presents the timing analysis of
a case-study protocol stack that was developed to provide fault-tolerance
communication over the CAN field-bus. Section 5 concludes the paper.

2 Real-Time OO Protocols Stacks

The growing requirements of distributed hard real-time systems demand
more diverse and complex communication protocols. Monolithic implemen-
tations of communications protocols have many disadvantages. They are
hard to expand or refine and may introduce run-time overheads due to func-
tionalities that are not strictly required by the application. Additionally, the
timing behavior of monolithic implementations may be difficult to assess.
A successful approach to avoid the pitfalls of monolithic communica-
tion systems is to rely on the composition of micro-protocol objects. This

approach promotes the reuse of micro-protocols and the construction of pro-
tocol stacks that exactly match the application requirements. It may also
simplify the timing analysis of the composite stack. To achieve such analysis
one needs a description of the timing properties of each micro-protocol and
a description of the interaction among protocols in a given stack.

The z-Kernel [4] is an early and influential work on protocol composition.
A version of z-Kernel adapted to real-time operation has been developed
in the scope of the CORDS project [12]. Following the initial work with
z-Kernel, many other protocol kernels have been designed with enriched
functionality. Notable examples are Ensemble [2], RTCactus[3] and RT-
Appia [7].

In this paper we are interested in designing a framework to extract the
timing behavior of compositions of protocols. Even though we are interested
in deriving a general framework, we will use the concrete example of the RT-
Appia protocol kernel.

In RT-Appia each stack is composed of one or more channels. Each
channel is an ordered sequence of sessions, instances of a specific protocol
layer. The session maintains state that is used by the layer to process events.
A layer that implements an ordering protocol may maintain a sequence
number or a vector clock as part of the session state. The sequence of layers
associated with a given channel defines the quality of service implemented
by the channel.

Communication between layers is made by exchange of events. New
events can be created by deriving from a previously defined event class.
Each layer declares the set of events the layer produces and that the layer
is interested in subscribing. This information allows to identify the relevant
interactions among layers.

For each subscribed event, the protocol must provide a handler to pro-
cess that event. Each handler can be modeled as a real-time task, whose
computation time must be known. Handlers for a given layer that share the
same session should obtain exclusive access to the session state.

It should be noted that the handling of an event by a given protocol layer
may generate multiple events that need to be propagated in the stack. For
instance a transport protocol may have to fragment a message into several
packets. Thus, the issuing of a single send request event at the transport
layer may generate multiple send events at the network layer. This makes
the analysis of the timing behavior of a protocol composition a non-trivial
task.

In this paper we propose an off-line technique suitable for event-based
protocol compositions. To perform the schedulability analysis it is necessary

to capture the chain of events with the longest computation time. Note
that a chain of events must have a finite number of events. A chain of
events terminates when all the sessions return to the idle state. The Worst
Case Response Time (WCRT) of a channel activation is derived from the
computation time of the worst case chain of that channel and from the
WCRT of other higher priority channels.

3 Profiling of protocol compositions

The profiling system must receive as input an abstract description of the
protocol composition. The exact form used to supply the description (such
as source code or state diagrams) is not relevant for this work, as long as
the following information can be extracted:

e The set of micro-protocols and the order by which they process the
events.

e The set of events processed by each layer and the set of events that
may be generated by the layer during the processing of each event.

e The priorities of these events (these will be directly assigned to the
respective handler tasks).

In addition, one needs also to obtain a description of the environment
where the micro-protocol composition will execute and the input load. Namely,
one needs to know:

e The period of each event received at the stack borders (user requests).

e The worst case computation time (WCCT) for handling each of these
events by every interested layer.

e The scheduling parameters for the scheduler that activates the tasks.

e The number of processes communicating (for group communication
protocols) and the period of user requests at the remote nodes (the
profiling technique derives automatically the worst case load induced
by control messages).

e The background load of tasks and messages.

e The communications network scheduling model and parameters.

Using this information, the profiling technique extracts the relevant in-
formation required to derive the worst case response time of the protocol
composition like the event graph and the task offsets.

Event graphs A fundamental step of the profiling technique consists in
extracting the relevant protocol event graphs. An event graph is a graph
of causally related protocol events whose root is an event triggered at the
protocol user interface, such as a user request. The graph is constructed
automatically from the information provided to the system as follows: the
user request event is delivered to the top layer of the protocol stack. For
that event, the set of generated events are added as leafs directly connected
to the root. Then, each of these events is delivered to the next layer that
registered as their subscribers in the protocol stack. The procedure is exe-
cuted recursively for each of those events until the corresponding layer on
the destination stack delivers the event to its upper layer and no low level
events exist.

It should be noted that the protocol graph can, and usually does, span
multiple nodes in the system: when the lower protocol layer generates an
event associated with the transmission of a network message, a reception
event is delivered to the protocol stack of the remote node(s).

Set of protocol tasks A dedicated task is associated to the handling of
each event by each protocol layer. The period of these tasks can be extracted
automatically from the event graph, and is equal to the period of the root
event (the user-supplied load). The WCCT of each task is supplied as an
input parameter to the profiling system.

Task Offsets Determination After decomposing the protocol into sev-
eral tasks it is necessary to assure that the tasks will be scheduled in time to
handle event reception without causing unnecessary delays to the protocol.
This is done by scheduling them according to a best-case scenario. Each
task is scheduled so that incoming events arrive at the same time as the
task activation.

In determining the task offsets, it is necessary to assume a best-case
scenario, where there are no transmission errors, and the message is the
smallest possible. The best-case computation times (BCCT) of the sender
task (and its callers) should be used, but since the difference between this
and the worst-case time in micro-protocols is very small, and in order to
avoid having to supply this extra set of data, the worst-case is still used

in this paper. A possible optimisation of the system would also use the
best-case times.

Deadlines Verification One of the parameters given by the user for each
protocol (event) should be the deadline. The system will verify if this dead-
line is met, and even if not, it can be used to adjust it in order to be
compliant.

Intermediate events should also have a defined deadline, as this is re-
quired for recursive steps in the analysis technique, but it is not feasible to
assign each of them its own deadline. A feasible solution is to assign one only
for the endpoint delivery event, and reuse this value for all the intermediate
events. It is simple to observe that either all of them meet this deadline or
the endpoint delivery event misses it (a fixed priority scheduler is assumed).

The main component of the system is the timing analysis component
which derives all the worst case response times and the worst case message
response time.

Timing Analysis Technique The WCRT for each received event of the
protocol is computed according to a set timing analysis equations developed
by Tindell in[10]. In his work, several schedulability analysis models are
presented; we chose to use the timing offset model as this is the one that
better allows us to capture the chain of events mechanism. This method
assumes that all tasks are periodic, according to the period of the transaction
to which they belong. A transaction is composed by a set of tasks that
execute with given offsets in relation to its initial time. We use this to
offset the various tasks that make up a micro-protocol in relation to the
user request event.

The WCRT of an event is the time taken by the protocol starting at the
time of reception of the event that triggered the protocol until it returns to
an idle state. This time is composed of the local WCCT and the WCRT of
the lower level layers (including lower levels computation time and message
transmission through the communication channel).

The timing analysis of the communications protocols is performed in
two phases. In the first phase, the WCRT of the processing spent by the
protocols themselves is computed. In the second phase, the time spent
during messages transmission through the communications network must
also be calculated. However, the results of the second phase depend on
and affect the results of the first phase, requiring several iterations before
converging on a final value.

For the case-study to be presented in the next section, the CAN field-bus
model described in [11] is used, but allowing for the interference of the other
transactions.

Application to RT-Appia While in our model we consider the existence
of a different task to handle each event, in a concrete implementation such
as in RT-Appia, all the events of a specific layer may be handled by the same
operating system task. This does not invalidate the model. On the contrary,
by considering different tasks we are modelling the different “personalities”
of a single RT-Appia task to achieve a finer grain analysis of the timing
behavior. It should be noted that the time taken by the RT-Appia task to
schedule the event will also need to be taken into account when performing
analysis of RT-Appia protocol stacks.

4 Case-study

To illustrate our profiling technique we have selected a reliable multicast
protocol for real-time applications. The protocol, RELCAN, is targeted to
the CAN [5] field-bus and it is an interesting target of our analysis since it
has been designed as a modular composition of micro-protocols.

4.1 Overview of RELCAN and EDCAN

RELCAN and EDCAN are a set of micro-protocols that provide fault-
tolerance capabilities to the CAN field bus. At first look, the CAN specifica-
tion seems to provide a totally ordered atomic broadcast service. However,
as demonstrated by Rufino et al.[9], this is not so. The problem lies in
the treatment of an erroneous bit in last bit of the End Of Frame (EOF)
delimiter (7 recessive (=1) bits). Since this is the last bit, there is no way
to signal the sender that an error was detected, and all nodes that detect
the error are forced to accept the frame as correct, to assure a consistent
state by all the nodes in the bus. However, suppose that a dominant (=0)
bit is detected in penultimate bit of the EOF field by some nodes. These
nodes will then begin transmitting an error flag, consisting of 6 dominant
bits, beginning at the position of the last bit of the EOF field. If the sender
was one of the nodes that had not yet detected an error, it will detect it now
and schedule the frame for retransmission. All the other nodes that now
detect an error will proceed as explained previously and accept the frame.
At this point, some of the nodes have rejected the frame, the sender has

Sender
ES1 1 when edcan.req(mid(type,p,n), mess) invoked at p do

2 if mess = NULL then

3 can-rtr.req(mid);

4 else

5 can-data.req(mid, mess);
6 od;

ES2 7 when can-rtr.cnf(mid)
or can-data.cnf(mid, mess) confirmed do
8 deliver edcan.cnf (mid,mess);
9 od;

Recipient
Initialization
init 0 ndup(mid) := 0; // number of duplicates, kept for each message

ER 1 when can-data.ind(mid, mess) received at ¢
or can-rtr.ind(mid, mess=NULL) received at ¢ do

2 ndup(mid) := ndup(mid) + I1;

3 if ndup(mid)= 1 then // new message
4 edcan.ind (mid, mess);

5 if mess = NULL then

6 can-rtr.req(mid); // clustered
7 else

8 can-data.req(mid, mess);

9 fi;

10 elif ndup(mid) > j then

11 can-abort.req(mid);

12 fi;

13 od;

Figure 1: EDCAN

scheduled it for retransmission, and the rest have accepted it. If the sender
now fails before being able to retransmit the message, then the system is
left in a inconsistent state.

To overcome this problem, Rufino et al. proposed in the same paper a
protocol that guarantees that if the sender fails, the message is still received
by all the other nodes.

EDCAN (see Fig. 1) works by what is called “Eager diffusion”. The
sender transmits the message on the CAN bus using the generic CAN ser-
vices and waits for a notification from the controller, delivering then the
confirmation corresponding to the request to transmit.

The major changes to the CAN generic services are in the receiver. When
a message is received, if it is the first time, it is delivered to the upper
layers, and also scheduled for retransmission in the CAN bus. Subsequent

duplicates of the message are ignored, except for keeping track of the number
of duplicates. If a maximum of duplicates (j) are received, an abort request
is made to abort the pending retransmission, if possible.

EDCAN takes advantage of the possibility of simultaneous transmission
of Remote Transmission Request (RTR) frames, for messages with null data
fields. This feature is of special interest in the retransmission phase of the
protocol, in which several nodes will retransmit the same message, and the
probability of simultaneous transmissions is high, thus saving some trans-
mission time on the bus.

As can easily be seen, this protocol assures that if a message is received
by at least one non-faulty node, then all the other non-faulty nodes will also
receive the message, even if the sender fails. However, this introduces a high
overhead on the bus. To alleviate this overhead, Rufino et al. developed
RELCAN.

The RELCAN protocol (Fig. 2) assures a reliable communication service,
but with less transmission time overhead in the best case than EDCAN.
The sender uses a two phase protocol, the first phase consists of putting the
message on the CAN bus, after which it waits for the confirmation of correct
transmission from the CAN controller. The second phase consists of sending
a CONFIRM message signalling that no retransmissions are required.

The receiver delivers the message to the upper layers when receiving
the message for the first time, saves a copy for possible retransmission and
starts a timer alarm. If the CONFIRM message is received before the alarm
expires, then the alarm is canceled. If the alarm expires, then it means that
the sender has failed, and the receivers should retransmit the message using
the EDCAN services.

4.2 Analysis of RELCAN (and EDCAN)

4.2.1 Set of micro-protocols

The protocol stack of RELCAN, illustrated in Fig. 3, is composed of REL-
CAN, EDCAN and CAN itself. CAN is required by both RELCAN and
EDCAN, and EDCAN is required by RELCAN.

4.2.2 Events processed and generated

In the following text, the events are referenced using only the event name,
as this does not introduce ambiguity. If it did, then the events would have
to be referenced using also the event type (message identifiers, etc).

Sender
init 0 relsn := 0; // local sequence number

RS1 1 when relcan.req(mess) invoked at p do
2 rel_sn := rel_sn + 1;
3 can-data.req(mid{R-DATA,p,rel_sn), mess);
4 od;

RS2 5 when can-data.cnf(mid(R-DATA,p,rel_sn), mess) received do

6 can-rtr.req (mid(CONFIRM,p,rel_sn));
7 relcan.cnf (mess);
8 od;

Recipient

init 0 ndup(mid) := 0; // number of duplicates, kept for each message
1 data(mid) := NULL; // data part of the message

RR11 when can-data.ind(mid(R-DATA,p,n), mess) received at ¢ do

2 ndup(mid) := ndup(mid) + 1;
3 data(mid) := mess;
4 start alarm (mid);
5 if ndup(mid)= 1 then // new message
6 relcan.ind (mess);
7 fi;
8 od;
RR29 when can-rtr.ind(mid(CONFIRM,s,n)) received at q do
10 data(mid) := NULL;
11 cancel alarm(mid);
12 od;

RR3 13 when alarm(mid) expires at ¢ do

14 edcan.req (mid, data(mid));
15 od;
RR4 16 when edcan.ind(mid{(R-DATA,p,n), mess) received at ¢ do
17 ndup(mid) := ndup(mid) + 1;
18 if ndup(mid)= 1 then // new message
19 relcan.ind (mess);
20 fi;
21 od;

Figure 2: RELCAN

High Level Protocols High Level Protocols
Il Eps
15 L
RELCAN > RELCAN
— F
EDCAN < EDCAN
Il ! Egs Egs
593 L LI LI
CAN layer L CAN layer
(controller interface) | (controller interface)

1 7

@ AN R >
TANDUS

Figure 3: Protocol Stack of RELCAN

RELCAN The RELCAN sender (Fig. 2) can generate two events for the
CAN layer (CAN-DATA.REQ and CAN-RTR.REQ) and one for the upper layer
(RELCAN.CNF), and handles one event from the upper layers (RELCAN.REQ)
and one from the CAN layer (CAN-DATA.CNF).

The recipient (Fig. 2) can generate one event for the upper layer (REL-
CAN.IND), one EDCAN event (EDCAN.REQ) and two alarm event (ALARM.START
and ALARM.CANCEL). It can handle two CAN layer events (CAN-DATA.IND
and CAN-RTR.IND), one alarm event (ALARM.TIMEOUT) and an EDCAN
event (EDCAN.IND). The alarm events are assumed to be delivered and gen-
erated by an external service.

EDCAN The EDCAN sender (Fig. 1) can generate one upper layer event
(EDCAN.CNF) and two CAN layer events (CAN-DATA.REQ and CAN-RTR.REQ),
it handles one upper layer event (EDCAN.REQ) and two CAN layer events
(CAN-DATA.CNF and CAN-RTR.CNF).

The Recipient (Fig. 1) generates one upper layer event (EDCAN.IND), and
three CAN layer events (CAN-DATA.REQ, CAN-RTR.REQ and CAN-ABORT.REQ).
It handles two CAN layer events (CAN-DATA.IND and CAN-RTR.IND).

4.2.3 Set of protocol tasks

RELCAN The RELCAN protocol uses two tasks on the sender, and four
tasks on the recipient. The first sender task (RS1 on Fig. 2) handles the
RELCAN.REQ event and sends the message in a CAN data frame, and the
second (RS2) handles the CAN-DATA.CNF event and sends the CONFIRM

message.
The recipient tasks are:

e (RR1) The first recipient task handles the reception of the message
from the CAN layer (CAN-DATA.IND event) and delivers it.

e (RR2) Handles the reception of the CONFIRM message (CAN-RTR.IND
event).

e (RR3) Activated by the ALARM.TIMEOUT event, it begins the retrans-
mission of the message using EDCAN.

e (RR4) Handles the reception of the message from the EDCAN layer
(EDCAN.IND event).

EDCAN The EDCAN protocol is implemented by three tasks on the
sender, and two tasks on the recipient. Some of these tasks are identical, so
they appear only once in Fig. 1, namely the ES2a and ES2b which appear
only as ES2, and ERa and ERb which appear only as ER.

The first sender task (ES1) handles the EDCAN.REQ event and sends the
message to the CAN layer, it proceeds to wait for confirmation of whether the
transmission was successful, the second and third tasks are identical, ES2a
handles CAN-DATA.CNF, ES2b handles the CAN-RTR.CNF event, after which
they deliver confirmation to the upper layer. The recipient tasks (ERa and
ERD) handle the reception of the message (CAN-DATA.IND and CAN-RTR.IND
events respectively) and begin retransmission on the first reception.

4.2.4 Worst case computation time

The WCCT depends on the specific architecture used to implement the
protocol. Since the actual time is not relevant for the purposes of this
study, a uniform time of 150us was chosen for all tasks. Note that with
this value for the task execution time it is possible to cause overrun errors
during message bursts. If overruns need to be avoided, a smaller execution
time must be achieved (using specialized hardware).

4.2.5 Event graphs

Besides the list of handled and generated events it is necessary to link them
causally. This is done by processing the micro-protocol algorithm to generate
the event graph.

relcan.req
can-data.req
CAN
can-data.ind can-data.cnf

alarm. start can-rir.req

relcan.ind alarm | CAN |relcan.cnf

- r ﬁ -
alarm.timeout can-rtr.ind

| RR3 || RR2 |
edcanl. req alar'[m.cancel
[EDCAN| alarm.
edcan.ind
RR4
relcan.ind

Figure 4: Event graph of RELCAN

edcan.req
Es1
can-data.req can-rtr.req
CAN @ CAN
caanata.cnf caanofa. ind can-rir. ind can-rir. enf
[Es2 | [ER | | ER | [Es2 |

I
— req \'ca\mqbort heq can-data.req

can-data.req | can-abort._req can-rir.req

CAN \CAN\ \CAN\\CAN\‘ [CAN| CAN
edcan.cnf edcan.ind edcan.ind edcan.cnf

‘2 1
Figure 5: Event graph of EDCAN

RELCAN The event graph of RELCAN is depicted in Fig. 4. It can
be seen both the event chain of the best case scenario (the CONFIRM
message is sent and the alarm is canceled) and of the worst case scenario
(the CONFIRM message is not sent, and the alarm is triggered, resulting in
a call to the EDCAN layer). The worst case response time of these scenarios
is studied in the following subsection.

EDCAN In Fig. 5 is a representation of EDCAN’s event graph. As ex-
pected, it has a symmetry based on the message being empty or not. The
recursive character of the protocol is illustrated with the fact that the ED-
CAN recipient can generate an event that is handled by itself. The dotted
lines are events generated by the EDCAN recipient that the simple event
graph building technique includes, but that a context-aware examination of
the algorithm excludes.

4.2.6 Worst Case Response Times

To illustrate the use of the proposed technique, we introduce a very simple
scenario that does not involve any interference, jitter and network errors, so
that all calculations can be performed manually. The WCRT for a single
message to be transmitted using RELCAN is given by the case where the
sender fails after sending the data message, but before transmitting the
CONFIRM message. This forces the activation of the RELCAN layer. The

node 1 — fime

node 2 ? %
node 3 45 7 7 [
node 4 /AIIIIIIIIIIIIIIIIi!IIII!.!ﬁIIIIIIIIIIIIIIIIII!

|IIIIIIIIIIIIIIIIIIIII!!l

A

Figure 6: RELCAN in a 4 node bus.

following equation gives this value:

Crs1 + Cpy + Crp1 + alarm + Crps +
Cgs1+ Cm + Cgr + max(CRR4, Cm) +
(j—2) max(Cm,CER)—i—CER (1)

where C; is the WCCT time of task i, (), is the worst-case transmission
time of message m, alarm is the alarm timeout value and j is the number of
recipient nodes on the bus. This chain of events begins with the RELCAN
sender sending the message, which is received by the recipient which sets
the alarm. The alarm timeout activates the RELCAN recipient task that
calls the EDCAN sender task, which begins retransmission of the message.
The other nodes will then receive and retransmit the message.

According to [8], one CAN 2.0B message can take a maximum of 157us
to transmit, in a 1Mbps bus. Using this and the above value for the WCCT,
(Cyx = 150us), and the alarm set to (400us), equation 1 is equal to 1928us,
with j = 3 nodes on the bus.

Fig. 6 is an illustration of these values: Node 1, the sender, calls REL-
CAN to send a message, which is correctly received only by node 4, and
then fails. Node 4, will process the message and deliver it during execution
of its RR1 task, setting the alarm. This will expire after alarm time has
passed, executing RR3 in node 4, followed by the ES1 task, which will be-
gin retransmitting the message. This message will be received at all nodes,
which will deliver it and one of which will begin retransmission at once, after
which the retransmissions of the others will follow until there are no more
retransmissions.

Comparing this with the best case (no errors), even with the largest
CAN message we have:

Crs1 + Cdata + Crs2 + max(Cryr, Crp1) + CrR2 (2)

which is equal to 757us, clearly a better value than before. In the best
case, the RELCAN protocol does not execute any retransmission, so its
response time is equal to the sum of the WCCT taken by the intervening
tasks (RS1, RS2, RR2 and RR1; RS2 being of higher priority than RR1),
and the transmission time of the messages (one data and one RTR message).
Since the processing of RR1 and the transmission of the RTR message are
concurrent, only the largest of this value is used (the maximum transmission
time of an RTR message is 64us [8]).

4.2.7 Task Offsets Determination

The values given in the following paragraphs use equations 1 and 2 and
the values presented previously, but using only the parcels before the first
activation of the task.

RELCAN The best-case scenario described above can be used to deter-
mine the task offsets for the RELCAN tasks. We assume a task offset of 0
for the RS1. RS2 and the RR1 should have the same offset, as they start
executing at the end of the first message transmission, equal to 214us. RR2
should have an offset of 428us. RR3 should have an offset of 764us, and
RRA4 an offset of 1278us.

EDCAN EDCAN’s best case scenario is one where ES1 executes with an
assumed offset of Ous, sends a remote frame message, and all the recipient
tasks receive it with an offset of 214us. ES2 will also have this offset. All
the retransmissions will be simultaneous, and the recipients process it with
an offset of 428us.

4.2.8 Deadlines Verification

The deadline for a CAN message is very dependent on its periodicity, as
it will be overwritten by the next message if not delivered by then. Using
a similar scenario to the above, it is possible to say that the period of the
task invoking the RELCAN protocol must be larger than 664us (smallest
message with no errors) or it will fail to meet the deadline. Allowing the
sender to fail (a hot-spare configuration?), the deadline must be greater than
1728 s (smallest message and maximum RTR overlap).

transaction 1 transaction 2 transaction 3
task cpu offset WCRT task cpu offset WCRT task cpu offset WCRT
high | RS1 1 0 150 RS1 2 0 300 RS1 3 0 600
p RS2 1 463 150 RS2 2 834 300 RS2 3 1198 600
r RR1 1 463 300 RR1 1 834 600 RR1 1 1198 1050
i RR1 2 463 150 RR1 2 834 600 RR1 2 1198 900
o RR1 3 463 150 RR1 3 834 300 RR1 3 1198 900
r RR1 >3 463 150 RR1 >3 834 300 RR1 >3 1198 600
i RR2 1 833 150 RR2 1 1511 600 RR2 1 2176 1050
t RR2 2 833 150 RR2 2 1511 300 RR2 2 2176 900
y RR2 3 833 150 RR2 3 1511 300 RR2 3 2176 600
low | RR2 >3 833 150 RR2 >3 1511 300 RR2 >3 2176 600
msg offset WCRT msg offset ~ WCRT msg offset ~ WCRT
R-DATA 150 313 R-DATA 300 547 R-DATA 600 598
CONFIRM 613 220 CONFIRM 1134 377 CONFIRM 1798 378

Table 1: Complex task set results

4.3 A more complex example task set

The analysis performed above does not take into account scheduler over-
heads, and interference from other tasks. In order to get a real view of the
analysis technique and of the behavior of the RELCAN protocol, a more
complex scenario is required. Simple results, like the ones obtained previ-
ously can be feasibly obtained manually, but the complexity of the calcula-
tions with larger scenarios require the use of an automated tool. With that
goal in mind, we extended the software tool that Tindell used in [10] to in-
clude communication networks (in this case CAN) and multiple processors.
This allowed us to validate the previous results and generate the values in
Table 1.

The developed scenario consists of three transactions running on 6 nodes.
Each transaction corresponds to the chain of events generated by a user
request to the RELCAN layer. All the tasks (and messages) in transaction
1 have higher priority than the ones in transaction 2, which in turn has
higher priority than the ones in transaction 3. The following values were
used: Ty = 1, Car, = 0, Cgr, = 0, Cgs = 0 (no scheduler overheads),
the transaction period Ty; = 3000 for all transactions and e; = 1 (the tasks
are activated in every transaction), D; = T};—srans(;) (deadline equal to the
period of the transaction), and no jitter (J; = 0) for all the tasks. Note
that the same offset for tasks in different transactions does not mean that
they will start at the same time. The offset is in relation to the start of the
transaction, which can occur at any time during the execution of the other
transactions.

Comparing these results, it’s easy to see that even for the highest priority

transaction, the interference from other tasks can be noted, since the CAN
bus does not preempt lower priority messages, and so the higher priority
message from transaction 1 is delayed 156us. If comparing these times with
the ones obtained earlier for a transaction executing alone (757us), trans-
action 1 takes 130%(983us), transaction 2 279%(2111us) and transaction
3 426%(322641s) more. We believe that the WCRT of RELCAN grows lin-
early with the number of concurrent transactions. Also note that, although
transaction 3 misses the deadline, using D = 3000us, the obtained values
remain the same for D > 2776us. Nodes number 4,5 and 6 exhibit the same
temporal behavior, as they run the same tasks, and do not send messages
to the bus. This last result could be used to deduce that RELCAN does not
degrade with the number of nodes on the bus, however this is only true if
EDCAN is never activated, or if the simultaneous retransmission capabilities
are fully used (only possible if the message does not contain any data).

5 Conclusions

In this paper we have proposed a framework to analyse the timing behavior
of micro-protocols for use in real-time systems. The proposed technique was
applied manually to a simple set of real-time micro-protocols, which allowed
us to validate it and also to illustrate its use with a relevant example. The
timing values were obtained through a specially adapted software tool. The
resulting values provide usefull insights on the performance of the RELCAN
protocol. The proposed technique is being considered for inclusion in the
set of tools for the RT-Appia system, even though the task model is differ-
ent. Having demonstrated its feasibility, it would be interesting to complete
the tool that implements this technique. For instance, at the current time
the tool considers that a task, in response to a given event, produces the
complete set of generated events. This is not always the case since, de-
pending on the context (message size, etc), only a subset of the generated
events can be produced. The tool could be improved to exploit contextual
information to extract more accurate event graphs. Finally, with the tool
completed it would be interesting to perform this analysis in other more
complex protocols.

References

[1] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A system
for constructing fine-grain configurable communication services. ACM

Trans. on Computer Systems, 16(4):321-366, November 1998.

M. Hayden. The Ensemble System. PhD thesis, Cornell University,
Computer Science Department, 1998.

Matti A. Hiltunen, Richard D. Schlichting, Xiaonan Han, Melvin Car-
dozo, and Rajsekhar Das. Real-time dependable channels: Customizing
qos attributes for distributed systems. IEEE Transactions on Parallel
and Distributed Systems, 10(6):600-612, June 1999.

Norman C. Hutchinson and Larry Peterson. The x-kernel: An archi-
tecture for implementing network protocols. IEFEE Transactions on
Software Engeneering, 17(1):64-76, January 1991.

ISO, editor. ISO International Standard 11898 - Road Vehicles - In-
terchange of Digital Information - Controller Area Network (CAN) for
high-speed communication. ISO, nov 1993.

H. Miranda and L. Rodrigues. Flexible communication support for
CSCW applications. In 5th Internation Workshop on Groupware -
CRIWG’99, pages 338-342, Cancun, México, September 1999. IEEE.

Joo Rodrigues, Hugo Miranda, Joo Ventura, and Luis Rodrigues. The
design of RT-Appia. In Proceedings of Sixth International Workshop
on Object-oriented Real-Time Dependable Systems, page (to appear),
Rome, Italy, January 2001.

José Rufino. An overview of the controller area network. In Proceedings
of the CiA Forum CAN for Newcomers, Braga, Portugal, January 1997.

José Rufino, Paulo Verissimo, Guilherme Arroz, Carlos Almeida, and
Luis Rodrigues. Fault-tolerant broadcasts in CAN. In Digest of Papers,
The 28th IEEFE International Symposium on Fault- Tolerant Computing,
pages 150-159, Munich, Germany, June 1998. IEEE.

Kenneth William Tindell. Adding time-offsets to schedulability analy-
sis. Technical Report YCS221, Department of Computer Science, Uni-
versity of York, January 1994.

Kenneth William Tindell, Alan Burns, and Andy Wellings. Calculating
controller area network (can) message response times. In Proceedings of
the IFAC Workshop on Distributed Computer Control Systems, Toledo,
Spain, September 1994. IFAC.

[12] Franco Travostino, Ed Menze, and Franklin Reynolds. Paths: Program-
ming with system resources in support of real-time distributed appli-
cations. In Proceedings of the 2nd IEEE Workshop on Object-Oriented
Real-Time Dependable Systems, Laguna Beach, CA, February 1996.

