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Abstract. The ARINC 653-based AIR (ARINC 653 in Space Real-Time Operat-
ing System) architecture, developed as a response to the interest of the aerospace
industry in adopting the concepts of Integrated Modular Avionics (IMA), pro-
poses a partitioned environment, observing strict temporal and spatial segrega-
tion, in which partitions are able to use different (real-time) operating systems
and host applications of different criticality levels. This paper centers on recent
enhancements to the AIR architecture, like the AIR POS Adaptation Layer (PAL),
which aim at optimizing the development and integration processes with the flex-
ible support to new partition operating systems (POS) in mind. We also discuss
the current efforts, which already benefit from the properties of the AIR Technol-
ogy, to integrate Linux as a POS, exploiting the concepts of the paravirtualization
interface currently provided by the Linux kernel.
Resumo. A arquitectura AIR (ARINC 653 in Space Real-Time Operating Sys-
tem), baseada na especificação ARINC 653 e desenvolvida como resposta ao in-
teresse da indústria aeroespacial em adoptar os conceitos de Integrated Modu-
lar Avionics (IMA), propõe um ambiente compartimentado e com observância
estrita de segregação temporal e espacial, onde as partições podem utilizar di-
ferentes sistemas operativos (de tempo-real) e conter aplicações com diferentes
nı́veis de criticalidade. Este artigo centra-se em melhoramentos recentes à arqui-
tectura AIR, como o componente AIR POS Adaptation Layer (PAL), que visam
optimizar os processos de desenvolvimento e integração, com a flexibilidade no
suporte a novos sistemas operativos em mente. Discutimos também os esforços
actuais, que já beneficiam das propriedades da tecnologia AIR, para integrar o
Linux como sistema operativo de uma das partições, explorando os conceitos da
interface de paravirtualização actualmente fornecida pelo núcleo Linux.

1 Introduction

Traditional federated architectures for avionics systems are based on the distribution
of avionics functions along separate collections of dedicated hardware resources. The
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demands of modern systems — like reducing system size, weight, and power (SWaP)
— require more efficient architectures [1].

As a challenge to federated avionics architectures towards this goal, the Integrated
Modular Avionics (IMA) specification defines a partitioned environment, comprising
processing, communications and input/output resources, to be shared among avionics
functions of different criticalities [2]. Closely related to this architecture is the Avionics
Application Software Standard Interface, defined in the ARINC 653 specification [3],
and the concepts of temporal and spatial partitioning.

In ARINC 653, temporal partitioning consists of the time-sliced allocation of com-
puting resources to hosted applications, achieved through a fixed, cyclic scheduling of
partitions over a major time frame (MTF). This way, strong temporal segregation is
achieved, in which activities inside each partition do not affect the timeliness of activi-
ties executing inside the remaining partitions in the system. Robust spatial partitioning
concerns preventing applications from accessing memory zones outside those belong-
ing to its partition.

Having similar requirements (safety, SWaP, etc.) as avionics platforms, space mis-
sions can benefit from adopting similar approaches, which has sparked the interest of the
aerospace industry, and the European Space Agency (ESA) in particular, in the concepts
of IMA, and time and space partitioning [4,5]. This has led to the development, within
the scope of ESA-sponsored initiatives, of the AIR (ARINC 653 in Space RTOS) archi-
tecture. The AIR architecture provides time and space partitioning in conformity with
the defined in the ARINC 653 specification [3]. AIR preserves the hardware and real-
time operating system (RTOS) independence defined within the scope of ARINC 653,
while foreseeing the use of different RTOS through the partitions [6,7,8].

However, porting general-purpose applications to one of the RTOSs one might be
using can be a morose task, and certainly not an error-free one [9]. Furthermore, cer-
tain hardware interfaces may be necessary that are not supported by the given RTOS.
This also applies to the aerospace applications that the AIR architecture targets; an ex-
ample is a space probe for planetary observation, within which a hardware interface
with a camera is needed, and whose pictures need to go through some post-processing
by a widely available application that has not been ported to the RTOS. Thus we
have preliminarily evaluated the integration of generic operating systems, like (embed-
ded) Linux [10]. The execution of non-real-time Linux processes alongside real-time
tasks has been studied and implemented before. Examples include RTLinux [11] and
xLuna [12], where the non-real-time Linux processes are only scheduled and dispatched
when there is no real-time task ready to execute. The approach on the AIR architecture
differs in that the non-real-time Linux partition has a guaranteed execution time window
in the cyclic, fixed scheduling of partitions.

In this paper, we describe the recent improvements and current efforts on the AIR
architecture, towards the flexible integration of both real-time operating systems and
generic non-real-time operating systems in partitions. This paper is structured as fol-
lows.

In Section 2, we describe the current state of the art concerning the AIR Technol-
ogy, so as to provide a solid background. Then, in Section 3, we describe in detail the
characteristics and advantages of a recently introduced component, the AIR Partition



OS Adaptation Layer (PAL). This component benefits architectural features and the en-
gineering of AIR components (thus adding flexibility to the process of supporting new
partition operating systems) and promotes separation of concerns (to optimize devel-
opment processes at its various stages). In Section 4, we expose the current efforts on
exploiting the flexible integration of partition operating systems, to add support for the
Linux operating system. Finally, in Section 5, we draw concluding remarks, and lay the
foundations for future developments.

2 AIR Technology overview

The AIR activities span over two projects. The first resulted in the development of a
proof of concept and a demonstration of feasibility of use [6,7]. The second, AIR-II,
which is still in progress, aims evolving towards an industrial product definition by
improving and completing the key ideas identified [8].

2.1 System architecture

The fundamental idea in the definition of the AIR architecture is a simple solution for
providing the ARINC 653 functionality missing in off-the-shelf (real-time) operating
system kernels, encapsulating those functions in special-purpose additional components
with well-defined interfaces, as illustrated in the diagram of Fig. 1. In essence, the AIR
architecture preserves the hardware and operating system independence defined in the
ARINC 653 specification [3]. Applications may use a strict ARINC 653 service inter-
face or, in the case of system partitions, may bypass this standard interface and use
partition operating system kernel specific functions, as illustrated in Fig. 1. The exis-
tence of system partitions with the possibility of bypassing the APEX interface is a
requirement of the ARINC 653 specification. It should noted though that these parti-
tions will typically run system administration and management functions, performed
by applications which will be subject to due increased verification efforts.

The following fundamental components have been defined within the AIR system
architecture. We will now explain them with as much detail as needed for the under-
standing of the issues at hand in this paper. More detailed descriptions can be found in
previous publications [7,8].

2.2 AIR Partition Management Kernel (PMK)

The AIR Partition Management kernel (PMK), is a simple micro-kernel that efficiently
handles partition scheduling and dispatching, thus playing a lead role in securing robust
temporal segregation. A two-level hierarchical scheduling [13] scheme is used: parti-
tions are scheduled deterministically at PMK level by a fixed cyclic scheduler; schedul-
ing of the application processes inside each partition is normally handled by the native
Partition Operating System (POS) scheduler. RTOS kernels typically offer a preemp-
tive, priority-based process scheduler. At the AIR PMK level, the Partition Scheduler
checks at each system clock tick whether a partition preemption is to occur; if it is so,
the AIR PMK Partition Dispatcher has to perform the partitions’ context switch. The



Fig. 1. AIR architecture overview

native POS process scheduler of the heir partition is then notified of the amount of clock
ticks elapsed since it was last preempted, thus adjusting the heir partition system time
to a common partition-wise time referential.

The design of AIR PMK also incorporates enhanced mechanisms to ensure temporal
segregation, like mode-based schedules and process deadline violation monitoring [8].

2.3 Flexible Portable APEX Interface

The APEX Interface implements a set of services defined in the ARINC 653 specifica-
tion. For generic operating systems (e.g. embedded Linux) only a subset of the APEX
standard primitives is needed, primarily for management and monitoring purposes [10].
The APEX design and implementation of the APEX may benefit from the availability
of functions related to the recently introduced AIR POS Adaptation Layer (PAL) [8],
also detailed in Section 3.

2.4 AIR Health Monitoring (HM)

The AIR Health Monitor is responsible for handling hardware and software errors (like
deadlines missed, memory protection violations, bounds violation or hardware failures).
The aim is to isolate errors within its domain of occurrence: process level errors will
cause an application error handler to be invoked, while partition level errors trigger a
response action defined in a configuration table. Errors detected at system level may
lead the entire system to be stopped or reinitialized [8].

2.5 AIR Space Partitioning and Operating System Integration

The robust partitioning approach defined in the AIR architecture implies the spatial sep-
aration of the different (real-time and non real-time) operating systems and its applica-
tions in integrity and criticality containers, defined by partitions. Partitions encapsulate



the addressing spaces of the contained POS and applications. No component integrated
in a given partition can directly access the addressing space of other partitions, thus
guaranteeing that partitions do not interfere with each other [7,8].

A highly modular design approach has been followed in the support of AIR spatial
partitioning. Spatial partitioning requirements, specified in ARINC 653 configuration
files with the assistance of development tools support, are described in run-time through
a high-level processor independent abstraction layer [8]. A set of descriptors is provided
per partition, primarily corresponding to the several levels of execution of an activity
(e.g. application, POS kernel and AIR PMK) and to its different memory blocks (e.g.
code, data and stack), as illustrated in the diagram of Fig. 2.

Memory Management Unit (MMU) Mapping Results
Processing
Platform

MMU Address
Translation

Model

Primary MMU
Descriptors per

Partition

Number of
Partitions

Partition Size

IA-32
segmentation 1 variable variable

paging 1 1024 4 MiB
SPARC V8 paging 1 256 16 MiB

Fig. 2. AIR Spatial Partitioning and Operating System Integration

In the AIR architecture the definition of the high-level abstract spatial partitioning
takes into account the semantics expected by user-level application programming. At
each partition, the application environment inherits the execution model of the corre-
sponding POS and/or its language run-time environment. This is true for system parti-
tions and may be applied also to application partitions, using only the standard APEX
interface.

The high-level abstract spatial partitioning description needs to be mapped in run-
time to the specific processor memory protection mechanisms, possibly exploiting the



availability of high-level logical address translation schemes, as provided by memory
management unit (MMU).

The mapping into MMU specific mechanisms depends on the resources available
on each processing platform foreseen for AIR applications. The most versatile mapping
assumes the use of a memory segmentation model, such as it exists in the Intel IA-
32 architecture, where a one-to-one mapping between the high-level abstract spatial
partitioning description and low-level memory management descriptors is possible.

A one-to-one mapping is not possible if a paging translation model is being used
in the MMU since a memory descriptor is required by page frame. This also implies
some restrictions with respect to the number and size of partitions, as illustrated by the
data inscribed in Fig. 2.1 An optimal design approach is assumed, where the action of
changing the status of a partition (active/inactive) requires no more than the update of
a single primary MMU descriptor per partition. The data inscribed in Fig. 2, for IA-32
and SPARC V8 RISC processing architectures, is in conformity with the requirements
found in typical avionics and aerospace applications.

Mapping of high-level abstract partitioning also includes the management of priv-
ilege levels: only the AIR PMK is executed in privileged mode (cf. Fig. 2). The lack
of multiple protection rings, such as it exists in the Intel IA-32 processor architecture,
may be mitigated in the SPARC V8 architecture by granting access to a given level only
during the execution of services belonging to that level (or lower ones). This may be
achieved by activating the corresponding memory protection descriptors upon call of a
service primitive, and deactivating them when service execution ends.

The provision of these mapping functions is under the scope of overall partition
management as provided by the APEX layer and by some specific AIR PMK compo-
nents. For example, the mapping into processor specific descriptors needs to be updated
in run-time when a partition switch occurs. This has to be coordinated by AIR PMK
specific components, in this case by the AIR PMK Partition Dispatcher.

3 The AIR POS Adaptation Layer (PAL)

The AIR architecture allows operating systems integration without any fundamental
change to a given POS Kernel. In essence, only the OS initialization process and the
system clock handler need to be adapted. A generic approach and a uniform method-
ology have been adopted for the integration of both real-time and generic operating
systems [15]. The adopted solution wraps the POS and, if applicable, the system spe-
cific functions, through the use of the AIR POS Adaptation Layer (PAL), facilitating
the integration at the low- and at high-level domains, i.e. with respect to the AIR PMK
and APEX components.

The AIR PAL was added to the original AIR architecture [7] as a means to a truly
POS-independent AIR PMK, but its benefits go beyond that. The improvements en-
abled by the AIR PAL go in three ways: (i) architectural properties; (ii) engineering of
AIR components, and; (iii) leaner development processes, stemming from separation of

1 It is worth mentioning that this paper follows a notation in conformity with the IEC 60027-2
standard in respect to the usage of prefixes for binary multiples [14].



concerns. We will now briefly elaborate on these three direction of benefits, which are
more thoroughly described and illustrated in [15].

3.1 Architectural properties

By wrapping each partition’s operating system kernel inside an adaptation layer (the
AIR PAL), the AIR PMK can act upon the POS in a way that is agnostic of the latter,
when necessary. Upon the need to add support to a different POS, the AIR PMK remains
unaltered, with support being coded by developing an adequate PAL. This way, previous
or ongoing verification, validation and/or certification efforts on the AIR PMK are not
hindered. The AIR PAL also benefits the design of other AIR components, such as the
Portable APEX and the AIR Health Monitoring (HM) [15].

3.2 Component engineering

Besides consolidating the properties of the AIR architecture and its components, the
AIR PAL can also make up for some non-optimal or inappropriate behavior of the native
POS implementation of some function. Also, by providing these surrogate functions —
intended to be called in spite of the native ones — instead of creating patches to be
applied to the POS’s source code, we extend the lifetime of the support to a given POS
through more subsequent versions of the latter. The reason for this is that the patches’
mapping onto their target relies on source code file names and line numbers, whereas
the AIR PAL relies on function prototypes and behaviors.

The improvements on architectural properties and component engineering are closely
related, and constitute the basis of a flexible integration of partition operating systems.

3.3 Separation of concerns

Another reason against patching the POS so as to obtain the integration and intended be-
havior for running on the AIR architecture is that it would break the desired separation
of concerns, thus undermining an otherwise streamlined development process. Appli-
cation developers should not be concerned with how the underlying POS is adapted to
the AIR architecture, and neither should support for new POSs divert the AIR PMK
maintainers’ focus from what should be their main concerns — the robust temporal and
spatial partitioning properties of AIR.

By consolidating the separation of concerns in the AIR architecture, the develop-
ment workflow can rely much more on reusable components. This leads to leaner soft-
ware [10] development processes, with less overhead spent on interactions between
different stakeholders (partition application developers, system integrators, etc.).

4 Integration of generic non-real-time operating systems

In [10], we presented the problem of integrating generic operating systems onto the AIR
architecture, thus tackling the issue of functionally porting general-purpose applications
to an environment provided by real-time operating systems [9].



4.1 Usefulness of Linux-based partitions

One solution for avoiding the effort of porting general-purpose applications to real-time
partitions is to have them running on their native operating system.

We have looked into Linux as a candidate for a generic non-real-time partition OS in
AIR and shown the development and evaluation of a fully functional operating system,
based on the Linux kernel. The integration of Linux makes available to AIR applications
a wide range of utilities, tools, language interpreters (Python, Perl, Ruby, tcl, etc.),
and device drivers. This specific facilities no longer need to be ported to the RTOS to
construct AIR applications. Should it be a requirement, the access to those tools can be
supported by AIR inter-partition communication facilities [10].

4.2 Embedded Linux

Given the coexistence of the multiple POSs in the system, which in the absence of
persistent storage (e.g. hard disk drive) will be resident in memory during the entire
platform execution time, it is particularly important to keep the POSs to a minimum
size. Thus, it makes perfect sense using techniques and methodologies aimed at systems
with scarce resources — embedded systems.

The embedded variant of Linux which was described and evaluated in [10] was de-
veloped around three pillars of optimization: kernel configuration, system library, and
utilities/tools. Regarding kernel configuration, size optimizations consisted of select-
ing only a relevant set of features, and providing those as built-in in the kernel, rather
than as loadable modules. The system library used in most typical Linux distributions,
the GNU C library (glibc) was replaced by uClibc, more appropriate for systems with
scarce resources; uClibc developers accomplished this by reimplementing functional-
ities with size optimizations in mind, and by modularizing some of them, (allowing
the configuration of the uClibc library and its adaptation to the requirements of the
target system). Finally, common utilities and tools, usually provided as standalone exe-
cutables, are provided through a utility called BusyBox, which also provides optimized
implementations and allows both selection and fine-tuning of the utilities to include in
one single executable file.

To aid building the cross compilation toolchain and the final target system image, we
used Buildroot, which also allows (through its simple configuration tool) including extra
functionalities as standalone executables, such as a different system shell, or support
for interpreted/scripting languages. Figure 3 compares the obtained embedded variant
of Linux with a typical desktop distribution.

Sizes illustrated for the system library and utilities/tools account for identical sets
of features on both sides. Regarding the Linux kernel, a typical Linux distribution ships
a set of loadable kernel modules that can amount to 50 MiB, which were not accounted
for in the chart to allow for a fairer comparison.

Since the AIR architecture, when running on a SPARC architecture, will allow for
16 MiB per partition, the obtained size of about 1.5 MiB is very promising, and is also
closer to the typical size of space applications.



Kernel System library System tools Total
Generic Embedded glibc uClibc Generic BusyBox Generic Embedded

2150 KiB 830 KiB 2474 KiB 368 KiB 1932 KiB 363 KiB 6556 KiBa 1561 KiB
a Plus a set of modules amounting to 50 MiB

Fig. 3. Overall size comparison between an Embedded Linux and a typical Linux distribution

4.3 Integration issues

Issues being currently researched regarding the integration of Linux as partition OS
focus on guaranteeing that it does not contaminate the robust temporal and spatial par-
titioning of the AIR architecture. Temporal partitioning is ensured, as standard, by the
cyclic fixed scheduling of partitions, provided that the Linux partition can not disable
or divert interrupts at the hardware (processor) level. We will want the Linux kernel to
be notified of clock ticks, like other partition operating systems, only when its parti-
tion is active. Thus, interrupts will be totally controlled and handled by the AIR PMK,
bypassing the Linux interrupt infrastructure [16].

To guarantee this, and since most processor architectures are not fully virtualizable
(i.e., not all sensitive instructions are also privileged instructions), we can not merely
run Linux in an unprivileged mode (usermode) and rely on having sensitive instructions
generate a trap [17,18]. A good candidate to solve this issue is the employment of
paravirtualization [19].

4.4 Paravirtualization in the Linux kernel

The paravirt-ops paravirtualization interface, which enables multiple hypervisors to
hook directly into the Linux kernel, has been merged into the main Linux kernel start-
ing with version 2.6.21, along with the support for VMWare’s Virtual Machine Interface
(VMI). VMI is the open specification of an interface for the paravirtualized guest OS
kernel to communicate with the hypervisor [20], which takes advantage of hooks onto
the paravirt-ops interface. Many popular GNU/Linux distributions shipping with Linux
2.6.21 have the paravirt-ops and VMI configuration options enabled; this means that the



same kernel will run both on native hardware and on top of a VMI-enabled hypervisor
without requiring recompilation (with negligible performance overhead when running
on native hardware [21]).

Figure 4 illustrates the process in which a VMI-enabled Linux kernel is booted,
and either runs natively or on top of a hypervisor. Early during the boot process, the
VMI initialization code probes for a ROM module through which the hypervisor’s VMI
layer is to be published to the paravirtualized operating system. If such a module is
found, the VMI initialization code dynamically patches the kernel, so as to inject the
necessary calls to the hypervisor’s VMI layer; if not, the kernel continues to run as
normal, natively on top of the hardware [20].

Fig. 4. Boot process of a paravirtualized Linux kernel on top of a VMI-compliant hypervisor

4.5 AIR Linux partition: AIR PAL design and integration

When transposing this to the reality of the AIR architecture, the AIR PAL will provide
the relevant functions of the VMI layer to the partition operating system, interacting
with AIR PMK when required. Examples of the VMI functions to be provided by the
AIR PAL include virtualization of: (i) interrupt management; (ii) input/output (I/O)
calls; (iii) memory and I/O space protection mechanisms; (iv) privilege level manage-
ment. This integration is illustrated in Fig. 5.

4.6 AIR application platforms

The space applications to which the AIR technology is to be applied typically employ
SPARC-V8 RISC processors, like LEON 2 and LEON 3, so the concepts of paravirt-ops
and VMI, which are Intel IA-32 and Intel 64-centric by design, have to be transposed to
the reality of this architecture. The current state of the art is nevertheless interesting for



Fig. 5. Concepts of paravirtualization in the AIR architecture

proof of concept prototyping purposes, and to apply to ground-segment applications,
where the Intel architectures are present. As of Linux kernel 2.6.30, paravirt-ops and
VMI support is implemented for both Intel IA-32 and Intel 64 architectures.

5 Conclusions and future work

In this paper, we have focused on recent and current developments performed on the
ARINC 653-based AIR Technology, in order to make the process of adding support to
new operating systems, including generic non-real-time operating systems, more flexi-
ble. Having described the essentials of the AIR architectural components, we further de-
tailed the latest space segregation results and the recently introduced AIR Partition OS
Adaptation Layer (PAL), crucial for the provision of a homogeneous and flexible oper-
ating system integration process, which brings stronger architectural properties, benefits
the engineering of the nuclear components of the AIR architecture, and improves the
development process in its various stages, by promoting separation of concerns.

We also describe the current efforts of integrating Linux as a partition operating sys-
tems, focusing on the concepts associated with the paravirtualization interface currently
provided by the Linux kernel (paravirt-ops).

There are still challenges open to future developments, both at architectural level
and in the provisioning of adequate tools to build ARINC 653-based systems and appli-
cations. At the architectural level, future work includes consolidating the application of
the concepts of paravirt-ops to the integration of Linux. A first approach will be based
on the Intel IA-32 architecture, for which the paravirt-ops interface is already imple-
mented; subsequently, the idea should be ported to the SPARC architecture, namely
the LEON processors, employed in space missions. Work concerning the provision-
ing of adequate tools will include tools for developers and integrators, combining the
analysis of the mutual impact between partition- and process-level scheduling with the
automated generation of partition scheduling tables.
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