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Abstract

There is an increasing number of distributed applications, some of them fault-tolerant,
and it has been recognized that its construction may benefit from the existence of reliable
broadcast protocols. Some systems are clock-driven, exhibiting tight synchrony: they rely
on clock synchronization and space redundancy. Others, like the 2 A Mp, an atomic multicast
protocol for local area networks, are clock-less.

This work deals with the performance implications of supporting soft real-time distributed
applications, with clock-less reliable broadcast protocols. In particular it analyses the per-
formance of the lower layers of the Delta-4 communication system, i.e. it studies the time
domain behaviour of both Abstract Network and xAMp components. Throughout this re-
port we will develop a generic model that allow us to predict protocol execution times in any
architecture. Case studies concerning protocol execution on two target LANs — the 10Mbps
Token-Bus and the 100 Mbps FDDI — will be presented, showing how protocol performance
scales with the utilization of high-speed networks.

Additionally a set of guidelines concerning the dimensioning of # AMp timers and perfor-
mance optimizations, useful for both system configuration implementation, are presented.



Chapter 1

Introduction

There is an increasing number of distributed applications, some of them fault-tolerant,
and it has been recognized that its construction may benefit from the existence of reliable
broadcast (RB) protocols. These protocols provide a service which has a set of order, agree-
ment and synchronism properties, in the presence of disturbing factors (load and faults). In
consequence, the user is alleviated from the task of ensuring them for each application.

Reliable broadcasting has deserved considerable attention recently. Some works, ex-
hibiting tight synchrony, are clock-driven: they rely on clock synchronization and space
redundancy [Babaoglu 85,Cristian 85]. The AMp, an atomic multicast protocol for local
area networks, is a loosely-synchronous protocol which does not use clocks. It relies on
network properties, to enforce timeliness. It compares with other clock-less approaches
[Birman 87,Cart 87,Chang 84], although we have worked in bounding termination times to
suitable limits, which make it possible to define the situations for which the communica-
tion system is capable of representing real-time interactions, both from the point of view of
meeting communication delay bounds and respecting temporal precedence of events.

This work deals with the performance implications of supporting distributed applications,
with reliable broadcast protocols. In application-independent systems, most of the time
domain requirements are not of the hard real-time kind — which clock-driven protocols are
most suited for — but more of the on-line, or soft real-time kind. That is, rather than requiring
an exact meeting of deadlines and a high degree of simultaneity, for actions or messages,
applications require responsivity, fastest possible reaction and a probabilistic treatment of
worst-case response times. To encourage utilization of reliable broadcast protocols in such
applications, it is mandatory that the above-mentioned benefits in quality of service are not
considered too costly in performance, by the user(s).

The service properties and the operation of AMp are detailed in [Verissimo 89]: the
protocol offers a service featuring strong unanimous agreement and consistent and causal
order properties. From the point of view of fault-tolerance and distributed computing, they
are useful to implement distributed synchronization and replication control algorithms.

The original AMp|[Verissimo 89| has recently evolve to an extended multi-fold primitive
[Rodrigues 91b], featuring weaker properties (eg. FIFO order, datagrams), with the corre-
sponding improvement in performance. In this work we only address the performance of the



stronger quality of service (atomic), through the development of an architecture independent
performance model. Given that the quality of service we are analyzing is the highest possible
in terms of agreement and order, we believe the results we present give some insight into the
expectable performance of the multi-fold service.

Performance-wise, there are three questions in the design of reliable broadcast protocols,
which influence the final result: (i) which fault model; (ii) what level in communications
stack; (iii) which network.

The fail-silent assumption

Given the cost associated to distributed agreement approaches [Lamport 82|, that con-
sider arbitrary behaviour of components, we assume the communication system fails in a
controlled manner, exhibiting what is called the fail-silent property [Powell 88]: the network
adapters where AMp runs are thus confined to always deliver correct messages, tolerate a
bounded number of temporary errors — such as transmission errors — and halt after their first
failure. This already represents a performance head-start, because it simplifies protocol de-
sign. However, the main improvement of the protocol, performance-wise, is to take advantage

of LANSs.

The low-level approach

The protocol was designed both to run on top of LANs and not to depend on a particular
LAN. The architecture is built on standard LANs, in view of taking advantage of the availabil-
ity of communications hardware and of the possibility of coexistence with standard stations,
in the same network. Additionally, LANs have architecture and technology attributes which
can be used for improved performance and dependability.

The data link layer seemed to be the adequate level to engineer the AMp. This low-
level approach is justified by several reasons: for one, tradeoffs regarding performance are
best made, using LAN facilities; for another, it is low enough to allow several options for
upper layers: OSI-like multipoint stacks [Powell 88|, transfer layers (eg. XTP) [Chesson 8]
or high-performance distributed application support environments [Barrett 90].

So the AMp offers a data link level interface to the user. In order to make the proto-
col design LAN independent, and thus very portable, it interfaces an “abstract local area
network”, whose properties we will discuss in the next chapter.

High-speed LANSs?

Now that we have a LAN independent interface, we start by analyzing the suitability of
the AMp for LANs in general, by making some predictions about its execution time, on a
target LAN: a 10Mbps ISO 8802/4 Token-Bus. After, we analyze whether AMp performance
will benefit from migrating to a higher throughput LAN, such as the 100 Mbps ISO 9314
FDDI.



We show that not only AMp throughput increases, a natural consequence, but also speed,
measured in duration of single AMp executions, for small messages. This fact is of outstand-
ing importance, since it has been recognized that communication speed is the dominating
requirement for distributed computing [Birrell 84,Chesson 88,Hutchinson 88]. On the other
hand, it shows a way of using technology to improve performance without compromising
portability. While keeping a neat, independent interface in the LAN world, something can
be done to increase performance, by merely changing LAN.

In this work we will start to present a brief description of the components that will be
subject to our time domain analysis: an overview of the t AMp assumptions and operation is
given in chapter 2. This chapter also contains an enumeration of Abstract Network properties,
in which protocol design relies, as well a brief description of their support.

The analysis of the time domain behaviour of the protocol begins in chapter 3, where we
develop a performance model describing the execution of the xtAMp and Abstract Network
components. A wide set of non-faulty and faulty scenarios will be analysed and finally
integrated into a consolidated performance model. This model will be used in chapter 4 to
derive performance figures, while chapter 5 presents the results of an experimental evaluation
of protocol performance.

In chapter 6 we will return to model analysis for extracting additional results on perfor-
mance optimization. Namely, rules for the correct dimensioning of protocol timers will be
established and guidelines for enhanced performance implementations will be presented.



Chapter 2

Reliable Multicasting with the AMp

The AMp provides highly parallel reliable group communication, which takes place inside
groups of participant entities. The AMp offers a service of reliable group communication
which ensures that when a message is delivered, it is delivered to all correct participants
(unanimity), in the same precedence order to all of them (order) and within a known bounded
time (termination). The message delivered is the one transmitted by the sender and it is
always delivered, unless some participant(s) is(are) inaccessible (validity). Inaccessibility is a
temporary state whereby a recipient may refuse, in a given execution, to accept a message,
causing the protocol to terminate timely with a negative confirmation [Verissimo 89]. Since
we are essentially concerned with the cases where a message is delivered, inaccessibility is
not discussed here. The protocol is resilient to omission errors and stopping faults during
its execution. A bounded omission degree is tolerated, but any number of nodes may fail,
in a single phase of the protocol'. In case of sender failure, a termination protocol is ran by
a monitor function, to ensure completion of the transmission in course. Node failures and
group membership changes are indicated to all participants, consistently ordered relatively
to the information messages. Any group member may initiate a transmission and the sender
also receives the message transmitted. Multicasting is transparent, in the sense that only one
message is sent and there is no need for a previous knowledge by the user, of the whereabouts
or number of destinations. In fact, the destination address is location independent and related
to a unique designation each group possesses in the system.

Groups

Each gate, the entity used by a participant to communicate, uses at each station a local
instantiation of the AMp machinery, comprising the Emitter Machine and the Receiver Ma-
chine, a local GroupMonitor agent, which participates in error recovery and fault treatment
procedures, and two context structures, the GroupView and the RecetveQueue, containing,
respectively, the group composition and the frames received for that group. Error detection
is done on a transfer-by-transfer basis, and relies on consistency of the group views of all

'A phase is a well delimited portion of a protocol execution, which is a containment domain for error
detection. A protocol may have several phases. The organization of AMp in phases is important for the
enforcement of timeliness properties.



members. We proceed by describing some assumptions that support protocol operation; then
we present the description of the protocol operation itself.

Assumptions

A set of assumptions establish the foundation of the correctness of operation of our two-
phase-accept protocol implementation. These assumptions are:

Pa.1 There may be several competitive transmissions in course, in the same group.

Pa.2 There may be several concurrent transmissions in course in the network, from
different groups.

Pa.3 At any time, there may be at most one transmission in course, per group, per node.

Pa.4 The sender positively confirms that all correct participants receive a decision, if it
is reject.

An EmitterMachine, once started, executes atomically, i.e. it is not preempted by other
sending actions in the group, for example, from the ActiveMonitor.

The decision frame is not acknowledged, for accept, in the interest of improved perfor-
mance. Safety of this method is based in a simple algorithm:

e assumption Pa.4 above;

e all participants log the sequence number of the last message sent (lastDeliv for sender)
or accepted (lastAccept for recipients);

e omission errors in decision can then be recovered very simply: a recipient requests a
missing decision, and the sender may respond accept if last Deliv has a higher sequence
number; else, it is not yet finished with processing it.

Protocol Operation

The atomic multicasting service relies on a two-phase accept protocol. Its operation
resembles that of a commit protocol, only in that the sender coordinates the operation: it
sends a message, implicitly querying about the possibility of its acceptance, to which recipients
reply (dissemination phase). In the second phase (decision phase), the sender checks whether
responses are all affirmative, in which case it issues an accept — or reject, if otherwise. Protocol
execution is carried on, in the event of sender failure, by a termination protocol. However,
in this case, delivery is no longer ensured. Should the message be delivered, unanimity is
nevertheless fulfilled. The phases are implemented with transmaission-with-response rounds,
and end after reception of all expected responses.

An atomic multicast transmission is initiated by the protocol coordinator, the sender (E),
by sending a multicast frame containing the message. The Dissemination phase (Fig.2.1) then
proceeds as follows:
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Figure 2.1: Execution diagram of AMp: In grey, in both phases, a transient omission error:
a) Dissemination; b) Decision.

— After transmission, E will expect a number of responses indicated by its group view,
within a predefined response time (TwaitResponse). When all responses arrive or
TwaitResponse has elapsed, they are analyzed and if some recipient cannot accept
the frame, decision= reject.

— Normally, responses are of ”can accept” type, meaning recipients are accessible; then, if
all recipients responded, according to the sender GroupView, decision=accept. If there
are responses missing, the data frame is retransmitted.

— If some station does not answer within the retry mechanism, it is considered failed.
However, the execution proceeds, allowing timely termination: an accept decision may
be sent if all the remaining stations can accept the message. Stations considered as
having failed are removed from the group view, by the Group Monitor.

The decision phase is implemented in the following way:



— The reject frames always require response (assumption Pa.4). A station that does not
answer within the retry limit, is considered failed.

— The accept frame, on the other hand, does not require response. A timeout mechanism,
at the recipients, covers omission errors in the transmission of a decision: after receiving
an information frame and responding, a timer is started with a predefined TwaitDecision
time. If no decision is received within this time, a recipient requests the decision to the
sender?.

Note that in case of reject, a sender only starts a new transmission after assuring that
all group members received the reject (assumption Pa.4). So, when a sender receives such a
request decision it can answer with an accept without any knowledge of the past, or proceed,
if it was still processing that frame. The recipients will retransmit the request decision, until
the retry limit is exceeded. When that happens, the sender is considered failed and the
GroupMonitor is called upon, to reestablish group coherence.

The accept decision being the most frequent completion of the protocol, was chosen to
be negatively acknowledged, which optimizes transmission rate, due to the pipelining effect,
in absence of faults. It allows to decrease the transmission cycle time, once a new transfer
may start right after issuing the previous one’s accept. However, the detection of omission
errors in a negatively acknowledged transmission is slower than its positively acknowledged
counterpart, since a recipient must wait a worst case transmission time, before issuing a
decision request frame. A performance improving consequence of assumptions Pa.3 and Pa.4
is that a recipient may accept a pending frame if it receives a new frame from the same
sender. This is expected to avoid the expiration of the waitDecisionTimer, in situations of
fair to high traffic, maintaining the pipelining effect.

Group Monitor

There is a Group Monitor function, which executes, under a privileged state, critical
activities relevant to correct operation of the protocol. Namely, it maintains consistency
of the GroupView, recovering from station failures. Additionally, it runs the termination
protocol in case of sender failure. It also controls joins and leaves from a Group, so that all
GroupViews change consistently.

The distributed Group Monitor function relies on information provided by the several
local GroupMonitors of a group. It may be invoked by several groups simultaneously, exe-
cuting with total independence from the monitors of other groups. The local GroupMonitors
are normally inactive. At most one monitor is active at a time, in each group, and if 1t fails,
it 1s replaced by another GroupMonitor who detects the failure. The procedure is recursive.

The monitor executes in two phases (StepOne and StepTwo). The first phase (StepOne)
includes the identification of failed stations and search for the presence of pending messages
from failed senders. It is an investigation process, responded by the local monitor entities.
After this, a second phase (StepTwo) is performed, including the decision to accept or reject
those messages and finally the dissemination of the new group view.

?The reader will notice, in Fig.2.1, that the first decision request is triggered by an early timeout. In fact,
the waitDecision timer is a two-shot timer. Please refer to section 3.2, for details.



Abstract Network

The design of AMPp relies and takes advantage of LAN properties. Through the definition
of a general set, the network interface although LAN oriented is, in essence, LAN independent.
Although this concept can be extended to a broad range of networks, we have limited ourselves
to guarantee that they can be fulfilled by a set of standardized token based LANs, namely ISO
8802/4 Token-Bus, ISO 8802/5 Token-Ring and ISO 9314 FDDI. The properties are defined
in terms of a network delivering each frame, transmitted at a source, to all destinations.
The expected network behaviour — in terms of correctness, order and timeliness — is thus
described by the list of properties referred in Table 2.1. As a general rule, Abstract Network
properties are guaranteed either by each particular VLSI controller or by a harmonizing driver
built on the top of the exposed MAC? interface.

Abstract Network Properties

Anl - Broadcast: Destinations receiving an uncorrupted frame transmission, re-
ceive the same frame.

An2 - Authentication : Destinations detect any corruption by the network in a
locally received frame.

An3 - Network Order : Any two frames indicated in two different destination
access points, are indicated in the same order.

An4 - Full Duplex : Indication, at a destination access point, of reception of the
frames transmitted by the local source access point, may be provided, on request.

An5 - Simultaneity: Those destinations receiving a broadcast message, receive
the message at real time values differing, at most, by 87;.

An6 - Bounded Transmission Delay : Every frame queued at a source access
point, is transmitted by the network within a bounded delay T;q + T}yq-

AnT7 - Bounded Omission Degree : A network, in a known interval 7,4, may
do at most k£ consecutive omission errors.

An8 - Bounded Inaccessibility : A network, in a known interval 7,4, may be
inaccessible at most ¢ times.

Table 2.1: List of A.N. Properties

The first two properties Broadcast and Authentication — by a frame check sequence —
ensure that although frames may be lost, the destinations that receive a frame, receive the
one that was transmitted.

3Medium Access Control sub-layer.



Property An3 — Network Order — guarantees that any two frames received at any two
sites, are received in the same order, while property And4d — Full Duplex — implies that the
sender itself is also included in this ordering property as a recipient.

Behaviour in the time domain is described by the remaining properties. The property
given by An5 — Simultaneity — is satisfied directly by LANs. In single LAN segments, 67} is
essentially given by the end-to-end propagation delay. This property is particular important
for the implementation of clock synchronization services [Rodrigues 91al.

Property An6 — Bounded Transmaission Delay — specifies Ty as the maximum trans-
mission delay, in the absence of faults. It depends on the particular network, its sizing,
parameterizing and loading conditions [Gorur 88,Jain 90]. Conversely, T;,,, the maximum
duration of inaccessibility depends on the network alone, and can be predicted for a set of
local area networks [Rufino 92, Tusch 88]. Network inaccessibility is a period of time when
the network, although remaining operational, refrains from providing service?. Essentially it
is due to glitches in network operation (e.g. token regeneration, upon its loss). Property An8
ensures that the occurrence of these glitches are bounded.

As a general rule, network inaccessibility have a very disturbing effect on protocol oper-
ation. This problem is thoroughly analyzed in [Verissimo 91], that also presents two distinct
solutions to cope with it.

Bounded Omission Degree® specifies the number of successive transmission errors of a cor-
rect network to be lower than a known value k. Enforcement of the bounded omission degree
with acceptable coverage is obtained through redundancy in the physical and “medium” lay-
ers. In the standard FDDI, a dual-reconfiguring ring, is able of survive to one interruption of
the ring[FDDI 86]. In Token-Bus, dual-media could be custom-implemented, as an extension
to the standard [Verissimo 88al].

4A formal definition of inaccessibility is presented in [Verissimo 90].
®Omission degree (Od) is the number of successive omission errors that a correct component does. A
component exceeding its specified Od is considered failed and must shut-down.



Chapter 3

Performance Model

This chapter will be entirely dedicated to the time domain analysis of protocol opera-
tion. The analysis of AMp performance is based in its phases of transmaission-with-response
(TzwResp) rounds. Absolute duration of an execution depends very much on the LAN
used, and the particular protocol implementation. Let us begin by discuss some time-related
properties of AMp. We define:

= FEzecution Time (T.): The time between the send request primitive and the issuing of
the last receive indication for that message.

The protocol ezecution time can be evaluated as a sum of individual contributions, some of
them strictly due to protocol execution, others related with its operation over a LAN. Bounded
execution times are only possible if all the contributions in 7, are bounded. Althought the
protocol can be ported to a wide set of networks, our performance model is oriented for token

based LANS, like the ISO 8802/4 Token-Bus, ISO 8802/5 Token-Ring or ISO 9314 FDDI.

Two critical contributions here appear at the network level interface: raw access delay
and queue delay. Essentially they are network and user related, depending on the global and
individual offered load, respectively. In LANs, they can only be effectively bounded if all nodes
cooperate in some form to control the offered load. In cyclic hard real-time systems, where
the delay of urgent messages must be bounded with accuracy, we believe it is preferable to
tune operation in order that queue delay is zero — at least for high priority /urgency services
— when running on single LANs. We are looking at systems with mixed cyclic and bursty
traffic, so we consider average values, but we will use this design principle, which requires,
very simply, that the user cycle is lengthier than the network cycle. The latter is given by
the network access delay, which is influenced by user load, indirectly, through a measure of
the average channel utilization — p.

For token based LANs this dependency can be expressed by the average time elapsed be-
tween two consecutive token visitations, i.e. by the average token rotation time — R,,(p). For
those networks, the token rotation time formulates therefore the influence of LAN operation,
on protocol performance.

In this chapter we will establish a set of expressions for the protocol execution time —
T, — corresponding to its operation under different disturbing factors. The effect of network
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load will always be considered. Protocol operation, in the presence of faults, will be analyzed
through a set of distinct scenarios. Nevertheless, all these definitions will be integrated into
a consolidated performance model, at the end of the chapter. Additionally, a set of param-
eters that are used by the model are defined, in appendix A, for a protocol implementation
interfacing the Abstract Network layer.

3.1 General Definitions

Let us assume we have the token-less LAN-independent protocol, thourougly described
in [Verissimo 89]. A set of time-related protocol parameters will be extensively used in the
definition of our performance model.

Some of these parameters account the duration of the different frames used in protocol
operation. Effective frame duration depend on both network data rate and frame length.
Their values for several token-based networks are presented in Table 3.2, assuming a MAC
address length of 48 bits. For those cases where frame duration depends of operational
parameters, a generic expression instead of a numeric value, is given. Table 3.1 characterizes
the MAC sub-layer for the considered networks.

Symbol Token-Bus FDDI
Length Duration (us) Length | Duration (us)
(octects) | 5Mbps | 10Mbps | (octects) 100 M bps
Bit Time toir 0.2 0.1 0.01
Octect Time toct 1.6 0.8 0.08
MAC head/tail | ts,7r 28 44.8 92.4 28 9.24
Token tTK 28 448 22.4 11 0.88

Table 3.1: Characterization of MAC sublayer (MAC addressing=48bits)

Let us also define a set of consolidated processing times accounting the CPU processing
times required to execute specific steps of the protocol, as seen from a network point of view,
i.e. as they can be measured by an omnipresent observer located at the LAN-MAC interface
of all stations. An illustration of some of these times is provided in Figure 3.1, while the
definition of their values is presented in appendix A. Nevertheless, let us now generically
define:

(]

tprUsr - Processing time for an user request.

(]

tprRe - Processing time of generic protocol frames reception.

(]

tprReRp - Processing time for the reception of information frames and generation of the corre-
sponding response.

(]

tprReRq - Processing time for the reception of a request decision frame.

(]

tyrreBg(n) - Time required to receipt and process a bag of n responses.

11



2AMp Frame Symbol Length Duration (us)

xAMp Field Token-Bus FDDI

(octets) 5Mbps | 10Mbps | 100 M bps

protocol response tresp 28 89.6 44.8 4.48
decision frame tDec 28 89.6 44.8 4.48
request decision trgDec 28 89.6 44 .8 4.48
step one tstept 32 96.0 48.0 4.80
step two tstep2 | 32+ 24-me'l toct.(GO + 24-me'l)
step one response tsResp | 36+ 24.Njq toct-(64 + 24.N s41)
information frame trng 28 + l1ng toct-(56 4 l1ny)
Note: Njq is the number of failed stations detected during StepOne;
lrns is the length of the user data.

Table 3.2: Characteristics of xAMp frames (N, = 32; MAC addressing=48bits)

o tprBg(n) - Time required to receipt and process a bag of n responses, and to prepare a decision.
o tprBgTim(n) - Processing time of a bag of responses, upon timeout.

¢ lprDecTim - Processing time upon wait decision timeout.

O tyTecy - Processing time of frame transmission confirmation.

¢ lprSiGen - Processing time required for the generation of a step one request.

o tprsirp - Processing time for the reception of step one requests and generation of the corre-
sponding response.

o tprBgstep1(n) - Time required to receipt and process a bag of n step one responses, and to prepare
a decision.

3.2 Protocol Execution Scenarios

In order to obtain a generic expression for the AMp execution time — 7T, — we will analyze
protocol operation under different scenarios. We start our analysis with the most simple case
of a fault free scenario. Gradually we introduce more severe faulty conditions, until taking
into account all the possible errors.

No FauLts

The most favorable scenario for AMp execution is the one where there are no frame omis-
sions or station failures. For this case the average execution time of AMp can be expressed by
equation (3.1), where the two main terms represent the duration of the protocol dissemination
and decision phases. After a request has been made, it is processed by the protocol within
torsr, Waiting afterwards a consolidated access delay — t,.. — for the message transmission

12
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to the network. This time is both protocol and LAN related and an expression for it will
be established in appendix A. An access to the network is also performed, in the beginning
of the decision phase, for issuing a decision to accept or reject that particular message. The
time required to perform this access is represented by t,.p.. and its value will be established
later, in this section.

Te<—nofault = [tp’rUsr + tacc + txu/r(Inf) + tpTBg(n)] + [tacDec + tDec + tpv'Ra:] (31)

The t,,,(Inf) stands for the time required by the transmission of an information frame
— Inf — with response. Since we expect to take advantage of the token rotation, to cycle our
transmissions-with-response, we redefine token rotation time subsequent to a transmaission,
trr(r, p), as the time needed for the token to rotate, carrying r responses, over a background
load of p:

tRT(Tap) = Rav(p) +r. (tresp + tIFS) (32)

This expression accounts the time, in addition to the average token rotation, required
to transmit the r responses, as well as the time wasted by the VLSI controllers between
consecutive transmissions from the same station. For high performance LAN controllers, the
interframe spacing delay — t;ps — can often be made equal to zero.

The duration of a transmission of an information frame — Inf — with response, is then:
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txwr(Inf) = t]nf + tera’:Rp + tRT(n - 17 ,0) (33)

From all the terms on equation (3.1) only t,.pe. is still unknown. In order to establish its
value we will take a more close look at the network evolution, just after the sender station has
transmitted a message. This message will be received at the same time in all the recipients,
if we neglect the influence of the network propagation delay. In consequence, message trans-
mission is a notorious event on protocol and network operation. All the additional traffic
generated at the recipients sites, during the process of response collection, is a consequence
of that message transmission. Since we are looking for a timing relationship between message
transmission and the corresponding decision issuing, we will represent protocol evolution as
a spiral timing diagram, surrounding the logical or physical network ring (see Figure 3.2).

Sooner or later, after message transmission, the token is passed to the downstream sta-
tions. Nevertheless the recipients are unable to respond, until the message is processed and a
response is prepared. According with our previous definitions, responses from the recipients
will become available for transmission only after a given delay, defined by ., r,r,, has elapsed.
The timing of this event is clearly identified in Figure 3.2 (point B). At this point, we can
imagine that the token initiates a dedicated rotation for the collection of response frames.
Due to this sort of additional traffic the token rotates more slowly than R,,(p), as expressed
by equation (3.2). Once the response collection has been completed (point C), the sender
processes the bag of n responses and prepares a decision (point D on Figure 3.2), waiting
afterwards — t,.p.. — for the next token visitation, that allows its transmission to the network.

14



From the spiral timing diagram of Figure 3.2 we are particularly interested in those
sections where the token rotates accordingly to its average value R,,(p), i.e all but the section
given by tgr(r,p). The sum of all spiral sections where the token rotates in R,,(p) can be
transformed into an equivalent number of integer token rotations, expressed by j. We can
now write the following relations:

(.] - ]-) . Rav(p) < tpTRa:Rp + tpTBg(n) S J : Rav(p) )
(JEN) (3.4)
tera:Rp + tp'ng(n) + tacDec = ] . Rau(p)

The first relationship establishes a unique value for j, given by equation:

i "terxR];;:(t;;Bg(n) W (3.5)

where [ ] represents the ceiling function'

tacDec 10 terms of the remaining variables:

. The second relationship enables us to express

13 rRx +1 7 n
tacDec = Rav(p) - ’V prht R; (;)BQ( ) -‘ - tpTRa:Rp - tpTBg(n) (36)

The value of t,.p.. represents therefore the time that the sender must wait, for the token,
before it can transmit the decision frame to the network, under a fault free scenario. Mainly
it depends on the relative values of CPU consolidated processing times and average token
rotation time, assuming values between zero and R,,(p).

Replacing the above equation in expression (3.1) we obtain, after some simple calculations:

T.nofaut =  tpusr + tace +ting +trr(n —1,p)+
tpr Re Rp+iprBg(n) (37)
R..(p) - [ Rolo) w + tpec + tprRa
The execution time given by (3.7) reveals an important property related with the CPU
processing times, that we wish to highlight here: in the absence of faults and from the
strict view of a single protocol execution, there are only a few selected points where an
improvement on processing times originates a faster protocol termination, as expressed by
the aforementioned equation. As a general rule, improvements on the consolidated processing
times only indirectly affect the protocol execution in the sense that they improve the overall
performance. Later we will return to this topic, with a more thorough analysis.

OMISSIONS IN DISSEMINATION

In order to mutually control activity, we had seen in the last section that both sender
and recipients use timers. In this one and through the remaining scenarios we limit ourselves

'The ceiling function [z] is defined as the smallest integer not smaller than z.
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to proceed at their identification. The discussion of AMp timers dimensioning will only be
performed in section 6.1.

At the sender site a timer Twait Response defines the maximum waiting period, for re-
sponse arrival, in each transmission-with-response round. The sender starts timer TwaitRes-
ponse, after receiving confirmation of transmission by the network and stops them upon the
reception of all the expected responses. If no responses arrive, within that time period, a
new transmission-with-response round is started, upon Twait Response timeout. The lack of
responses can be due to omission errors or may arise because network inaccessibility.

An unified characterization of network behaviour, aggregating omission errors and in-
accessibility, can be performed and a consolidated omission degree bound (K = k + t), can
be defined [Verissimo 91|. The Abstract Network properties ensure that, in the absence of
permanent failures, a successful transmission-with-response will be performed, at the most,
after K rounds.

Let be O, < K the number of omission errors within the dissemination phase. The
protocol execution time is therefore given by equation (3.8) where the first term represents
the duration of the O, rounds affected by omission errors. A new round is started upon
Twart Response timeout after having processed the available responses and identified the
missing ones. The second term represents the duration of the last and successful transmission-
with-response round.

Te<—DisOm = Oe . [tacc + tInf + tprTo:Cf + twaitResponse(n) + tp'ngTim(n)] + Té<—nofaults (38)

In the definition of expression (3.8) we have considered that the beginning of each
transmission-with-response round is not time co-related with the end of the previous one.
The utilization of an entity external to the protocol — timer agency — eventually affected by
different scales in terms of their processing times and variabilities, justifies the rationality of
such approach.

RECIPIENTS FAILURE

Upon recipients failure all the transmission-with-response rounds will be consumed in
unsuccessful tries to collect their responses. Nevertheless, at the end of the K + 1 rounds
(being K the consolidated omission degree bound), a decision is issued, enabling the remaining
correct participants to take a decision on that particular message. An additional monitor
action is required to withdraw the failed recipients from the group view but since this action
is postponed until protocol termination, it is not accounted in equation (3.9).

Te<—7‘cpfail = tp’I‘UST+
(I( + ]-) . [tacc + tInf + tprTfo + twaitResponse(n) + tpTBgTim(n) ]+ (39)
tacc + tDec + tp’l‘Rl‘

In this expression, no timing relationship is established between the end of the dissemi-
nation phase and the issuing of the sender decision. As in the previous case, the timing of
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these events depends very much on the timer agency behaviour and, in consequence, it seems
to be more reasonable to consider them as independent.

SINGLE OMISSION IN DECISION

After having analyzed the errors that, in essence, can affect the dissemination phase let
us turn our attention to the decision phase. The latter is also coordinated by the sender and
starts with the issuing of a deciston.

The deadline for decision reception is locally controlled, at each recipient, through the
utilization of a TwaitDecision timer. Besides, its first purpose, in absence of permanent
failures, is to detect and recover from omissions in the (non acknowledged) decision; in
consequence, it is a two shot timer, with a first timeout given by .41y Decision-

If a decision did not come, within the tc.riypecision Period, the recipient sends a request
decision — rqDec — datagram. By initiating the recovery process, at the first suspicion that
a decision may not come, the earlier timeout mechanism introduces a speed-up on protocol
termination, when this phase 1s disturbed by a single network omission.

The recovery process is first initiated by the recipient where the absence of a decision is
detected sooner. Nevertheless its precise timing is rather dependent of the station position
on the network ring. A best case scenario is obtained when the station dealing with a missing
decision immediately follows the point B, as defined in the spiral diagram of Figure 3.2, i.e.
that particular station was the first to provide a response to the sender. Conversely, a worst
case scenario is obtained when that station has responded in last place, i.e. it is located at
point C, of the same figure. The consideration of a single network omission leads therefore
to the following expression, for the protocol execution time:

T.cpecom = tpvsr + tace + ting + torrery + Fi-trr(n — 1, p) + tyrec s+
teartyDecision(N) + tprDecTim~+ (3.10)
tace + trgDec + tprReRg+ ’
tace + tDec + TprRe

where, depending on the value given to Fj, we obtain:

0 best case time
Fy= : average case time (3.11)
1 worst case time

Note that the actions for decision request and the corresponding decision retransmission
take place at different stations. Since they represent, indeed, two independent network inter-
actions, no timing relationship can be established for the network access delays concerning
these events. In consequence, an average delay, given by t,.., is used in equation (3.10) for
both cases.
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MULTIPLE OMISSIONS IN DECISION

The method outlined in the previous scenario provides coverage for the eventual loss of the
first decision transmitted by the sender. However, omission errors often occur in bursts and, in
consequence, a stronger detection/recovery mechanism is required. Such mechanism consists
in a variant of the transmission-with-response function, now used for request a decision to the
sender. The process is started upon the second signal of the two-shot Twait Decision timer.

Let be O4.. < K the number of omussion errors within the decision phase. The protocol
will execute, therefore, at the most, (Og..+1) decision requests®. Their execution time, under
such conditions is given by equation (3.12).

Te(—mDecOm = tpT‘UST‘ + tacc + tInf + tp?"RxRp + F4 . tRT(TL - 17 P) + tprTfo‘I‘
twaitDecision(n) + tp?"DecTim‘I‘
Odec . (tacc + trqDec + tprTfo + twaitDecResponse + tpTDecTim )+ (312)

tacc + trqDec + tpTR:L’Rq+
tacc + tDec + tpTRa:

where F} is given by equation (3.11) and timer Twait DecResponse is a variant of TwaitRes-
ponse which consider that a single decision, instead of multiple responses, is currently being
awaited for. The definition of the timer value is provided in section 6.1.

OMISSIONS IN DISSEMINATION AND DECISION PHASES

In the previous scenarios we have considered separately the existence of omissions errors
within the dissemination and decision phases. The case where omission errors affect both
phases of the same protocol execution, is introduced in the present scenario.

For the dissemination phase we consider that it is affected by O. < K omission errors.
The effect of omissions in the decision phase is not different from the one described in the
last two scenarios. The protocol execution time is therefore given by:

Te<—disDecErro7's = Oe . [tacc + tInf + tp’l‘Tﬂ”,‘Cf + twaitResponse(n) + tpTBgTim(n) ]+

3.13
Te(—xDecOm ( )

where T,pe.om represents the time given by one of the expressions (3.10) or (3.12).

RECIPIENTS FAILURE AND OMISSIONS IN DECISION

This scenario is very similar to the previous one. The t.4,1yDecision may eventually expire
sooner then Twait Response, but its request decision datagram will be ignored by the sender;

?Notice that we are not accounting the decision request issued upon the first signal of Twait Decision. Given
its early timeliness, it does not seem reasonable to perform their inclusion in this fault tolerance technique.
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otherwise the timeout obtained from Twait Decision will always occur after Twait Response
expiration®. Therefore the protocol execution time, in this scenario, is obtained from the
previous expression simply making O, = K:

Te<—7‘failDecOm = K. [tacc + tInf + tp’l‘T:L’Of + twaitResponse(n) + tpTBgTim(n) ]+
. (3.14)
e—xDecOm

SENDER FAILURE

So far we have only considered faulty scenarios which dealt with omission errors and
recipients failures. In order to complete our performance model we will now consider the
failure of the sender. Taking into account our previous results we assume that before sender
failure there may be O. < K omission errors, in the dissemination phase.

The execution of the (O, + 1) round offers an opportunity for decision issuing but two
kind of situations may happen, at this point:

i) The sender fails before sending the decision, and a recovery procedure, based on the
aforementioned transmit-with-respond variant, will be entered at the recipients sites,
upon TwaitDecision timeout.

ii) The sender only fails after decision 1ssuing and the following may happen:

a) The decision is correctly received by all the recipients — In this case the sender
failure will be detected only in a future transmission. The protocol execution ends,
within a time given either by (3.7), (3.8), (3.9) or (3.13).

b) At least one recipient does not receive the decision — Recipients with a missing
decision cannot distinguish this situation from the one described in i) and that
recovery procedure is entered.

When the sender fails, as described in i) and ii b), all the (K + 1) tries of looking for
a decision will fail and, in consequence, a monitor action required to reestablish a consistent
group view and to generate a decision for the pending message, is performed. In this case the
protocol execution time is given by:

Tecsait = tpvse + Oc . [tace + ting + tprTacs + twaitResponse(N) + tprBgrim(n) |+
tace ¥ ting + tprrory + Fa - trr(n — 1, p) + tprrecs+
twaitDecision(n) + tpTDecTim—I_ (315)
(I{ + 1) . [tacc + t'/‘qDec + tprTo:Cf + twaitDecResponse + tp'rDecTim ]—I_
tAM 2

where t 457, represents the duration of the monitor actions, under different scenarios.

3Please, see section 6.1 for details on timer dimensioning.
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In the best-case the Group Monitor runs successfully at the first time, within a time
given by equation (3.16). That equation highlights the fact the Group Monitor activity is
also structured in phases of transmit-with-response rounds. The duration of the first phase is
given by the first line in equation (3.16) and represents the time taken in the identification of
failed stations and search for the presence of pending messages (StepOne). During the second
phase (StepTwo), with a duration given by the second line of the same equation, the active
monitor replaces the sender in the generation of a decision for those messages. This phase
also includes the dissemination of the new groupview. Although a transmission-with-response
round is carried out in StepTwo, we only account the time required to transmit and process
the step two frame. Notice that we have explicitly identify, by t.csicp2, the time required
to access the network for this latter transmission. The group monitor activity is performed
considering a group dimension of (n — 1), from where the failed sender was withdraw.

tA]W(—noretries = tprSlGen + tacc + ter(Stepl) + tp?"BgStepl(n - 1)+ (3 16)

tacStep2 + tStep2 + tp’)"R:L‘ ’

The t,,,(Stepl) stands for the time required by the transmission of a step one frame

with response. Once again, we expect to take advantage of the token rotation, to cycle our

transmissions-with-response. In consequence we define token rotation time subsequent to a

step one, tpsi(r,p), as the time needed for the token to rotate, carrying r step one responses,
over a background load of p:

trs1(r,p) = Rau(p) + 7 . (tsresp + tirs) (3.17)

The duration of a step one frame transmission with response is:

tmwr(Stepl) = tStepl + tprSlRp + tRSl(n - 27 p) (318)

The aforementioned value of #,.5scp2 1s co-related with processing times and average token
rotation. It i1s a situation similar to the one considered in our initial non-fault scenario of
AMp operation. The spiral diagram for this situation is presented in Figure 3.3 and the
expression of ?,.s:,2 can be easily obtained:

tor + t,, ept(n—1
tacStep2 = Rav(p) . ’V prS1Rp éBEZ; pl( ) -‘ - tprSlRp - tp'ngStepl(n - 1) (3]—9)

Using this value in equation (3.16) we obtain, after some simple calculations:

tA]\/[(—noretries = tp’rSlG’en + tacc + tStepl + tRSl(n - 27 p)+

e 3.20
Rav(p) . ’V tpT51RP+tRp:f(gpS)tep1( 1) “ + tStep2 ‘|‘ tpTRx ( )

The group monitor activity can also be disturbed by omission errors and station failures,
that are detected and/or recovered through successive transmission-with-response rounds.
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Figure 3.3: Spiral of times for the StepOne-StepTwo monitor actions

Let be O,y < K the number of omission errors within StepOne phase. In this case the
duration of the monitor actions is given by:

tA]\/[(—slretM'e.s = Osl-[tacc + tStepl + tprTa:Cf + twaitSlResp(n - 1) + tpngTim(n - 1)]+

tAMhnoretries

(3.21)
where t,4it51Resp 18 @ variant of Twait Response, to be used in the StepOne phase.

When the StepTwo phase is also disturbed by O,, < K omission errors it does not seem
reasonable, or at least worthwhile, to maintain the timing relationship between the end of
one phase and the beginning of the other. In this case, the duration of group monitor activity
is given by:

taMeretries =  Ost[tace + tstept + tprTacf + twaitsiResp(n — 1) + tprBeTim(n — 1)]+
tors1Gen + tace + towr(Stepl) + typgsiep(n — 1)+
Osa[tace + tstep2 + tprTec s + twaitResponse( — 1) + tprBgTim(n — 1)]+
tace + tstep2 + tprRe

(3.22)

Finally we analyze the situation where, in addition to omission errors, stations fail during
the StepOne phase. In this case, no responses will be obtained from these stations, within
the (K 4 1) retry limit. A new investigation must then be started to seek for pending
transmissions from these stations. The duration of the active monitor action is then given

by:
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taMemfails = Re.[tace + tsiept + tprTecs + twaitsiResp(n — 1) + tprByrim(n — 1)+
tprSlGen + tacc + trw'f‘(Stepl) + tpTBQStePl(n - 1)+
032-[tacc + tStep? + tpTTa:Cf + twaitResponse(n - 1) + tpTBQTim(n - 1)]+
tacc + tStep2 + tp’rRx
(3.23)

where Ry = Oy + B7(IK + 1) is the number of StepOne retries, upon failure, and B is
a boolean variable which indicates whether or not the groupwiew has changed during the
StepOne phase.

3.3 Consolidated Performance Model

The diversity of expressions used in the time domain description of AMp can be integrated
into a single expression. As a matter of fact, this integration can be performed not only for
the expressions describing protocol execution but also for those given the duration of the
monitor actions.

These results are presented in Table 3.3, where each one of the studied scenarios can be
selected through a set of boolean variables.
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Consolidated Execution Times
Te Oe-( tace + tInf + tpr_TacCi + twaitResponse(n) + tpngTim(n) )+
B2[ Bl -(Tehnofaults)+
Bi.(tprsr + tace + ting + tprToo s + twaitResponse(n) + tprBgTim(1) ) 14
B[ tpvsr + tace + ting + tprRorp + Fa-trr(n — 1,p) + tprrac s+
B3.teariyDecision(n) + B3.twaitDecision(n) + LprDecTim+
BS-Odec-(tacc + trqgec + tp’l‘Tl’Cf + twaitDecResponse + tpTDecTim )‘l‘
BS-(tacc + trqDec + terqu)+
BS-(tacc + t'rqDec_+ tp’l"T.’ECf +_twaitDecResponse + tp'/‘DecTim + tAM) ]+
(B2.B1 + B2.B5).(tace + tpec + tprRa)
Active Monitor action
tanm (Os1 + Br(K + 1)).[tace + tstept + twaitsiResp(n — 1) + tprBgTim(n — 1)]+
Be.t AM —noretries+
Be.[tprsiGen + tace + tstept + tprstept + trs1(n — 2,p) + tprBgstept(n — 1)+
032-(tacc + tStep? + twaitResponse(n - 1) + tpngTim(n - 1))+
tace + tStep2 + tp’l‘Rl‘]
Omission Errors
O, Number of omission errors in dissemination.
Ogee Number of omissions in decision request.
Os Number of omissions in Stepl.
Ogo Number of omissions in Step2.
Variables for error situations
By Recipient(s) failure: true - By = 1= O, = K; false - B; = 0.
By Decision errors: true - Bo=1; false - By=0.
B3 Omissions in first dec. req.: true - B3=1; false - B3=0.
F4 | Request decision scenario:
Worst case - Fy = 1; Average case - Fy = %; Best case - Fy =0
Bs | Sender failure: true - Bs = 1= By =1 and Bs = 1 and Oy.. = K; false - B5=0.
Bg Errors in Step2: true - Bg=1; false - Bg=0.
B7 Group has changed: true - By=1; false - B7=0.

Table 3.3: Consolidated temporal expressions for AMp execution time, 7., with several error
scenarios.

23



Chapter 4

Analytic Results

In this section we will made a prediction of AMp performance in a set of fault-free and
error scenarios, for both Token-Bus and FDDI networks. This evaluation uses for model
parameters the values, presented in the next section, that were obtained by experimental
evaluation, made on a target test-bed network. Notice that the processing times only depend
of each execution platform, being therefore LAN independent.

For our predictions we consider a general scenario, in an industrial environment, for
example a small cell network for real-time manufacturing control. The network cable, with
a length C; = 500m, presents a typical propagation delay of 5us/Km. The total number of
stations N, = 32.

TOKEN-BUS ENVIRONMENT:

Let us assume that our manufacture cell network is an ISO 8802/4 Token-Bus network:

— channel data rate is C, = 10M bps.
— token duration: trx = 22.4pus.

— station delay tsp = 21us.

— propagation delay: tpp = 2.5us.

— minimum token rotation time in token-bus:
R,. = Ng.(tpp+tsp+trx) (4.1)
= 1469us

— consolidated average access delay, given by equations (A.18) and (A.19), presented in
appendix A. The relation of R,,(p) with network parameters and load is a result well
known in literature [Janetzky 86,Jayasumana 89| and is given by:

24



_Rmn

Ru.(p) (4.2)

For a background offered load of pgx = 10%, we have:

e average token rotation time: R,,(0.1) = 1632us.
e consolidated average access delay (ppx = 10%): g = 5316pus.

— protocol frame characterization is given by the data presented in Table 3.2.

T. (ms)
Scenario 80 octets 640 octets 1150 octets
n=2 | n=4 | n=6 | n=2 | n=4 | n=6 | n=2 | n=4 | n=6
no faults 12.2 | 172 | 206 | 12.7 | 17.7 | 21.0 | 13.1 | 181 | 214
1 om. f. diss. | 47.3 | 52.2 | 55.6 | 48.2 | 53.1 | 56.5 | 49.0 | 54.0 | 57.3
1 om. f. dec. | 41.2 | 41.3 | 41.3 | 41.6 | 41.7 | 41.8 | 42.1 | 42.1 | 42.2
recip. failure | 109.0 | 109.0 | 109.0 | 110.4 | 110.4 | 110.4 | 111.6 | 111.6 | 111.6
sender failure | 141.0 | 144.4 | 149.5 | 141.4 | 144.9 | 149.9 | 141.8 | 145.3 | 150.4

Table 4.1: AMp on Token-Bus: execution time for different mes-
sage lengths and group participants, in the presence of several
errors( K = 2)

We calculate the AMp timer values, for this environment, considering the CPU and LAN
load variabilities of Vp = 30% and Ap = 30%. This seems to be a reasonable assumption:
given pgr = 10%, we are accommodating average LAN loads between 10%—40%; for the
CPU, we consider a variation of 30% on the execution of software components.

The values associated with the AMp timers are given by the expressions defined in the
section 6.1, leading to the following results, for a group of n = 4 participants:

twaitResponse(4) = 125858
tearlyDecision(4) = 124T5us
twaitDecision(4) = 15200us
twaitDecResponse = 1110548

twaitsiResp(3) = 12705ps

Finally, we extract some example situations from the generic expression of the consoli-
dated performance model of table 3.3, and present a set of relevant values, in Table 4.1, as a
function of message length and number of group participants.
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Figure 4.1: Execution time on a 10 Mbps Token-Bus versus load, for several group dimensions
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Figure 4.2: Execution time on a 10 Mbps Token-Bus versus LAN size, for n = 4
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The variation of execution time with the average channel utilization p is presented in the
graphic of Figure 4.1, for several group dimensions. We can observe that in a global basis
execution times grow with an increasing background load, although in a local basis they may
exhibit an opposite variation, as described by the “spiral of times”. The same effect can be
observed when we vary network size, measured by R,,,, a function of number of stations and
cable length (Figure 4.2).

The variation of protocol execution times with other parameters like gropu dimension,
message length and variation of processing times will be performed in conjunction with FDDI,
at the end of this chapter.

FDDI ENVIRONMENT:

So far we have studied protocol execution in a particular Token-Bus environment. Never-
theless we are not observing the performance of a particular LAN, but that of a protocol using
LANs. Because of that, we now predict the execution times of AMp on FDDI and compare
them with those obtained for Token-Bus, afterwards. When performing this comparison we
are concerned with the viewpoint — proper of real-time — of the service provided to the in-
dividual user, despite some background load. So, we scale down the relative background load,
pBK, by a ratio of 10:1, to maintain the same absolute load (in octets). Messages maintain
their lengths, although decreasing in duration.

The configuration of the network is identical to that used for Token-Bus. Channel length
C; = 500m and number of stations N,; = 32 remain constant. The channel rate becomes
C, = 100Mbps and the background load becomes, as explained, pgx = 1%. Therefore, we
redefine the following network operation variables:

token duration: trx = 0.88us.

station delay, tsp = 0.6us.

— minimum token rotation time for FDDI:

R,, = tpp+ Ng.tsp+irk (4.3)
= 22.6us

For a background offered load of pgx = 1%, we have:

e average token rotation time R,,(0.01) = 22.8us.

e consolidated average access time (pgr = 1%): t4.. = 4511pus

message and protocol frame durations are those furnished in Table 3.2, for FDDI.

Processing times depend only of the NAC; we assume that they remain unchanged. Vari-
abilities remain at vp = 30% and Apgx = 30%.
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T. (ms)

Scenario 80 octets 640 octets 1150 octets
n=2 | n=4 | n=6 | n=2 | n=4 | n=6 | n=2 | n=4 | n=6
no faults 9.4 13.5 | 17.6 9.4 13.5 | 17.7 9.5 13.6 | 17.7
1 om. f. diss. | 43.5 | 47.6 | 51.8 | 43.6 | 47.7 | 51.8 | 43.7 | 47.8 | 51.9
1 om. f. dec. | 37.8 | 37.8 | 37.8 | 37.8 | 37.8 | 37.8 | 37.8 | 37.8 | 37.9
recip. failure | 105.5 | 105.5 | 105.5 | 105.6 | 105.6 | 105.6 | 105.7 | 105.7 | 105.7
sender failure | 132.6 | 137.4 | 142.3 | 132.6 | 137.5 | 142.4 | 132.7 | 137.5 | 142.4

Table 4.2: AMp on FDDI: execution time for different message
lengths and group participants, in the presence of several errors

(K =2)

Timers are based in the same expressions, but they do change:

We repeat, in Table 4.2, the predictions for T, in the same situations as done for Token-
Bus, in Table 4.1. We also present the corresponding graphical representations of execution
times average channel utilization and network size. We can observe that execution times are
not heavily affected by network load and that the “timing spiral” effect only arises for large

twaitResponse
tearlyDecision
twaitDecision
twaitDecResponse

twaitSlResp(3)

108551
9135us
118601
9455us
10965,

FDDI networks, assuming unchanged processing times.

S

S

S

Comparison of FDDI with Token-Bus

The results presented for the last execution environment show that the utilization of a
high speed network, like 100Mbps FDDI, seems to be advantageous for complex protocols:

e given the increased available bandwidth, which reduces the impact of protocol frames

in channel utilization;

e given the increased speed, because of the shorter rotation and transmission times, for

the same load condition.
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In this section we present a set of graphics for the two studied networks,i.e. ISO
8802/4 Token Bus and ISO 9314 FDDI, that relates the protocol execution time with the
following parameters:

e group dimension, n;
e message length, I, s;

e LAN load, p;

The final graphic aims to analyze the effect of consolidated processing times on protocol
execution time. As expected we can see that improvements in the processing times do not
always lead to a corresponding reduction in the protocol execution time. Once again this is
an effect of the “spiral of times”. This fact can be clearly observed in Token-Bus. The FDDI
network, due to its fast token rotation, seems to be less susceptible to this effect. Variation
of network channel utilization produces a similar effect, as shown in Figure 4.7.

32



Chapter 5

Experimental Results

In this chapter we report the results of our experimental evaluation to model parameters
and AMp execution times.

Our testbed was an experimental ISO 8802/4 Token-Bus Network working at 5 Mbps.
Each site attaches to the network through a Network Attachement Controller (NAC), where
the protocol is executed. The protocol is exercised through a set of test tools that, among
other functions, allow network monitoring and parameterization and also traffic generation,
with different load patterns and frame sizes. These tools also run on the NACs.

The Token-Bus Network Attachement Controller [Verissimo 88b] is a dedicated micro-
processor infra-structure built around the Motorola MC68020 @ 16.67MHz [MOT 84]. It
incorporates all the functionality needed for the operation of MAC VLSI MC68024 Token
Bus Controller [TBC 87]. Our experimental testbed network is made from four of these
nodes.

The NACs were instrumented for performance evaluation. A specific device, interfacing
an external time measurement instrument!, has been added to the NAC. This instrumentation
allows the definition, by software commancds, of the moments for trigger/stop time counting.
Hardware triggered measurements were carried out, where required through a Tektroniz 308
Data Analyzer.

Evaluation of Model Parameters

We have experimentally evaluated the parameters that define the consolidated processing
times used in our performance model for the mentioned execution platform. These param-
eters do not depend on the network, but rather on the processing capabilities of the NAC.
The results obtained are summarized in Table 5.1 for the group dimension independent pa-
rameters. Parameters which depend on group dimension are listed in Table 5.2, for a small
set of group participants.

1A PHILIPS-PM6612 Time Counter was used.
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AMp Domain A.N. Domain Consolidated
Driver VLSI Parameters
Symbol | Value (ps) | Symbol | Value (ps) | Symbol | Value (ps) | Symbol | Value (ps)
LampU sr 840 LdrTe 694 tmacTe 0 LprUsr 340
- 457 toome | 1052 toon 0 tome | 1509
tumprory | 1055 toomery | 2801
tampReRa 679 tororg | 1731
tampDecTim 687 tprDecTim 910
tampCs 0 tarocy | 1052 tmace s 0 toTecs | 1052
tampsinp | 1140 toosiny | 2886
tampS1Gen 1152 tprs1Gen 1152
LampS2Gen 1004
tampDecGen 1352
Table 5.1: Evaluated Performance Parameters
Group AMp Parameters Consolidated Parameters
Dimension | to,8y(1) | tampBgTim(n) | tprBg(n) | tprreBg(R) | tprBeTim(1) | tBystep1—1(n)
n (ps) (ps) (ps) (ps) (ps) (ps)
2 357 511 3455 1409 734 -
3 1361 511 5511 3465 734 4255
4 2365 511 7567 5521 734 6460
5 3369 511 9623 7577 734 8665
6 4373 511 11679 9633 734 10870

Table 5.2: Group Dimension Dependent Performance Parameters

Protocol Execution Times

In order to measure the quality of our performance model we will also evaluate the

protocol execution times, for a given set of non-faulty and faulty scenarios, making afterwards

the comparison between theoretical and experimental results. Protocol execution times are
dependent of each particular LAN characteristics. So, we recalculate LAN parameters that

do not remain constant, for the particular case of our testbed environment. Assuming we
have our cell manufacture network, with the same length C; = 500m, but with data rate
C, =5Mbps and N = 4, we have:

— station delay: tsp = 11us.

— token duration: t7r = 44.8us.

— minimum token rotation time in token-bus: R,,, = 233us.
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T. (ms) —n=2
Scenario 80 octets 640 octets 1150 octets
teor. | exp. | teor. | exp. | teor. | exp.

no faults 10.33 | 11.50 | 11.23 | 12.80 | 12.04 | 14.00
1 om. f. diss. | 1540 | 1540 | 1541 | 1550 | 1543 | 1550
1 om. f. dec. | 5039 | 5000 | 5040 | 5050 | 5041 | 5060
recip. failure | 3028 | 3060 | 3030 | 3060 | 3032 | 3080
sender failure | 8973 8974 8975

Table 5.3: AMp on a 5Mbps Token-Bus: theoretical and exper-
imental execution times, in the presence of several errors, with
n=2 participants and K = 1.

T, (ms) —n=4
Scenario 80 octets 640 octets 1150 octets
teor. | exp. | teor. | exp. | teor. | exp.

no faults 14.41 | 14.30 | 15.31 | 15.60 | 16.12 | 16.80
1 om. f. diss. | 1548 | 1550 | 1550 | 1560 | 1552 | 1560
1 om. f. dec. | 5039 | 5000 | 5040 | 5000 | 5041 | 5000
recip. failure | 3028 | 3006 | 3030 | 3080 | 3032 | 3080
sender failure | 8983 8984 8985

Table 5.4: AMp on a 5Mbps Token-Bus: theoretical and exper-
imental execution times, in the presence of several errors, with
n=4 participants and K = 1.

— For a background offered load of pgr = 10%, we have:

e average token rotation time: R,,(0.1) = 259us.

e consolidated average access delay (ppx = 10%): ty.. = 4629ps.

— message and protocol frame durations also change, as indicated in Table 3.2.

For the particular protocol implementation used in this evaluation, protocol timers were
not tightly tuned with LAN operation. First, timers do not wait by network confirmations.
They are started immediately after the request issuing. We model this effect by letting
torscs = 0. Secondly, they are assigned as multiples of a given #ime-base constant, defining
the following values:
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twaitResponse = 1.5s

tearlyDecision = 5.0s
twaitDecision = 5.0s
twaitDecResponse = 1.5s
twaitSlResp = 1.5s

Some relevant values, considering theoretical and experimental sets, are presented in
Tables 5.3 and 5.4, for two different group dimensions. Experimentally, the error scenarios
were obtained through fault injection, activated by software components.
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Chapter 6

Performance Model Revisited

Through all the chapter 3 we have developed a performance model that allows us to predict
xAMp performance for a wide set of token based networks. Provided that model parameters
are obtained from experimental evaluation, it will be able to represent close enough xAMp
behaviour, in terms of protocol execution times.

In this chapter we continue to explore the results that can be extracted from the perfor-
mance model. We begin by analysing how the performance model can be used to define a
realistic dimensioning of protocol timers, which can largely improve protocol performance in
the presence of faults.

A second representation of protocol execution — expressed in a form of a Gantt Diagram
— will also be analysed since it is extremely useful to obtain guidelines for optimize execution
times.

6.1 Dimensioning of AMp Timers

We have already mentioned, more than once, that in order to mutually control activity
all the communicating participants use timers. In chapter 3 we have merely identified those
timers, without defining the values that should be used in their programming. Now we will
establish a set of expressions that allows the definition of their values.

In high performance real-time systems, where timeliness requirements are very stringent,
we could obtain effective performance advantages if timer programming is tightly tuned with
each particular execution environment. For such systems, timers should be computed by the
communications management entity and are dependent both on the consolidated processing
times and on the network operating conditions.

At the sender site we have seen that timer Twait Response defines the maximum waiting
period, for response arrival, in each transmission-with-response round. Its purpose is to
recover from network omissions and/or to detect recipients failures. The sender starts timer
Twait Response, after receiving confirmation of transmission by the network, with a value
which can be be perceived from the timing spiral of Figure 3.2 and is given by equation
(6.1). This expression consideres the worst-case values of processing times, as denoted by the
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superscript “¢. It begins accounting the time required by the recipient to receive an incoming
message and produce the corresponding response. The number of responses expected to come
from the network is r = n — 1 (n: number of group members), whereas Ap account for LAN
overload, in addition to the expected channel utilization ppx. The last term of equation (6.1)
accounts the worst-case time required for deliver to the protocol the received responses. Since
the timer value depends on group dimension, each group has a timer.

twaitResponse(n) = ;UTcRxRp + tRT(n - 1a PBK + Ap) + pwrcRo:Bg(n) (6]‘)

After having sent their response to the network, each recipient also starts a time —
Twait Decision — that establishes a deadline for decision reception. This timer also depends
on group dimension, n, so, it also belongs to each group. Besides, its first purpose, in absence
of permanent failures, is to detect and recover from omissions in the (non acknowledged)
decision; in consequence, it is a two shot timer, with a first timeout given by t...1yDecision:

tearlyDecision(n) = tRT(n - 27 PBI\) + tp'ng(n) + Rau(pBK) + tDec + terx (62)

The rationale for dimensioning of this timer is that, after confirmation, from the network,
of transmission of the response, the recipient starts the timer (¢.qr1yDecision), based on the
assumption that it is the first station to reply in the response collection process. After given
enough time for the collection of all responses, under the average pgx channel utilization,
each recipient allows an optimistic processing time' for the bag of n responses, followed by
transmission of the decision, after waiting for the access to the network. All these times are
represented in the spiral diagram of Figure 3.2. Strictly speaking, we should have used the
value of t,.p.. for the network access delay, but we have preferred, instead, to use its upper
bound R,,(pBK ), for two reasons:

o It provides a realistic safety margin. This is particularly important when we are dealing
with very small ¢,.p.. values. In this scenario the sender may marginally miss the
foreseen opportunity, to issue a decision, and one more token rotation is required.

e As aforementioned, the values of the timers are computed in real time by the commu-
nications management entity, being the latter more easily obtained than the former.

The last term on equation (6.2) accounts an also optimistic time for the delivery, to the
protocol, of frames arriving from the network.

As aforementioned the early timeout mechanism is intended to detect and recover from an
eventual loss of the first decision issued by the sender. Under more severe faulty conditions a
more powerful mechanism is required, being started upon the second signal of Twazt Decision
timer. The dimensioning of their value does not share the optimism placed in the definition
of its first signal. Indeed, more restrictive operating conditions are considered, by accounting
the following factors:

1Optimistic, because the average values are used, i.e. no variabilities are taken into account.
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— The possible existence of a LAN load variability — Ap — over the background traffic —
PBK -

— The eventual occurrence of some latency in the protocol processing machinery, dictating
the consideration of worst-case processing times.

The value of the second and final t,4itDecision timeout is therefore given by the following
equation:

twaitDecision(n) = tRT(n - 27 PBK T Ap) + pwchg(n) + Rav(pBK + Ap) + tpec + ;)’I'CRCL’ (63)

Another timer to be defined is TwaitDecResponse. This timer is also started at the
recipient sites, within each try of the request decision transmission-with-response. This timer
is a variant of Twait Response timer where a single decision, instead of multiple responses,
is awaited for. Due to this reason, in the definition of t,4itpDecResponse We have neglected the
influence of the interframe spacing delay expressed in equation (3.2). Therefore the value of
this timer, that does not depend on group dimension, is given by:

twaitDecResponse = t;}TcRqu + Rau(pBK + Ap) + tDec + t;]TCRng(]-) (64)

Our last expression of timer definition represents another variant of the Twait Response
timer, used by the active group monitor during the StepOne phase. Since this processing
presents a larger duration, relatively to the normal response generation, a different timer
value is also defined:

twaitSlResp(n) = t;;«cisp + tRSl(n - 1) PBK + Ap) + tgrcRng(n) (65)
Using equations 6.1 through 6.5, network operators are able of accurately parameterize
protocol timers, with the aim of obtaining the best achievable performance.

6.2 Gantt Diagrams

In order to provide generic guidelines for the correct implementation of the protocol and
Abstract Network layers we will analyse protocol execution represented in a form known
as Gantt Diagram. This diagram provides to the designer helpful information concerning
how the execution time is split among each individual action and, in consequence, it is able
to i1dentify those actions which are more time consuming. Clearly, if those actions can be
performed faster, significant performance enhancements can be obtained. For simplicity of
exposition, we will split our analysis in two parts:

— Abstract Network Gantt — which includes the harmonization driver and the its interac-

tion with the user and the LAN VLSI.

— Protocol Gantt— concerning the execution of the “normal” transmit/receive zAMp data
path.
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Abstract Network Gantt

The actions performed in the transmit/receive data path within the Abstract Network
are represent in the Gantt diagram of Figure 6.1.

Let us start by analysing the actions taking place at the Emitter Site, upon a xAMp
request. Clearly, we can identify the following main sections:

o Service of User Requests — In our analysis we consider an Abstract Network boundary
defined in such a way that this component also includes the transaction of the request
and its processing before invocation of the remaining “frame” treatment procedures.
Therefore we account, inside the Abstract Network domain, the time required to per-
form and service any request made by the x AMp protocol.

o Format Conversion — Protocol layers should use a LAN independent message repre-
sentation, in order to be easily portable. Therefore, before inserting each frame in the
VLSI queue, a format translation must take place. Since this operation represents a
functional overhead in the data path processing it should be kept simple, to be quickly
executed.

o Frame Queueing — In this action frames to be transmitted are delivered to the LAN
controller. The associated operations are dependent of each particular VLSI interface.
The development of an efficient, performance wise, LAN VLSI interface is a critical
issue. The way how such an interface should be actually built are not always clearly
documented in the LAN controller data sheets and an additional investigation, for each
case, is often required.

o Full Duplex Copy— This action is concerned with the support of Abstract Network prop-
erty An4 and is only performed in systems where this feature is not directly supported
by the LAN controller. To speed up protocol execution, this action is only performed
after the frame has been queued to the VLSI for transmission. If this was not the case,
i.e. if copying was performed before queueing, a performance penalty will always occur.

The confirmation that a queued frame was actually transmitted to the medium is signaled,
by the VLSI, through a processor interrupt request. Performance wise, this method presents
real advantages when compared with a polling scheme since it saves processing power. The
actions required to process transmitted frames are also identified in the Gantt diagram of
Figure 6.1:

o Interrupt Service — Interrupt service includes the fetching and clearing of the VLSI
interrupt status. If that is the case, it will also include auxiliary frame stamping func-
tions, required as a support to the full duplex Abstract Network property. Since this
section also interacts with the VLSI, it is also subject to our previous remarks about
efficiency of LAN controller interfacing.

o Frame Unqueueing — Transmitted frames must be withdrawed from the transmit queue,
being the corresponding data structures either released or delivered to the user.
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Interrupt Service  User Delivery
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Figure 6.1: Gantt Diagram for the Abstract Network

o User Delivery — When requested confirmation of transmissions are delivered to the user,
after being processed by the Abstract Network. If that is the case, a “full duplex” copy
of the transmitted frame will also be delivered to the user, at this time.

In a given sense the kind of actions performed at the Recipient Site are very similar
with those concerning confirmation of transmissions. They are also triggered through an
interrupt request asserted by the LAN VLSI and include afterwards the following steps:

o Recewve Queue Service — Which will be responsible by the retrieval of the received frames
from the corresponding queue.

o Format Conversion — Performing the translation of the VLSI frame format into the
LAN independent format used by the upper layer protocols.

o User Delivery — Which includes the transaction of the message to the destination end-
point.

Given a particular Abstract Network implementation, this time domain analysis is useful
in optimizing performance. As a general rule, implementations should follow the guidelines
outlined in this section, trying to reduce the processing overheads and supporting an efficient
interface with the VLSI. For example, in the implementation of the Token-Bus Abstract
Network we have used, the following schemes:

— Merging of LAN independent and VLSI private frame structures, conducting to simpler frame
format translations and consequently to an enhanced performance.
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— Efficient LAN VLSI interface, using specific resources? to prevent the overlapping of requests,
with small or even null processing overheads.

— Careful sequencing of actions, avoiding that execution of critical activities will be delayed by
the non-critical ones.

Protocol Gantt

The actions performed when concerning the execution of a “normal” transmit/receive
xAMp data path are represent in the Gantt diagram of Figure 6.2.

The analysis of the actions takes place when a user issues an Atomic request, at the
Emitter Site. The following main sections can be clearly identified:

o Scheduler accepting and Initial frame formatting — Upon the user request of an Atomic
transmission, some initial frame header formatting is performed. Afterwards, some
tests are executed to determine if the frame is allowed to be transmitted. Traffic can
be suspended or casual order can prevent the sending of the frame. If this is the case
the frame is queued in the Scheduler and awaits the end of these situations (this is not
shown in the Gantt diagram). If not the processing continues so that the frame can be
transmitted.

o Final frame formatting — These operations can only be performed after the knowledge
that the frame will be transmitted immediately and not queued in the Scheduler.

o Frame filling — The result of formatting is now introduced in the frame to be sent to
the Abstract Network for delivery to the medium. This filling should also include the
data that the user requests to be sent. Actual implementations of the protocol use the
structure sent by the user (already with the data in it) and add the headers determined
before. This way no data copying is performed.

o Send Machine setup — Now the send machine has to be initialized to this particular
type of frame. Here some variables are setup and finally the frame is delivered to the
Abstract Network.

Now at the Recipient Site the frame is delivered to the x AMp by the Abstract Network.

o Frame header extraction — The receiver receives the frame and immediately before any
type checking, the frame header is extracted. This header is equal to all types of frames
so it can be immediately tested.

o Type checking and Function branching — After the header has been extracted, the frame
type can be checked and depending on it and on the x AMp status, it can be discarded
or accepted. If it is accepted the appropriate function related to this type of frame is
then called.

2Given fields, on the VLSI shared memory area.
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o Credit and other tests — Now the protocol is already in the Atomic frame specific part
and certain values like credit and traffic suspended for example have to tested to see if
the frame can be queued, or if it is immediately rejected.

o Response alloc and filling — As the frame just received can not be used to resend the
response (because it is going to be queued), a new frame has to be allocated. It is then
filled with the appropriate values for the response, and sent to the Abstract Network.

o Frame queueing — Here is a typical example of optimization in the protocol. The frame
is only queued after the response is sent to the Abstract Network. This way some
parallel processing can be performed.

As each station sends its response to the frame emitter station, these responses are col-
lected one by one until all have been received and a decision can be sent.

o Response header extraction — Like before in the reception of the data frame, the header
is extracted.

o Type checking and Function branching — Also the procedure is identical to the case
above.

o Send Machine response Test and update — Now the emitter station knows that the sender
of this response has issued a valid acknoledgement to the data frame, and so certain
send machine values are updated to reflect this fact. As the emitter station knows how
many responses to wait for, it can determine when all responses have arrived.

If all responses have not come yet, this part of the protocol stops here waiting for the
rest of the responses from other stations. When all responses have come, then the protocol
continues.

o Frame header extraction, Confirmation to user — As the user has to be notified that the
transmission was successful, the frame that was initially sent to the Abstract Network
is now sent back to the user. For that the header part has to be extracted before it is
delivered up.

o Decision alloc and filling — A decision has been reached and it has to be sent to all
stations active in this transmission. So a decision frame is allocated, filed with the
correct parameters and sent to the Abstract Network.

All Recipient Sites now receive the decision frame delivered by the Abstract Network.
o Decision header extraction, Type checking and Function branching — Actions identical

to the previous cases.

o Queued frame search and accept — The frame related to the decision just received is
searched through the receive queue, and accepted.

o Indication to the user — If the frame accepted is at the top of the queue then it can be
withdrawn from this queue and an indication is sent to the upper services.
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Figure 6.2: Protocol Gantt diagram
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Chapter 7

Conclusions

This work has analyzed the performance of t AMp, an atomic multicast protocol for local
area networks. Our study has focused both theoretical and experimental aspects. A per-
formance model has been developed and an experimental evaluation, performed on an ISO
8802/4 Token-Bus network, has been carried out.

The aim of the experimental evaluation was essentially the validation of the model and the
measurement of processing times parameters that characterize the execution of the protocol
and therefore the performance model. Nevertheless we have measured the actual execution
times of xAMp, in a set of distinct scenarios. The model seems to be quite accurate. Some
of the differences found can be explained by the variation of the processing times with some
variables like, for instance frame length, that were not considered in the model.

The execution times of z AMp on FDDI were predicted using the performance parameters
of our experimental evaluation. As expected the high speed of FDDI benefits the execution
of complex protocols, like tAMp. Performance predictions have also shown some interesting
dependencies of execution times with network load and processing times. These effects were
explained through the “spiral of times”, a concept that allows the establishment of a timing
relationship between different phases of the protocol, in the absence of faults.
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Appendix A

Consolidated Model Parameters

The AMp, as described in [Verissimo 89], is engineered at the data link level. The LAN
independence is assured by its interface with an abstract local area network, whose properties
are guaranteed by a harmonizing driver built on the top of the exposed MAC interface of
the particular VLSI LAN controller. This architecture is sketched in Figure A.1, where we
have explicitly identified three relevant domains. The processing time parameters of the
aforementioned entities are characterized. Together with the underlying network model they
are used afterwards to establish the consolidated parameters of our performance model.

Driver

LAN VLSI

Figure A.1: Communication System Architecture
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We start by define the processing times intrinsically associated with AMp execution:

¢ lampUsr — AMp processing time for an user request.
¢ tampRe — AMp processing time for reception of a generic protocol frame.
O tampRrzRp — AMp processing time for reception of an information frame and response generation.

¢ tympReRg — AMp processing time for reception of a request decision and issuing of the corre-
sponding decision.

O tampBg(n) — AMp processing time for a bag of n responses.

O tampBgTim(n) — AMp processing time, upon timeout, for a bag of expected n responses and
initiating message retransmission.

¢ tympDecGen — AMp processing time required to generate a decision, upon the processing of all
the responses.

¢ tampDecTim — AMp processing time upon T'wait Decision timeout indication

¢ tampcy — AMp processing time for the confirmation of a transmission.

¢ tampsirp — AMp processing time for reception of a step one request and their response generation.
O tampBgStep1 (1) — AMp processing time for a bag of n step one responses.

¢ tampSiGen — AMp processing time for the generation of the step one request.

O tamps2Gen — AMp processing time for the generation of the step two request.

At the Abstract Network domain we define two sets of parameters. One of the sets
concerns the processing in the harmonization driver:

¢ tdryRre — Driver processing time for frame receipt.
¢ tgroTz — Driver processing time for frame transmit.

¢ tgmoy — Driver processing time required for the confirmation of each transmission.
while the other set accounts some aspects of the bare VLSI performance:

¢ tmaecs — Delay associated with the generation of transmission confirmation, by the VLSI.

O tmackz — Delay associated to the VLSI, for frame receipt.

Additionally we define t;,.1;,, as the time inherently wasted by local support environment
timer agency, for processing the timeout.

The relationship between the consolidated processing times and those previously
defined is expressed by equations (A.1) through (A.12).

tp’I‘US’I‘ - tampUsr (A]-)
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tp?"Rx = tmacRx + tdrva + tampr (Az)

tprReRp = tmacRe + tdroRe + tampReRp + tdrvTe (A.3)

tprReRg = tmacRe + tdrvRz T tampReRg (A.4)

torReBy(N) = tmacre + (N — 1) . tirure + tampsy (1) (A.5)

tprBg(N) = tmacke + (N — 1) . tarore + tampBg(n) + tampDecGen + tarvTs (A.6)
tprBgTim(N) = tiseTim + tampBgTim(1) (A.T)

tprDecTim = tiseTim + tampDecTim (A.8)

torTeCf = tmacof + tdrvc s + tampoy (A.9)

tprs1Gen = tampSiGen (A.10)

tprs1Rp = tmacRe + tdrvRz + tampsiRp + tdroTz (A.11)

torBgstept () = tmacke + (1 — 1) . tarure + tampBgstept (1) + tampsaGen + tarvTa (A.12)

The worst-case performance figures, required for timer programming, can be obtained
from these ones:

£ = (14 vp) tyrrs (A.13)
tprrery = (14 VP) tprRarp (A.14)
tprreBg (1) = (1 +vp) tprRoBy(n) (A.15)
tyrpg(n) = (14 vp) tprpy(n) (A.16)
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ms1ry = (1 +vp)tprsimp (A.17)

where vp accounts the CPU load variability.

The last performance model parameter to be defined is the consolidated network access
delay. This parameter have a random component, resulting from the time required to access
the network, and also presents components depending on the AMp and harmonization driver
processing times:

tace = tdroTz + trace (A18)

where t,,.. 1s the average raw access delay.

(A.19)

For token-based networks the value of R,,(p), besides the explicitly dependency on the
network load, also varies with the network length and number of stations, and should be

defined for each LAN.
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